zhenyundeng commited on
Commit
6655655
·
1 Parent(s): e62781a
assets/averitec.png ADDED
averitec/data/all_samples.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef79bab962c2b17d56eb2582b9919bfe8023858fa13ba20c591900857b561854
3
+ size 11444395
averitec/data/sample_claims.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # -*- coding: utf-8 -*-
3
+ # Created by zd302 at 09/05/2024
4
+
5
+
6
+ CLAIMS_Type = {
7
+ "Claim": [
8
+ "England won the Euro 2024.",
9
+ "Albert Einstein works in the field of computer science.",
10
+ ],
11
+ "Event/Property Claim": [
12
+ 'Hunter Biden had no experience in Ukraine or in the energy sector when he joined the board of Burisma.',
13
+ "After the police shooting of Jacob Blake, Gov. Tony Evers & Lt. Gov. Mandela Barnes did not call for peace or encourage calm.",
14
+ "President Trump fully co-operated with the investigation into Russian interference in the 2016 U.S presidential campaign.",
15
+ ],
16
+ "Causal Claim":[
17
+ "Anxiety levels among young teenagers dropped during the coronavirus pandemic, a study has suggested",
18
+ "Auto workers across Michigan could have lost their jobs if not for Barack Obama and Joe Biden",
19
+ ],
20
+ "Numerical Claim":[
21
+ "Sweden, despite never having had lockdown, has a lower COVID-19 death rate than Spain, Italy, and the United Kingdom.",
22
+ "According to Harry Roque, even if 10,000 people die, 10 million COVID-19 cases in the country will not be a loss.",
23
+ ]
24
+ }
25
+
26
+ CLAIMS_FACT_CHECKING_STRATEGY= {
27
+ "Written Evidence": [
28
+ "Pretty Little Thing's terms and conditions state that its products may contain chemicals that can cause cancer, birth defects or other reproductive harm.",
29
+ "Pretty Little Thing products may contain chemicals that can cause cancer, birth defects or other reproductive harm.",
30
+ ],
31
+ "Numerical Comparison":[
32
+ "Congress party claims regarding shortfall in Government earnings",
33
+ "On average, one person dies by suicide every 22 hours in West Virginia, United States.",
34
+ ],
35
+ "Consultation":[
36
+ "Your reaction to an optical illusion is an indication of your state of mind.",
37
+ "The last time people created a Hollywood blacklist, people ended up killing themselves. They were accused, and they lost their right to work.",
38
+ ]
39
+ }
averitec/models/DualEncoderModule.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytorch_lightning as pl
2
+ import torch
3
+ from transformers.optimization import AdamW
4
+ import torchmetrics
5
+
6
+
7
+ class DualEncoderModule(pl.LightningModule):
8
+
9
+ def __init__(self, tokenizer, model, learning_rate=1e-3):
10
+ super().__init__()
11
+ self.tokenizer = tokenizer
12
+ self.model = model
13
+ self.learning_rate = learning_rate
14
+
15
+ self.train_acc = torchmetrics.Accuracy(
16
+ task="multiclass", num_classes=model.num_labels
17
+ )
18
+ self.val_acc = torchmetrics.Accuracy(
19
+ task="multiclass", num_classes=model.num_labels
20
+ )
21
+ self.test_acc = torchmetrics.Accuracy(
22
+ task="multiclass", num_classes=model.num_labels
23
+ )
24
+
25
+ def forward(self, input_ids, **kwargs):
26
+ return self.model(input_ids, **kwargs)
27
+
28
+ def configure_optimizers(self):
29
+ optimizer = AdamW(self.parameters(), lr=self.learning_rate)
30
+ return optimizer
31
+
32
+ def training_step(self, batch, batch_idx):
33
+ pos_ids, pos_mask, neg_ids, neg_mask = batch
34
+
35
+ neg_ids = neg_ids.view(-1, neg_ids.shape[-1])
36
+ neg_mask = neg_mask.view(-1, neg_mask.shape[-1])
37
+
38
+ pos_outputs = self(
39
+ pos_ids,
40
+ attention_mask=pos_mask,
41
+ labels=torch.ones(pos_ids.shape[0], dtype=torch.uint8).to(
42
+ pos_ids.get_device()
43
+ ),
44
+ )
45
+ neg_outputs = self(
46
+ neg_ids,
47
+ attention_mask=neg_mask,
48
+ labels=torch.zeros(neg_ids.shape[0], dtype=torch.uint8).to(
49
+ neg_ids.get_device()
50
+ ),
51
+ )
52
+
53
+ loss_scale = 1.0
54
+ loss = pos_outputs.loss + loss_scale * neg_outputs.loss
55
+
56
+ pos_logits = pos_outputs.logits
57
+ pos_preds = torch.argmax(pos_logits, axis=1)
58
+ self.train_acc(
59
+ pos_preds.cpu(), torch.ones(pos_ids.shape[0], dtype=torch.uint8).cpu()
60
+ )
61
+
62
+ neg_logits = neg_outputs.logits
63
+ neg_preds = torch.argmax(neg_logits, axis=1)
64
+ self.train_acc(
65
+ neg_preds.cpu(), torch.zeros(neg_ids.shape[0], dtype=torch.uint8).cpu()
66
+ )
67
+
68
+ return {"loss": loss}
69
+
70
+ def validation_step(self, batch, batch_idx):
71
+ pos_ids, pos_mask, neg_ids, neg_mask = batch
72
+
73
+ neg_ids = neg_ids.view(-1, neg_ids.shape[-1])
74
+ neg_mask = neg_mask.view(-1, neg_mask.shape[-1])
75
+
76
+ pos_outputs = self(
77
+ pos_ids,
78
+ attention_mask=pos_mask,
79
+ labels=torch.ones(pos_ids.shape[0], dtype=torch.uint8).to(
80
+ pos_ids.get_device()
81
+ ),
82
+ )
83
+ neg_outputs = self(
84
+ neg_ids,
85
+ attention_mask=neg_mask,
86
+ labels=torch.zeros(neg_ids.shape[0], dtype=torch.uint8).to(
87
+ neg_ids.get_device()
88
+ ),
89
+ )
90
+
91
+ loss_scale = 1.0
92
+ loss = pos_outputs.loss + loss_scale * neg_outputs.loss
93
+
94
+ pos_logits = pos_outputs.logits
95
+ pos_preds = torch.argmax(pos_logits, axis=1)
96
+ self.val_acc(
97
+ pos_preds.cpu(), torch.ones(pos_ids.shape[0], dtype=torch.uint8).cpu()
98
+ )
99
+
100
+ neg_logits = neg_outputs.logits
101
+ neg_preds = torch.argmax(neg_logits, axis=1)
102
+ self.val_acc(
103
+ neg_preds.cpu(), torch.zeros(neg_ids.shape[0], dtype=torch.uint8).cpu()
104
+ )
105
+
106
+ self.log("val_acc", self.val_acc)
107
+
108
+ return {"loss": loss}
109
+
110
+ def test_step(self, batch, batch_idx):
111
+ pos_ids, pos_mask, neg_ids, neg_mask = batch
112
+
113
+ neg_ids = neg_ids.view(-1, neg_ids.shape[-1])
114
+ neg_mask = neg_mask.view(-1, neg_mask.shape[-1])
115
+
116
+ pos_outputs = self(
117
+ pos_ids,
118
+ attention_mask=pos_mask,
119
+ labels=torch.ones(pos_ids.shape[0], dtype=torch.uint8).to(
120
+ pos_ids.get_device()
121
+ ),
122
+ )
123
+ neg_outputs = self(
124
+ neg_ids,
125
+ attention_mask=neg_mask,
126
+ labels=torch.zeros(neg_ids.shape[0], dtype=torch.uint8).to(
127
+ neg_ids.get_device()
128
+ ),
129
+ )
130
+
131
+ pos_logits = pos_outputs.logits
132
+ pos_preds = torch.argmax(pos_logits, axis=1)
133
+ self.test_acc(
134
+ pos_preds.cpu(), torch.ones(pos_ids.shape[0], dtype=torch.uint8).cpu()
135
+ )
136
+
137
+ neg_logits = neg_outputs.logits
138
+ neg_preds = torch.argmax(neg_logits, axis=1)
139
+ self.test_acc(
140
+ neg_preds.cpu(), torch.zeros(neg_ids.shape[0], dtype=torch.uint8).cpu()
141
+ )
142
+
143
+ self.log("test_acc", self.test_acc)
averitec/models/JustificationGenerationModule.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytorch_lightning as pl
2
+ import torch
3
+ import numpy as np
4
+ import datasets
5
+ from transformers import MaxLengthCriteria, StoppingCriteriaList
6
+ from transformers.optimization import AdamW
7
+ import itertools
8
+ from averitec.models.utils import count_stats, f1_metric, pairwise_meteor
9
+ from torchmetrics.text.rouge import ROUGEScore
10
+ import torch.nn.functional as F
11
+ import torchmetrics
12
+ from torchmetrics.classification import F1Score
13
+
14
+ def freeze_params(model):
15
+ for layer in model.parameters():
16
+ layer.requires_grade = False
17
+
18
+ class JustificationGenerationModule(pl.LightningModule):
19
+
20
+ def __init__(self, tokenizer, model, learning_rate=1e-3, gen_num_beams=2, gen_max_length=100, should_pad_gen=True):
21
+ super().__init__()
22
+ self.tokenizer = tokenizer
23
+ self.model = model
24
+ self.learning_rate = learning_rate
25
+
26
+ self.gen_num_beams = gen_num_beams
27
+ self.gen_max_length = gen_max_length
28
+ self.should_pad_gen = should_pad_gen
29
+
30
+ #self.metrics = datasets.load_metric('meteor')
31
+
32
+ freeze_params(self.model.get_encoder())
33
+ self.freeze_embeds()
34
+
35
+ def freeze_embeds(self):
36
+ ''' freeze the positional embedding parameters of the model; adapted from finetune.py '''
37
+ freeze_params(self.model.model.shared)
38
+ for d in [self.model.model.encoder, self.model.model.decoder]:
39
+ freeze_params(d.embed_positions)
40
+ freeze_params(d.embed_tokens)
41
+
42
+ # Do a forward pass through the model
43
+ def forward(self, input_ids, **kwargs):
44
+ return self.model(input_ids, **kwargs)
45
+
46
+ def configure_optimizers(self):
47
+ optimizer = AdamW(self.parameters(), lr = self.learning_rate)
48
+ return optimizer
49
+
50
+ def shift_tokens_right(self, input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
51
+ """
52
+ Shift input ids one token to the right.
53
+ https://github.com/huggingface/transformers/blob/main/src/transformers/models/bart/modeling_bart.py.
54
+ """
55
+ shifted_input_ids = input_ids.new_zeros(input_ids.shape)
56
+ shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
57
+ shifted_input_ids[:, 0] = decoder_start_token_id
58
+
59
+ if pad_token_id is None:
60
+ raise ValueError("self.model.config.pad_token_id has to be defined.")
61
+ # replace possible -100 values in labels by `pad_token_id`
62
+ shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
63
+
64
+ return shifted_input_ids
65
+
66
+ def run_model(self, batch):
67
+ src_ids, src_mask, tgt_ids = batch[0], batch[1], batch[2]
68
+
69
+ decoder_input_ids = self.shift_tokens_right(
70
+ tgt_ids, self.tokenizer.pad_token_id, self.tokenizer.pad_token_id # BART uses the EOS token to start generation as well. Might have to change for other models.
71
+ )
72
+
73
+ outputs = self(src_ids, attention_mask=src_mask, decoder_input_ids=decoder_input_ids, use_cache=False)
74
+ return outputs
75
+
76
+ def compute_loss(self, batch):
77
+ tgt_ids = batch[2]
78
+ logits = self.run_model(batch)[0]
79
+
80
+ cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=self.tokenizer.pad_token_id)
81
+ loss = cross_entropy(logits.view(-1, logits.shape[-1]), tgt_ids.view(-1))
82
+
83
+ return loss
84
+
85
+ def training_step(self, batch, batch_idx):
86
+ loss = self.compute_loss(batch)
87
+
88
+ self.log("train_loss", loss, on_epoch=True)
89
+
90
+ return {'loss':loss}
91
+
92
+ def validation_step(self, batch, batch_idx):
93
+ preds, loss, tgts = self.generate_and_compute_loss_and_tgts(batch)
94
+ if self.should_pad_gen:
95
+ preds = F.pad(preds, pad=(0, self.gen_max_length - preds.shape[1]), value=self.tokenizer.pad_token_id)
96
+
97
+ self.log('val_loss', loss, prog_bar=True, sync_dist=True)
98
+
99
+ return {'loss': loss, 'pred': preds, 'target': tgts}
100
+
101
+ def test_step(self, batch, batch_idx):
102
+ test_preds, test_loss, test_tgts = self.generate_and_compute_loss_and_tgts(batch)
103
+ if self.should_pad_gen:
104
+ test_preds = F.pad(test_preds, pad=(0, self.gen_max_length - test_preds.shape[1]), value=self.tokenizer.pad_token_id)
105
+
106
+ self.log('test_loss', test_loss, prog_bar=True, sync_dist=True)
107
+
108
+ return {'loss': test_loss, 'pred': test_preds, 'target': test_tgts}
109
+
110
+ def test_epoch_end(self, outputs):
111
+ self.handle_end_of_epoch_scoring(outputs, "test")
112
+
113
+ def validation_epoch_end(self, outputs):
114
+ self.handle_end_of_epoch_scoring(outputs, "val")
115
+
116
+ def handle_end_of_epoch_scoring(self, outputs, prefix):
117
+ gen = {}
118
+ tgt = {}
119
+ rouge = ROUGEScore()
120
+ rouge_metric = lambda x, y: rouge(x,y)["rougeL_precision"]
121
+ for out in outputs:
122
+ preds = out['pred']
123
+ tgts = out['target']
124
+
125
+ preds = self.do_batch_detokenize(preds)
126
+ tgts = self.do_batch_detokenize(tgts)
127
+
128
+ for pred, t in zip(preds, tgts):
129
+ rouge_d = rouge_metric(pred, t)
130
+ self.log(prefix+"_rouge", rouge_d)
131
+
132
+ meteor_d = pairwise_meteor(pred, t)
133
+ self.log(prefix+"_meteor", meteor_d)
134
+
135
+ def generate_and_compute_loss_and_tgts(self, batch):
136
+ src_ids = batch[0]
137
+ loss = self.compute_loss(batch)
138
+ pred_ids, _ = self.generate_for_batch(src_ids)
139
+
140
+ tgt_ids = batch[2]
141
+
142
+ return pred_ids, loss, tgt_ids
143
+
144
+ def do_batch_detokenize(self, batch):
145
+ tokens = self.tokenizer.batch_decode(
146
+ batch,
147
+ skip_special_tokens=True,
148
+ clean_up_tokenization_spaces=True
149
+ )
150
+
151
+ # Huggingface skipping of special tokens doesn't work for all models, so we do it manually as well for safety:
152
+ tokens = [p.replace("<pad>", "") for p in tokens]
153
+ tokens = [p.replace("<s>", "") for p in tokens]
154
+ tokens = [p.replace("</s>", "") for p in tokens]
155
+
156
+ return [t for t in tokens if t != ""]
157
+
158
+ def generate_for_batch(self, batch):
159
+ generated_ids = self.model.generate(
160
+ batch,
161
+ decoder_start_token_id = self.tokenizer.pad_token_id,
162
+ num_beams = self.gen_num_beams,
163
+ max_length = self.gen_max_length
164
+ )
165
+
166
+ generated_tokens = self.tokenizer.batch_decode(
167
+ generated_ids,
168
+ skip_special_tokens=True,
169
+ clean_up_tokenization_spaces=True
170
+ )
171
+
172
+ return generated_ids, generated_tokens
173
+
174
+
175
+ def generate(self, text, max_input_length=512, device=None):
176
+ encoded_dict = self.tokenizer(
177
+ [text],
178
+ max_length=max_input_length,
179
+ padding="longest",
180
+ truncation=True,
181
+ return_tensors="pt",
182
+ add_prefix_space = True
183
+ )
184
+
185
+ input_ids = encoded_dict['input_ids']
186
+
187
+ if device is not None:
188
+ input_ids = input_ids.to(device)
189
+
190
+ with torch.no_grad():
191
+ _, generated_tokens = self.generate_for_batch(input_ids)
192
+
193
+ return generated_tokens[0]
averitec/models/NaiveSeqClassModule.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytorch_lightning as pl
2
+ import torch
3
+ import numpy as np
4
+ import datasets
5
+ from transformers import MaxLengthCriteria, StoppingCriteriaList
6
+ from transformers.optimization import AdamW
7
+ import itertools
8
+ from utils import count_stats, f1_metric, pairwise_meteor
9
+ from torchmetrics.text.rouge import ROUGEScore
10
+ import torch.nn.functional as F
11
+ import torchmetrics
12
+ from torchmetrics.classification import F1Score
13
+
14
+ class NaiveSeqClassModule(pl.LightningModule):
15
+ # Instantiate the model
16
+ def __init__(self, tokenizer, model, use_question_stance_approach=True, learning_rate=1e-3):
17
+ super().__init__()
18
+ self.tokenizer = tokenizer
19
+ self.model = model
20
+ self.learning_rate = learning_rate
21
+
22
+ self.train_acc = torchmetrics.Accuracy()
23
+ self.val_acc = torchmetrics.Accuracy()
24
+ self.test_acc = torchmetrics.Accuracy()
25
+
26
+ self.train_f1 = F1Score(num_classes=4, average="macro")
27
+ self.val_f1 = F1Score(num_classes=4, average=None)
28
+ self.test_f1 = F1Score(num_classes=4, average=None)
29
+
30
+ self.use_question_stance_approach = use_question_stance_approach
31
+
32
+
33
+ # Do a forward pass through the model
34
+ def forward(self, input_ids, **kwargs):
35
+ return self.model(input_ids, **kwargs)
36
+
37
+ def configure_optimizers(self):
38
+ optimizer = AdamW(self.parameters(), lr = self.learning_rate)
39
+ return optimizer
40
+
41
+ def training_step(self, batch, batch_idx):
42
+ x, x_mask, y = batch
43
+
44
+ outputs = self(x, attention_mask=x_mask, labels=y)
45
+ logits = outputs.logits
46
+ loss = outputs.loss
47
+
48
+ #cross_entropy = torch.nn.CrossEntropyLoss()
49
+ #loss = cross_entropy(logits, y)
50
+
51
+ preds = torch.argmax(logits, axis=1)
52
+
53
+ self.train_acc(preds.cpu(), y.cpu())
54
+ self.train_f1(preds.cpu(), y.cpu())
55
+
56
+ self.log("train_loss", loss)
57
+
58
+ return {'loss': loss}
59
+
60
+ def training_epoch_end(self, outs):
61
+ self.log('train_acc_epoch', self.train_acc)
62
+ self.log('train_f1_epoch', self.train_f1)
63
+
64
+ def validation_step(self, batch, batch_idx):
65
+ x, x_mask, y = batch
66
+
67
+ outputs = self(x, attention_mask=x_mask, labels=y)
68
+ logits = outputs.logits
69
+ loss = outputs.loss
70
+
71
+ preds = torch.argmax(logits, axis=1)
72
+
73
+ if not self.use_question_stance_approach:
74
+ self.val_acc(preds, y)
75
+ self.log('val_acc_step', self.val_acc)
76
+
77
+ self.val_f1(preds, y)
78
+ self.log("val_loss", loss)
79
+
80
+ return {'val_loss':loss, "src": x, "pred": preds, "target": y}
81
+
82
+ def validation_epoch_end(self, outs):
83
+ if self.use_question_stance_approach:
84
+ self.handle_end_of_epoch_scoring(outs, self.val_acc, self.val_f1)
85
+
86
+ self.log('val_acc_epoch', self.val_acc)
87
+
88
+ f1 = self.val_f1.compute()
89
+ self.val_f1.reset()
90
+
91
+ self.log('val_f1_epoch', torch.mean(f1))
92
+
93
+ class_names = ["supported", "refuted", "nei", "conflicting"]
94
+ for i, c_name in enumerate(class_names):
95
+ self.log("val_f1_" + c_name, f1[i])
96
+
97
+
98
+ def test_step(self, batch, batch_idx):
99
+ x, x_mask, y = batch
100
+
101
+ outputs = self(x, attention_mask=x_mask)
102
+ logits = outputs.logits
103
+
104
+ preds = torch.argmax(logits, axis=1)
105
+
106
+ if not self.use_question_stance_approach:
107
+ self.test_acc(preds, y)
108
+ self.log('test_acc_step', self.test_acc)
109
+ self.test_f1(preds, y)
110
+
111
+ return {"src": x, "pred": preds, "target": y}
112
+
113
+ def test_epoch_end(self, outs):
114
+ if self.use_question_stance_approach:
115
+ self.handle_end_of_epoch_scoring(outs, self.test_acc, self.test_f1)
116
+
117
+ self.log('test_acc_epoch', self.test_acc)
118
+
119
+ f1 = self.test_f1.compute()
120
+ self.test_f1.reset()
121
+ self.log('test_f1_epoch', torch.mean(f1))
122
+
123
+ class_names = ["supported", "refuted", "nei", "conflicting"]
124
+ for i, c_name in enumerate(class_names):
125
+ self.log("test_f1_" + c_name, f1[i])
126
+
127
+ def handle_end_of_epoch_scoring(self, outputs, acc_scorer, f1_scorer):
128
+ gold_labels = {}
129
+ question_support = {}
130
+ for out in outputs:
131
+ srcs = out['src']
132
+ preds = out['pred']
133
+ tgts = out['target']
134
+
135
+ tokens = self.tokenizer.batch_decode(
136
+ srcs,
137
+ skip_special_tokens=True,
138
+ clean_up_tokenization_spaces=True
139
+ )
140
+
141
+ for src, pred, tgt in zip(tokens, preds, tgts):
142
+ acc_scorer(torch.as_tensor([pred]).to("cuda:0"), torch.as_tensor([tgt]).to("cuda:0"))
143
+ f1_scorer(torch.as_tensor([pred]).to("cuda:0"), torch.as_tensor([tgt]).to("cuda:0"))
144
+
145
+
averitec/models/SequenceClassificationModule.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytorch_lightning as pl
2
+ import torch
3
+ import numpy as np
4
+ import datasets
5
+ from transformers import MaxLengthCriteria, StoppingCriteriaList
6
+ from transformers.optimization import AdamW
7
+ import itertools
8
+ # from utils import count_stats, f1_metric, pairwise_meteor
9
+ from torchmetrics.text.rouge import ROUGEScore
10
+ import torch.nn.functional as F
11
+ import torchmetrics
12
+ from torchmetrics.classification import F1Score
13
+
14
+ class SequenceClassificationModule(pl.LightningModule):
15
+ # Instantiate the model
16
+ def __init__(self, tokenizer, model, use_question_stance_approach=True, learning_rate=1e-3):
17
+ super().__init__()
18
+ self.tokenizer = tokenizer
19
+ self.model = model
20
+ self.learning_rate = learning_rate
21
+
22
+ self.train_acc = torchmetrics.Accuracy(task="multiclass", num_classes=model.num_labels)
23
+ self.val_acc = torchmetrics.Accuracy(task="multiclass", num_classes=model.num_labels)
24
+ self.test_acc = torchmetrics.Accuracy(task="multiclass", num_classes=model.num_labels)
25
+
26
+ self.train_f1 = F1Score(task="multiclass", num_classes=model.num_labels, average="macro")
27
+ self.val_f1 = F1Score(task="multiclass", num_classes=model.num_labels, average=None)
28
+ self.test_f1 = F1Score(task="multiclass", num_classes=model.num_labels, average=None)
29
+ # self.train_acc = torchmetrics.Accuracy()
30
+ # self.val_acc = torchmetrics.Accuracy()
31
+ # self.test_acc = torchmetrics.Accuracy()
32
+
33
+ # self.train_f1 = F1Score(num_classes=4, average="macro")
34
+ # self.val_f1 = F1Score(num_classes=4, average=None)
35
+ # self.test_f1 = F1Score(num_classes=4, average=None)
36
+
37
+ self.use_question_stance_approach = use_question_stance_approach
38
+
39
+
40
+ # Do a forward pass through the model
41
+ def forward(self, input_ids, **kwargs):
42
+ return self.model(input_ids, **kwargs)
43
+
44
+ def configure_optimizers(self):
45
+ optimizer = AdamW(self.parameters(), lr = self.learning_rate)
46
+ return optimizer
47
+
48
+ def training_step(self, batch, batch_idx):
49
+ x, x_mask, y = batch
50
+
51
+ outputs = self(x, attention_mask=x_mask, labels=y)
52
+ logits = outputs.logits
53
+ loss = outputs.loss
54
+
55
+ #cross_entropy = torch.nn.CrossEntropyLoss()
56
+ #loss = cross_entropy(logits, y)
57
+
58
+ preds = torch.argmax(logits, axis=1)
59
+
60
+ self.log("train_loss", loss)
61
+
62
+ return {'loss': loss}
63
+
64
+ def validation_step(self, batch, batch_idx):
65
+ x, x_mask, y = batch
66
+
67
+ outputs = self(x, attention_mask=x_mask, labels=y)
68
+ logits = outputs.logits
69
+ loss = outputs.loss
70
+
71
+ preds = torch.argmax(logits, axis=1)
72
+
73
+ if not self.use_question_stance_approach:
74
+ self.val_acc(preds, y)
75
+ self.log('val_acc_step', self.val_acc)
76
+
77
+ self.val_f1(preds, y)
78
+ self.log("val_loss", loss)
79
+
80
+ return {'val_loss':loss, "src": x, "pred": preds, "target": y}
81
+
82
+ def validation_epoch_end(self, outs):
83
+ if self.use_question_stance_approach:
84
+ self.handle_end_of_epoch_scoring(outs, self.val_acc, self.val_f1)
85
+
86
+ self.log('val_acc_epoch', self.val_acc)
87
+
88
+ f1 = self.val_f1.compute()
89
+ self.val_f1.reset()
90
+
91
+ self.log('val_f1_epoch', torch.mean(f1))
92
+
93
+ class_names = ["supported", "refuted", "nei", "conflicting"]
94
+ for i, c_name in enumerate(class_names):
95
+ self.log("val_f1_" + c_name, f1[i])
96
+
97
+
98
+ def test_step(self, batch, batch_idx):
99
+ x, x_mask, y = batch
100
+
101
+ outputs = self(x, attention_mask=x_mask)
102
+ logits = outputs.logits
103
+
104
+ preds = torch.argmax(logits, axis=1)
105
+
106
+ if not self.use_question_stance_approach:
107
+ self.test_acc(preds, y)
108
+ self.log('test_acc_step', self.test_acc)
109
+ self.test_f1(preds, y)
110
+
111
+ return {"src": x, "pred": preds, "target": y}
112
+
113
+ def test_epoch_end(self, outs):
114
+ if self.use_question_stance_approach:
115
+ self.handle_end_of_epoch_scoring(outs, self.test_acc, self.test_f1)
116
+
117
+ self.log('test_acc_epoch', self.test_acc)
118
+
119
+ f1 = self.test_f1.compute()
120
+ self.test_f1.reset()
121
+ self.log('test_f1_epoch', torch.mean(f1))
122
+
123
+ class_names = ["supported", "refuted", "nei", "conflicting"]
124
+ for i, c_name in enumerate(class_names):
125
+ self.log("test_f1_" + c_name, f1[i])
126
+
127
+ def handle_end_of_epoch_scoring(self, outputs, acc_scorer, f1_scorer):
128
+ gold_labels = {}
129
+ question_support = {}
130
+ for out in outputs:
131
+ srcs = out['src']
132
+ preds = out['pred']
133
+ tgts = out['target']
134
+
135
+ tokens = self.tokenizer.batch_decode(
136
+ srcs,
137
+ skip_special_tokens=True,
138
+ clean_up_tokenization_spaces=True
139
+ )
140
+
141
+ for src, pred, tgt in zip(tokens, preds, tgts):
142
+ claim_id = src.split("[ question ]")[0]
143
+
144
+ if claim_id not in gold_labels:
145
+ gold_labels[claim_id] = tgt
146
+ question_support[claim_id] = []
147
+
148
+ question_support[claim_id].append(pred)
149
+
150
+ for k,gold_label in gold_labels.items():
151
+ support = question_support[k]
152
+
153
+ has_unansw = False
154
+ has_true = False
155
+ has_false = False
156
+
157
+ for v in support:
158
+ if v == 0:
159
+ has_true = True
160
+ if v == 1:
161
+ has_false = True
162
+ if v == 2 or v == 3: # TODO very ugly hack -- we cant have different numbers of labels for train and test so we do this
163
+ has_unansw = True
164
+
165
+ if has_unansw:
166
+ answer = 2
167
+ elif has_true and not has_false:
168
+ answer = 0
169
+ elif has_false and not has_true:
170
+ answer = 1
171
+ elif has_true and has_false:
172
+ answer = 3
173
+
174
+
175
+ # TODO this is very hacky and wont work if the device is literally anything other than cuda:0
176
+ acc_scorer(torch.as_tensor([answer]).to("cuda:0"), torch.as_tensor([gold_label]).to("cuda:0"))
177
+ f1_scorer(torch.as_tensor([answer]).to("cuda:0"), torch.as_tensor([gold_label]).to("cuda:0"))
178
+
179
+
averitec/models/utils.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import nltk
3
+ from nltk import word_tokenize
4
+ import numpy as np
5
+ from leven import levenshtein
6
+ from sklearn.cluster import DBSCAN, dbscan
7
+
8
+ def delete_if_exists(filepath):
9
+ if os.path.exists(filepath):
10
+ os.remove(filepath)
11
+
12
+ def pairwise_meteor(candidate, reference): # Todo this is not thread safe, no idea how to make it so
13
+ return nltk.translate.meteor_score.single_meteor_score(word_tokenize(reference), word_tokenize(candidate))
14
+
15
+ def count_stats(candidate_dict, reference_dict):
16
+ count_match = [0 for _ in candidate_dict]
17
+ count_diff = [0 for _ in candidate_dict]
18
+
19
+ for i, k in enumerate(candidate_dict.keys()):
20
+ pred_parts = candidate_dict[k]
21
+ tgt_parts = reference_dict[k]
22
+
23
+ if len(pred_parts) == len(tgt_parts):
24
+ count_match[i] = 1
25
+
26
+ count_diff[i] = abs(len(pred_parts) - len(tgt_parts))
27
+
28
+ count_match_score = np.mean(count_match)
29
+ count_diff_score = np.mean(count_diff)
30
+
31
+ return {
32
+ "count_match_score": count_match_score,
33
+ "count_diff_score": count_diff_score
34
+ }
35
+
36
+ def f1_metric(candidate_dict, reference_dict, pairwise_metric):
37
+ all_best_p = [0 for _ in candidate_dict]
38
+ all_best_t = [0 for _ in candidate_dict]
39
+ p_unnorm = []
40
+
41
+ for i, k in enumerate(candidate_dict.keys()):
42
+ pred_parts = candidate_dict[k]
43
+ tgt_parts = reference_dict[k]
44
+
45
+ best_p_score = [0 for _ in pred_parts]
46
+ best_t_score = [0 for _ in tgt_parts]
47
+
48
+ for p_idx in range(len(pred_parts)):
49
+ for t_idx in range(len(tgt_parts)):
50
+ #meteor_score = pairwise_meteor(pred_parts[p_idx], tgt_parts[t_idx])
51
+ metric_score = pairwise_metric(pred_parts[p_idx], tgt_parts[t_idx])
52
+
53
+ if metric_score > best_p_score[p_idx]:
54
+ best_p_score[p_idx] = metric_score
55
+
56
+ if metric_score > best_t_score[t_idx]:
57
+ best_t_score[t_idx] = metric_score
58
+
59
+ all_best_p[i] = np.mean(best_p_score) if len(best_p_score) > 0 else 1.0
60
+ all_best_t[i] = np.mean(best_t_score) if len(best_t_score) > 0 else 1.0
61
+
62
+ p_unnorm.extend(best_p_score)
63
+
64
+ p_score = np.mean(all_best_p)
65
+ r_score = np.mean(all_best_t)
66
+ avg_score = (p_score + r_score) / 2
67
+ f1_score = 2 * p_score * r_score / (p_score + r_score + 1e-8)
68
+
69
+ p_unnorm_score = np.mean(p_unnorm)
70
+
71
+ return {
72
+ "p": p_score,
73
+ "r": r_score,
74
+ "avg": avg_score,
75
+ "f1": f1_score,
76
+ "p_unnorm": p_unnorm_score,
77
+ }
78
+
79
+ def edit_distance_dbscan(data):
80
+ # Inspired by https://scikit-learn.org/stable/faq.html#how-do-i-deal-with-string-data-or-trees-graphs
81
+ def lev_metric(x, y):
82
+ i, j = int(x[0]), int(y[0])
83
+ return levenshtein(data[i], data[j])
84
+
85
+ X = np.arange(len(data)).reshape(-1, 1)
86
+
87
+ clustering = dbscan(X, metric=lev_metric, eps=20, min_samples=2, algorithm='brute')
88
+ return clustering
89
+
90
+ def compute_all_pairwise_edit_distances(data):
91
+ X = np.empty((len(data), len(data)))
92
+
93
+ for i in range(len(data)):
94
+ for j in range(len(data)):
95
+ X[i][j] = levenshtein(data[i], data[j])
96
+
97
+ return X
98
+
99
+ def compute_all_pairwise_scores(src_data, tgt_data, metric):
100
+ X = np.empty((len(src_data), len(tgt_data)))
101
+
102
+ for i in range(len(src_data)):
103
+ for j in range(len(tgt_data)):
104
+ X[i][j] = (metric(src_data[i], tgt_data[j]))
105
+
106
+ return X
107
+
108
+ def compute_all_pairwise_meteor_scores(data):
109
+ X = np.empty((len(data), len(data)))
110
+
111
+ for i in range(len(data)):
112
+ for j in range(len(data)):
113
+ X[i][j] = (pairwise_meteor(data[i], data[j]) + pairwise_meteor(data[j], data[i])) / 2
114
+
115
+ return X
116
+
117
+ def edit_distance_custom(data, X, eps=0.5, min_samples=3):
118
+ clustering = DBSCAN(metric="precomputed", eps=eps, min_samples=min_samples).fit(X)
119
+ return clustering.labels_
averitec/pretrained_models/bart_justifications_verdict-epoch=13-val_loss=2.03-val_meteor=0.28.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4b7bf02daaf10b3443f4f2cbe79c3c9f10c453dfdf818a4d14e44b2b4311cf4
3
+ size 4876206567
averitec/pretrained_models/bert_dual_encoder.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fee6737f655f4f1dfb46cc1bb812b5eaf9a72cfc0b69d4e5c05cde27ea7b6051
3
+ size 1314015751
averitec/pretrained_models/bert_veracity.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ddb8132a28ceff149904dd3ad3c3edd3e5f0c7de0169819207104a80e425c9a
3
+ size 1314034311