Spaces:
Build error
Build error
zhenyundeng
commited on
Commit
·
0fa98b8
1
Parent(s):
7168c2f
update
Browse files- app.py +75 -233
- requirements.txt +3 -2
app.py
CHANGED
@@ -43,7 +43,7 @@ try:
|
|
43 |
except Exception as e:
|
44 |
pass
|
45 |
|
46 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
47 |
account_url = os.environ["AZURE_ACCOUNT_URL"]
|
48 |
credential = {
|
49 |
"account_key": os.environ['AZURE_ACCOUNT_KEY'],
|
@@ -93,30 +93,38 @@ LABEL = [
|
|
93 |
"Conflicting Evidence/Cherrypicking",
|
94 |
]
|
95 |
|
96 |
-
|
97 |
-
#
|
98 |
-
|
99 |
-
|
100 |
-
#
|
101 |
-
|
102 |
-
|
103 |
-
#
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
#
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
#
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
# Set up Gradio Theme
|
122 |
theme = gr.themes.Base(
|
@@ -124,9 +132,9 @@ theme = gr.themes.Base(
|
|
124 |
secondary_hue="red",
|
125 |
font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
|
126 |
)
|
127 |
-
|
128 |
# ---------- Setting ----------
|
129 |
|
|
|
130 |
class Docs:
|
131 |
def __init__(self, metadata=dict(), page_content=""):
|
132 |
self.metadata = metadata
|
@@ -184,6 +192,7 @@ class SequenceClassificationDataLoader(pl.LightningDataModule):
|
|
184 |
|
185 |
return input_ids, attention_masks
|
186 |
|
|
|
187 |
def quadruple_to_string(self, claim, question, answer, bool_explanation=""):
|
188 |
if bool_explanation is not None and len(bool_explanation) > 0:
|
189 |
bool_explanation = ", because " + bool_explanation.lower().strip()
|
@@ -200,91 +209,8 @@ class SequenceClassificationDataLoader(pl.LightningDataModule):
|
|
200 |
)
|
201 |
|
202 |
|
203 |
-
def google_veracity_prediction(claim, qa_evidence):
|
204 |
-
bert_model_name = "bert-base-uncased"
|
205 |
-
tokenizer = BertTokenizer.from_pretrained(bert_model_name)
|
206 |
-
bert_model = BertForSequenceClassification.from_pretrained(bert_model_name, num_labels=4,
|
207 |
-
problem_type="single_label_classification")
|
208 |
-
|
209 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
210 |
-
trained_model = SequenceClassificationModule.load_from_checkpoint("averitec/pretrained_models/bert_veracity.ckpt",
|
211 |
-
tokenizer=tokenizer, model=bert_model).to(device)
|
212 |
-
|
213 |
-
dataLoader = SequenceClassificationDataLoader(
|
214 |
-
tokenizer=tokenizer,
|
215 |
-
data_file="this_is_discontinued",
|
216 |
-
batch_size=32,
|
217 |
-
add_extra_nee=False,
|
218 |
-
)
|
219 |
-
|
220 |
-
evidence_strings = []
|
221 |
-
for evidence in qa_evidence:
|
222 |
-
evidence_strings.append(
|
223 |
-
dataLoader.quadruple_to_string(claim, evidence.metadata["query"], evidence.metadata["answer"], ""))
|
224 |
-
|
225 |
-
if len(evidence_strings) == 0: # If we found no evidence e.g. because google returned 0 pages, just output NEI.
|
226 |
-
pred_label = "Not Enough Evidence"
|
227 |
-
return pred_label
|
228 |
-
|
229 |
-
tokenized_strings, attention_mask = dataLoader.tokenize_strings(evidence_strings)
|
230 |
-
example_support = torch.argmax(
|
231 |
-
trained_model(tokenized_strings.to(device), attention_mask=attention_mask.to(device)).logits, axis=1)
|
232 |
-
|
233 |
-
has_unanswerable = False
|
234 |
-
has_true = False
|
235 |
-
has_false = False
|
236 |
-
|
237 |
-
for v in example_support:
|
238 |
-
if v == 0:
|
239 |
-
has_true = True
|
240 |
-
if v == 1:
|
241 |
-
has_false = True
|
242 |
-
if v in (2, 3,): # TODO another hack -- we cant have different labels for train and test so we do this
|
243 |
-
has_unanswerable = True
|
244 |
-
|
245 |
-
if has_unanswerable:
|
246 |
-
answer = 2
|
247 |
-
elif has_true and not has_false:
|
248 |
-
answer = 0
|
249 |
-
elif not has_true and has_false:
|
250 |
-
answer = 1
|
251 |
-
else:
|
252 |
-
answer = 3
|
253 |
-
|
254 |
-
pred_label = LABEL[answer]
|
255 |
-
|
256 |
-
return pred_label
|
257 |
-
|
258 |
-
|
259 |
-
def fever_veracity_prediction(claim, evidence):
|
260 |
-
tokenizer = RobertaTokenizer.from_pretrained('Dzeniks/roberta-fact-check')
|
261 |
-
model = RobertaForSequenceClassification.from_pretrained('Dzeniks/roberta-fact-check')
|
262 |
-
|
263 |
-
evidence_string = ""
|
264 |
-
for evi in evidence:
|
265 |
-
evidence_string += evi.metadata['title'] + evi.metadata['evidence'] + ' '
|
266 |
-
|
267 |
-
input_sequence = tokenizer.encode_plus(claim, evidence_string, return_tensors="pt")
|
268 |
-
with torch.no_grad():
|
269 |
-
prediction = model(**input_sequence)
|
270 |
-
|
271 |
-
label = torch.argmax(prediction[0]).item()
|
272 |
-
pred_label = LABEL[label]
|
273 |
-
|
274 |
-
return pred_label
|
275 |
-
|
276 |
-
|
277 |
@spaces.GPU
|
278 |
def veracity_prediction(claim, qa_evidence):
|
279 |
-
# bert_model_name = "bert-base-uncased"
|
280 |
-
# tokenizer = BertTokenizer.from_pretrained(bert_model_name)
|
281 |
-
# bert_model = BertForSequenceClassification.from_pretrained(bert_model_name, num_labels=4,
|
282 |
-
# problem_type="single_label_classification")
|
283 |
-
#
|
284 |
-
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
285 |
-
# trained_model = SequenceClassificationModule.load_from_checkpoint("averitec/pretrained_models/bert_veracity.ckpt",
|
286 |
-
# tokenizer=tokenizer, model=bert_model).to(device)
|
287 |
-
|
288 |
dataLoader = SequenceClassificationDataLoader(
|
289 |
tokenizer=veracity_tokenizer,
|
290 |
data_file="this_is_discontinued",
|
@@ -302,7 +228,8 @@ def veracity_prediction(claim, qa_evidence):
|
|
302 |
return pred_label
|
303 |
|
304 |
tokenized_strings, attention_mask = dataLoader.tokenize_strings(evidence_strings)
|
305 |
-
example_support = torch.argmax(veracity_model(tokenized_strings.to(device), attention_mask=attention_mask.to(device)).logits, axis=1)
|
|
|
306 |
|
307 |
has_unanswerable = False
|
308 |
has_true = False
|
@@ -330,6 +257,7 @@ def veracity_prediction(claim, qa_evidence):
|
|
330 |
return pred_label
|
331 |
|
332 |
|
|
|
333 |
def extract_claim_str(claim, qa_evidence, verdict_label):
|
334 |
claim_str = "[CLAIM] " + claim + " [EVIDENCE] "
|
335 |
|
@@ -359,43 +287,43 @@ def extract_claim_str(claim, qa_evidence, verdict_label):
|
|
359 |
return claim_str
|
360 |
|
361 |
|
362 |
-
|
|
|
363 |
#
|
364 |
-
claim_str = extract_claim_str(claim, qa_evidence, verdict_label)
|
365 |
-
claim_str
|
366 |
|
367 |
-
|
368 |
-
|
369 |
-
bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large")
|
370 |
|
371 |
-
|
372 |
-
|
373 |
-
model=bart_model).to(device)
|
374 |
|
375 |
-
|
|
|
376 |
|
377 |
-
|
|
|
378 |
|
|
|
|
|
|
|
|
|
|
|
|
|
379 |
|
380 |
-
|
381 |
-
def justification_generation(claim, qa_evidence, verdict_label):
|
382 |
-
#
|
383 |
-
claim_str = extract_claim_str(claim, qa_evidence, verdict_label)
|
384 |
-
claim_str.strip()
|
385 |
|
386 |
-
|
387 |
-
# tokenizer = BartTokenizer.from_pretrained('facebook/bart-large', add_prefix_space=True)
|
388 |
-
# bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large")
|
389 |
#
|
390 |
-
|
391 |
-
# trained_model = JustificationGenerationModule.load_from_checkpoint(best_checkpoint, tokenizer=tokenizer,
|
392 |
-
# model=bart_model).to(device)
|
393 |
|
394 |
-
pred_justification = justification_model.generate(claim_str, device=device)
|
|
|
395 |
|
396 |
return pred_justification.strip()
|
397 |
|
398 |
-
|
399 |
def QAprediction(claim, evidence, sources):
|
400 |
parts = []
|
401 |
#
|
@@ -493,9 +421,9 @@ def prompt_question_generation(test_claim, speaker="they", topk=10):
|
|
493 |
"\". Criticism includes questions like: "
|
494 |
sentences = [prompt]
|
495 |
|
496 |
-
inputs = qg_tokenizer(sentences, padding=True, return_tensors="pt").to(device)
|
497 |
-
|
498 |
-
|
499 |
|
500 |
tgt_text = qg_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
501 |
in_len = len(sentences[0])
|
@@ -629,96 +557,7 @@ def get_google_search_results(api_key, search_engine_id, google_search, sort_dat
|
|
629 |
return search_results
|
630 |
|
631 |
|
632 |
-
|
633 |
-
# default config
|
634 |
-
api_key = os.environ["GOOGLE_API_KEY"]
|
635 |
-
search_engine_id = os.environ["GOOGLE_SEARCH_ENGINE_ID"]
|
636 |
-
|
637 |
-
blacklist = [
|
638 |
-
"jstor.org", # Blacklisted because their pdfs are not labelled as such, and clog up the download
|
639 |
-
"facebook.com", # Blacklisted because only post titles can be scraped, but the scraper doesn't know this,
|
640 |
-
"ftp.cs.princeton.edu", # Blacklisted because it hosts many large NLP corpora that keep showing up
|
641 |
-
"nlp.cs.princeton.edu",
|
642 |
-
"huggingface.co"
|
643 |
-
]
|
644 |
-
|
645 |
-
blacklist_files = [ # Blacklisted some NLP nonsense that crashes my machine with OOM errors
|
646 |
-
"/glove.",
|
647 |
-
"ftp://ftp.cs.princeton.edu/pub/cs226/autocomplete/words-333333.txt",
|
648 |
-
"https://web.mit.edu/adamrose/Public/googlelist",
|
649 |
-
]
|
650 |
-
|
651 |
-
# save to folder
|
652 |
-
store_folder = "averitec/data/store/retrieved_docs"
|
653 |
-
#
|
654 |
-
index = 0
|
655 |
-
questions = [q["question"] for q in generate_question]
|
656 |
-
|
657 |
-
# check the date of the claim
|
658 |
-
current_date = datetime.now().strftime("%Y-%m-%d")
|
659 |
-
sort_date = check_claim_date(current_date) # check_date="2022-01-01"
|
660 |
-
|
661 |
-
#
|
662 |
-
search_strings = []
|
663 |
-
search_types = []
|
664 |
-
|
665 |
-
search_string_2 = string_to_search_query(claim, None)
|
666 |
-
search_strings += [search_string_2, claim, ]
|
667 |
-
search_types += ["claim", "claim-noformat", ]
|
668 |
-
|
669 |
-
search_strings += questions
|
670 |
-
search_types += ["question" for _ in questions]
|
671 |
-
|
672 |
-
# start to search
|
673 |
-
search_results = []
|
674 |
-
visited = {}
|
675 |
-
store_counter = 0
|
676 |
-
worker_stack = list(range(10))
|
677 |
-
|
678 |
-
retrieve_evidence = []
|
679 |
-
|
680 |
-
for this_search_string, this_search_type in zip(search_strings, search_types):
|
681 |
-
for page_num in range(n_pages):
|
682 |
-
search_results = get_google_search_results(api_key, search_engine_id, google_search, sort_date,
|
683 |
-
this_search_string, page=page_num)
|
684 |
-
|
685 |
-
for result in search_results:
|
686 |
-
link = str(result["link"])
|
687 |
-
domain = get_domain_name(link)
|
688 |
-
|
689 |
-
if domain in blacklist:
|
690 |
-
continue
|
691 |
-
broken = False
|
692 |
-
for b_file in blacklist_files:
|
693 |
-
if b_file in link:
|
694 |
-
broken = True
|
695 |
-
if broken:
|
696 |
-
continue
|
697 |
-
if link.endswith(".pdf") or link.endswith(".doc"):
|
698 |
-
continue
|
699 |
-
|
700 |
-
if link in visited:
|
701 |
-
store_file_path = visited[link]
|
702 |
-
else:
|
703 |
-
store_counter += 1
|
704 |
-
store_file_path = store_folder + "/search_result_" + str(index) + "_" + str(
|
705 |
-
store_counter) + ".store"
|
706 |
-
visited[link] = store_file_path
|
707 |
-
|
708 |
-
while len(worker_stack) == 0: # Wait for a worker to become available. Check every second.
|
709 |
-
sleep(1)
|
710 |
-
|
711 |
-
worker = worker_stack.pop()
|
712 |
-
|
713 |
-
t = threading.Thread(target=get_and_store, args=(link, store_file_path, worker, worker_stack))
|
714 |
-
t.start()
|
715 |
-
|
716 |
-
line = [str(index), claim, link, str(page_num), this_search_string, this_search_type, store_file_path]
|
717 |
-
retrieve_evidence.append(line)
|
718 |
-
|
719 |
-
return retrieve_evidence
|
720 |
-
|
721 |
-
|
722 |
def averitec_search(claim, generate_question, speaker="they", check_date="2024-07-01", n_pages=1): # n_pages=3
|
723 |
# default config
|
724 |
api_key = os.environ["GOOGLE_API_KEY"]
|
@@ -848,7 +687,7 @@ def generate_step2_reference_corpus(reference_file):
|
|
848 |
|
849 |
return tokenized_corpus, prompt_corpus
|
850 |
|
851 |
-
|
852 |
def decorate_with_questions(claim, retrieve_evidence, top_k=5): # top_k=10, 100
|
853 |
#
|
854 |
reference_file = "averitec/data/train.json"
|
@@ -916,9 +755,9 @@ def decorate_with_questions(claim, retrieve_evidence, top_k=5): # top_k=10, 100
|
|
916 |
prompt = "\n\n".join(prompt_docs + [claim_prompt])
|
917 |
sentences = [prompt]
|
918 |
|
919 |
-
inputs = qg_tokenizer(sentences, padding=True, return_tensors="pt").to(device)
|
920 |
-
|
921 |
-
|
922 |
|
923 |
tgt_text = qg_tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[-1]:], skip_special_tokens=True)[0]
|
924 |
# We are not allowed to generate more than 250 characters:
|
@@ -1034,8 +873,8 @@ def rerank_questions(claim, bm25_qas, topk=3):
|
|
1034 |
values.append([question, answer, source])
|
1035 |
|
1036 |
if len(bm25_qas) > 0:
|
1037 |
-
encoded_dict = rerank_tokenizer(strs_to_score, max_length=512, padding="longest", truncation=True,
|
1038 |
-
|
1039 |
|
1040 |
input_ids = encoded_dict['input_ids']
|
1041 |
attention_masks = encoded_dict['attention_mask']
|
@@ -1052,6 +891,7 @@ def rerank_questions(claim, bm25_qas, topk=3):
|
|
1052 |
return top3_qa_pairs
|
1053 |
|
1054 |
|
|
|
1055 |
def Googleretriever(query, sources):
|
1056 |
# ----- Generate QA pairs using AVeriTeC
|
1057 |
# step 1: generate questions for the query/claim using Bloom
|
@@ -1207,6 +1047,7 @@ def WikipediaDumpsretriever(claim):
|
|
1207 |
|
1208 |
return results
|
1209 |
|
|
|
1210 |
# ----------WikipediaAPIretriever---------
|
1211 |
def clean_str(p):
|
1212 |
return p.encode().decode("unicode-escape").encode("latin1").decode("utf-8")
|
@@ -1556,6 +1397,7 @@ def main():
|
|
1556 |
dropdown_samples.change(change_sample_questions, dropdown_samples, samples)
|
1557 |
demo.queue()
|
1558 |
|
|
|
1559 |
demo.launch(share=True)
|
1560 |
|
1561 |
|
|
|
43 |
except Exception as e:
|
44 |
pass
|
45 |
|
46 |
+
# os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
47 |
account_url = os.environ["AZURE_ACCOUNT_URL"]
|
48 |
credential = {
|
49 |
"account_key": os.environ['AZURE_ACCOUNT_KEY'],
|
|
|
93 |
"Conflicting Evidence/Cherrypicking",
|
94 |
]
|
95 |
|
96 |
+
if torch.cuda.is_available():
|
97 |
+
# # device
|
98 |
+
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
99 |
+
|
100 |
+
# question generation
|
101 |
+
qg_tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom-7b1")
|
102 |
+
qg_model = BloomForCausalLM.from_pretrained("bigscience/bloom-7b1", torch_dtype=torch.bfloat16)
|
103 |
+
# qg_model = BloomForCausalLM.from_pretrained("bigscience/bloom-7b1", torch_dtype=torch.bfloat16).to(device)
|
104 |
+
# qg_tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom-7b1")
|
105 |
+
# qg_model = BloomForCausalLM.from_pretrained("bigscience/bloom-7b1", torch_dtype=torch.bfloat16).to(device)
|
106 |
+
|
107 |
+
# rerank
|
108 |
+
rerank_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
109 |
+
rereank_bert_model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2, problem_type="single_label_classification") # Must specify single_label for some reason
|
110 |
+
best_checkpoint = "averitec/pretrained_models/bert_dual_encoder.ckpt"
|
111 |
+
rerank_trained_model = DualEncoderModule.load_from_checkpoint(best_checkpoint, tokenizer=rerank_tokenizer, model=rereank_bert_model)
|
112 |
+
# rerank_trained_model = DualEncoderModule.load_from_checkpoint(best_checkpoint, tokenizer=rerank_tokenizer, model=rereank_bert_model).to(device)
|
113 |
+
|
114 |
+
# Veracity
|
115 |
+
veracity_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
116 |
+
bert_model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=4, problem_type="single_label_classification")
|
117 |
+
veracity_model = SequenceClassificationModule.load_from_checkpoint("averitec/pretrained_models/bert_veracity.ckpt", tokenizer=veracity_tokenizer, model=bert_model)
|
118 |
+
# veracity_model = SequenceClassificationModule.load_from_checkpoint("averitec/pretrained_models/bert_veracity.ckpt", tokenizer=veracity_tokenizer, model=bert_model).to(device)
|
119 |
+
|
120 |
+
|
121 |
+
# Justification
|
122 |
+
justification_tokenizer = BartTokenizer.from_pretrained('facebook/bart-large', add_prefix_space=True)
|
123 |
+
bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large")
|
124 |
+
best_checkpoint = 'averitec/pretrained_models/bart_justifications_verdict-epoch=13-val_loss=2.03-val_meteor=0.28.ckpt'
|
125 |
+
justification_model = JustificationGenerationModule.load_from_checkpoint(best_checkpoint, tokenizer=justification_tokenizer, model=bart_model)
|
126 |
+
# justification_model = JustificationGenerationModule.load_from_checkpoint(best_checkpoint, tokenizer=justification_tokenizer, model=bart_model).to(device)
|
127 |
+
|
128 |
|
129 |
# Set up Gradio Theme
|
130 |
theme = gr.themes.Base(
|
|
|
132 |
secondary_hue="red",
|
133 |
font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
|
134 |
)
|
|
|
135 |
# ---------- Setting ----------
|
136 |
|
137 |
+
|
138 |
class Docs:
|
139 |
def __init__(self, metadata=dict(), page_content=""):
|
140 |
self.metadata = metadata
|
|
|
192 |
|
193 |
return input_ids, attention_masks
|
194 |
|
195 |
+
|
196 |
def quadruple_to_string(self, claim, question, answer, bool_explanation=""):
|
197 |
if bool_explanation is not None and len(bool_explanation) > 0:
|
198 |
bool_explanation = ", because " + bool_explanation.lower().strip()
|
|
|
209 |
)
|
210 |
|
211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
@spaces.GPU
|
213 |
def veracity_prediction(claim, qa_evidence):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
dataLoader = SequenceClassificationDataLoader(
|
215 |
tokenizer=veracity_tokenizer,
|
216 |
data_file="this_is_discontinued",
|
|
|
228 |
return pred_label
|
229 |
|
230 |
tokenized_strings, attention_mask = dataLoader.tokenize_strings(evidence_strings)
|
231 |
+
example_support = torch.argmax(veracity_model(tokenized_strings.to(veracity_model.device), attention_mask=attention_mask.to(veracity_model.device)).logits, axis=1)
|
232 |
+
# example_support = torch.argmax(veracity_model(tokenized_strings.to(device), attention_mask=attention_mask.to(device)).logits, axis=1)
|
233 |
|
234 |
has_unanswerable = False
|
235 |
has_true = False
|
|
|
257 |
return pred_label
|
258 |
|
259 |
|
260 |
+
@spaces.GPU
|
261 |
def extract_claim_str(claim, qa_evidence, verdict_label):
|
262 |
claim_str = "[CLAIM] " + claim + " [EVIDENCE] "
|
263 |
|
|
|
287 |
return claim_str
|
288 |
|
289 |
|
290 |
+
@spaces.GPU
|
291 |
+
def justification_generation(claim, qa_evidence, verdict_label):
|
292 |
#
|
293 |
+
# claim_str = extract_claim_str(claim, qa_evidence, verdict_label)
|
294 |
+
claim_str = "[CLAIM] " + claim + " [EVIDENCE] "
|
295 |
|
296 |
+
for evi in qa_evidence:
|
297 |
+
q_text = evi.metadata['query'].strip()
|
|
|
298 |
|
299 |
+
if len(q_text) == 0:
|
300 |
+
continue
|
|
|
301 |
|
302 |
+
if not q_text[-1] == "?":
|
303 |
+
q_text += "?"
|
304 |
|
305 |
+
answer_strings = []
|
306 |
+
answer_strings.append(evi.metadata['answer'])
|
307 |
|
308 |
+
claim_str += q_text
|
309 |
+
for a_text in answer_strings:
|
310 |
+
if a_text:
|
311 |
+
if not a_text[-1] == ".":
|
312 |
+
a_text += "."
|
313 |
+
claim_str += " " + a_text.strip()
|
314 |
|
315 |
+
claim_str += " "
|
|
|
|
|
|
|
|
|
316 |
|
317 |
+
claim_str += " [VERDICT] " + verdict_label
|
|
|
|
|
318 |
#
|
319 |
+
claim_str.strip()
|
|
|
|
|
320 |
|
321 |
+
pred_justification = justification_model.generate(claim_str, device=justification_model.device)
|
322 |
+
# pred_justification = justification_model.generate(claim_str, device=device)
|
323 |
|
324 |
return pred_justification.strip()
|
325 |
|
326 |
+
@spaces.GPU
|
327 |
def QAprediction(claim, evidence, sources):
|
328 |
parts = []
|
329 |
#
|
|
|
421 |
"\". Criticism includes questions like: "
|
422 |
sentences = [prompt]
|
423 |
|
424 |
+
inputs = qg_tokenizer(sentences, padding=True, return_tensors="pt").to(qg_model.device)
|
425 |
+
# inputs = qg_tokenizer(sentences, padding=True, return_tensors="pt").to(device)
|
426 |
+
outputs = qg_model.generate(inputs["input_ids"], max_length=2000, num_beams=2, no_repeat_ngram_size=2, early_stopping=True)
|
427 |
|
428 |
tgt_text = qg_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
429 |
in_len = len(sentences[0])
|
|
|
557 |
return search_results
|
558 |
|
559 |
|
560 |
+
@spaces.GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
561 |
def averitec_search(claim, generate_question, speaker="they", check_date="2024-07-01", n_pages=1): # n_pages=3
|
562 |
# default config
|
563 |
api_key = os.environ["GOOGLE_API_KEY"]
|
|
|
687 |
|
688 |
return tokenized_corpus, prompt_corpus
|
689 |
|
690 |
+
@spaces.GPU
|
691 |
def decorate_with_questions(claim, retrieve_evidence, top_k=5): # top_k=10, 100
|
692 |
#
|
693 |
reference_file = "averitec/data/train.json"
|
|
|
755 |
prompt = "\n\n".join(prompt_docs + [claim_prompt])
|
756 |
sentences = [prompt]
|
757 |
|
758 |
+
inputs = qg_tokenizer(sentences, padding=True, return_tensors="pt").to(qg_model.device)
|
759 |
+
# inputs = qg_tokenizer(sentences, padding=True, return_tensors="pt").to(device)
|
760 |
+
outputs = qg_model.generate(inputs["input_ids"], max_length=5000, num_beams=2, no_repeat_ngram_size=2, early_stopping=True)
|
761 |
|
762 |
tgt_text = qg_tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[-1]:], skip_special_tokens=True)[0]
|
763 |
# We are not allowed to generate more than 250 characters:
|
|
|
873 |
values.append([question, answer, source])
|
874 |
|
875 |
if len(bm25_qas) > 0:
|
876 |
+
encoded_dict = rerank_tokenizer(strs_to_score, max_length=512, padding="longest", truncation=True, return_tensors="pt").to(rerank_trained_model.device)
|
877 |
+
# encoded_dict = rerank_tokenizer(strs_to_score, max_length=512, padding="longest", truncation=True, return_tensors="pt").to(device)
|
878 |
|
879 |
input_ids = encoded_dict['input_ids']
|
880 |
attention_masks = encoded_dict['attention_mask']
|
|
|
891 |
return top3_qa_pairs
|
892 |
|
893 |
|
894 |
+
@spaces.GPU
|
895 |
def Googleretriever(query, sources):
|
896 |
# ----- Generate QA pairs using AVeriTeC
|
897 |
# step 1: generate questions for the query/claim using Bloom
|
|
|
1047 |
|
1048 |
return results
|
1049 |
|
1050 |
+
|
1051 |
# ----------WikipediaAPIretriever---------
|
1052 |
def clean_str(p):
|
1053 |
return p.encode().decode("unicode-escape").encode("latin1").decode("utf-8")
|
|
|
1397 |
dropdown_samples.change(change_sample_questions, dropdown_samples, samples)
|
1398 |
demo.queue()
|
1399 |
|
1400 |
+
# demo.launch()
|
1401 |
demo.launch(share=True)
|
1402 |
|
1403 |
|
requirements.txt
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
gradio
|
2 |
-
nltk
|
3 |
rank_bm25
|
4 |
accelerate
|
5 |
trafilatura
|
6 |
-
spacy
|
7 |
pytorch_lightning
|
8 |
transformers==4.29.2
|
|
|
9 |
datasets
|
10 |
leven
|
11 |
scikit-learn
|
|
|
1 |
gradio
|
2 |
+
nltk
|
3 |
rank_bm25
|
4 |
accelerate
|
5 |
trafilatura
|
6 |
+
spacy
|
7 |
pytorch_lightning
|
8 |
transformers==4.29.2
|
9 |
+
SentencePiece
|
10 |
datasets
|
11 |
leven
|
12 |
scikit-learn
|