Spaces:
Build error
Build error
zhenyundeng
commited on
Commit
·
6655655
1
Parent(s):
e62781a
add files
Browse files- assets/averitec.png +0 -0
- averitec/data/all_samples.json +3 -0
- averitec/data/sample_claims.py +39 -0
- averitec/models/DualEncoderModule.py +143 -0
- averitec/models/JustificationGenerationModule.py +193 -0
- averitec/models/NaiveSeqClassModule.py +145 -0
- averitec/models/SequenceClassificationModule.py +179 -0
- averitec/models/utils.py +119 -0
- averitec/pretrained_models/bart_justifications_verdict-epoch=13-val_loss=2.03-val_meteor=0.28.ckpt +3 -0
- averitec/pretrained_models/bert_dual_encoder.ckpt +3 -0
- averitec/pretrained_models/bert_veracity.ckpt +3 -0
assets/averitec.png
ADDED
![]() |
averitec/data/all_samples.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef79bab962c2b17d56eb2582b9919bfe8023858fa13ba20c591900857b561854
|
3 |
+
size 11444395
|
averitec/data/sample_claims.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
# Created by zd302 at 09/05/2024
|
4 |
+
|
5 |
+
|
6 |
+
CLAIMS_Type = {
|
7 |
+
"Claim": [
|
8 |
+
"England won the Euro 2024.",
|
9 |
+
"Albert Einstein works in the field of computer science.",
|
10 |
+
],
|
11 |
+
"Event/Property Claim": [
|
12 |
+
'Hunter Biden had no experience in Ukraine or in the energy sector when he joined the board of Burisma.',
|
13 |
+
"After the police shooting of Jacob Blake, Gov. Tony Evers & Lt. Gov. Mandela Barnes did not call for peace or encourage calm.",
|
14 |
+
"President Trump fully co-operated with the investigation into Russian interference in the 2016 U.S presidential campaign.",
|
15 |
+
],
|
16 |
+
"Causal Claim":[
|
17 |
+
"Anxiety levels among young teenagers dropped during the coronavirus pandemic, a study has suggested",
|
18 |
+
"Auto workers across Michigan could have lost their jobs if not for Barack Obama and Joe Biden",
|
19 |
+
],
|
20 |
+
"Numerical Claim":[
|
21 |
+
"Sweden, despite never having had lockdown, has a lower COVID-19 death rate than Spain, Italy, and the United Kingdom.",
|
22 |
+
"According to Harry Roque, even if 10,000 people die, 10 million COVID-19 cases in the country will not be a loss.",
|
23 |
+
]
|
24 |
+
}
|
25 |
+
|
26 |
+
CLAIMS_FACT_CHECKING_STRATEGY= {
|
27 |
+
"Written Evidence": [
|
28 |
+
"Pretty Little Thing's terms and conditions state that its products may contain chemicals that can cause cancer, birth defects or other reproductive harm.",
|
29 |
+
"Pretty Little Thing products may contain chemicals that can cause cancer, birth defects or other reproductive harm.",
|
30 |
+
],
|
31 |
+
"Numerical Comparison":[
|
32 |
+
"Congress party claims regarding shortfall in Government earnings",
|
33 |
+
"On average, one person dies by suicide every 22 hours in West Virginia, United States.",
|
34 |
+
],
|
35 |
+
"Consultation":[
|
36 |
+
"Your reaction to an optical illusion is an indication of your state of mind.",
|
37 |
+
"The last time people created a Hollywood blacklist, people ended up killing themselves. They were accused, and they lost their right to work.",
|
38 |
+
]
|
39 |
+
}
|
averitec/models/DualEncoderModule.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytorch_lightning as pl
|
2 |
+
import torch
|
3 |
+
from transformers.optimization import AdamW
|
4 |
+
import torchmetrics
|
5 |
+
|
6 |
+
|
7 |
+
class DualEncoderModule(pl.LightningModule):
|
8 |
+
|
9 |
+
def __init__(self, tokenizer, model, learning_rate=1e-3):
|
10 |
+
super().__init__()
|
11 |
+
self.tokenizer = tokenizer
|
12 |
+
self.model = model
|
13 |
+
self.learning_rate = learning_rate
|
14 |
+
|
15 |
+
self.train_acc = torchmetrics.Accuracy(
|
16 |
+
task="multiclass", num_classes=model.num_labels
|
17 |
+
)
|
18 |
+
self.val_acc = torchmetrics.Accuracy(
|
19 |
+
task="multiclass", num_classes=model.num_labels
|
20 |
+
)
|
21 |
+
self.test_acc = torchmetrics.Accuracy(
|
22 |
+
task="multiclass", num_classes=model.num_labels
|
23 |
+
)
|
24 |
+
|
25 |
+
def forward(self, input_ids, **kwargs):
|
26 |
+
return self.model(input_ids, **kwargs)
|
27 |
+
|
28 |
+
def configure_optimizers(self):
|
29 |
+
optimizer = AdamW(self.parameters(), lr=self.learning_rate)
|
30 |
+
return optimizer
|
31 |
+
|
32 |
+
def training_step(self, batch, batch_idx):
|
33 |
+
pos_ids, pos_mask, neg_ids, neg_mask = batch
|
34 |
+
|
35 |
+
neg_ids = neg_ids.view(-1, neg_ids.shape[-1])
|
36 |
+
neg_mask = neg_mask.view(-1, neg_mask.shape[-1])
|
37 |
+
|
38 |
+
pos_outputs = self(
|
39 |
+
pos_ids,
|
40 |
+
attention_mask=pos_mask,
|
41 |
+
labels=torch.ones(pos_ids.shape[0], dtype=torch.uint8).to(
|
42 |
+
pos_ids.get_device()
|
43 |
+
),
|
44 |
+
)
|
45 |
+
neg_outputs = self(
|
46 |
+
neg_ids,
|
47 |
+
attention_mask=neg_mask,
|
48 |
+
labels=torch.zeros(neg_ids.shape[0], dtype=torch.uint8).to(
|
49 |
+
neg_ids.get_device()
|
50 |
+
),
|
51 |
+
)
|
52 |
+
|
53 |
+
loss_scale = 1.0
|
54 |
+
loss = pos_outputs.loss + loss_scale * neg_outputs.loss
|
55 |
+
|
56 |
+
pos_logits = pos_outputs.logits
|
57 |
+
pos_preds = torch.argmax(pos_logits, axis=1)
|
58 |
+
self.train_acc(
|
59 |
+
pos_preds.cpu(), torch.ones(pos_ids.shape[0], dtype=torch.uint8).cpu()
|
60 |
+
)
|
61 |
+
|
62 |
+
neg_logits = neg_outputs.logits
|
63 |
+
neg_preds = torch.argmax(neg_logits, axis=1)
|
64 |
+
self.train_acc(
|
65 |
+
neg_preds.cpu(), torch.zeros(neg_ids.shape[0], dtype=torch.uint8).cpu()
|
66 |
+
)
|
67 |
+
|
68 |
+
return {"loss": loss}
|
69 |
+
|
70 |
+
def validation_step(self, batch, batch_idx):
|
71 |
+
pos_ids, pos_mask, neg_ids, neg_mask = batch
|
72 |
+
|
73 |
+
neg_ids = neg_ids.view(-1, neg_ids.shape[-1])
|
74 |
+
neg_mask = neg_mask.view(-1, neg_mask.shape[-1])
|
75 |
+
|
76 |
+
pos_outputs = self(
|
77 |
+
pos_ids,
|
78 |
+
attention_mask=pos_mask,
|
79 |
+
labels=torch.ones(pos_ids.shape[0], dtype=torch.uint8).to(
|
80 |
+
pos_ids.get_device()
|
81 |
+
),
|
82 |
+
)
|
83 |
+
neg_outputs = self(
|
84 |
+
neg_ids,
|
85 |
+
attention_mask=neg_mask,
|
86 |
+
labels=torch.zeros(neg_ids.shape[0], dtype=torch.uint8).to(
|
87 |
+
neg_ids.get_device()
|
88 |
+
),
|
89 |
+
)
|
90 |
+
|
91 |
+
loss_scale = 1.0
|
92 |
+
loss = pos_outputs.loss + loss_scale * neg_outputs.loss
|
93 |
+
|
94 |
+
pos_logits = pos_outputs.logits
|
95 |
+
pos_preds = torch.argmax(pos_logits, axis=1)
|
96 |
+
self.val_acc(
|
97 |
+
pos_preds.cpu(), torch.ones(pos_ids.shape[0], dtype=torch.uint8).cpu()
|
98 |
+
)
|
99 |
+
|
100 |
+
neg_logits = neg_outputs.logits
|
101 |
+
neg_preds = torch.argmax(neg_logits, axis=1)
|
102 |
+
self.val_acc(
|
103 |
+
neg_preds.cpu(), torch.zeros(neg_ids.shape[0], dtype=torch.uint8).cpu()
|
104 |
+
)
|
105 |
+
|
106 |
+
self.log("val_acc", self.val_acc)
|
107 |
+
|
108 |
+
return {"loss": loss}
|
109 |
+
|
110 |
+
def test_step(self, batch, batch_idx):
|
111 |
+
pos_ids, pos_mask, neg_ids, neg_mask = batch
|
112 |
+
|
113 |
+
neg_ids = neg_ids.view(-1, neg_ids.shape[-1])
|
114 |
+
neg_mask = neg_mask.view(-1, neg_mask.shape[-1])
|
115 |
+
|
116 |
+
pos_outputs = self(
|
117 |
+
pos_ids,
|
118 |
+
attention_mask=pos_mask,
|
119 |
+
labels=torch.ones(pos_ids.shape[0], dtype=torch.uint8).to(
|
120 |
+
pos_ids.get_device()
|
121 |
+
),
|
122 |
+
)
|
123 |
+
neg_outputs = self(
|
124 |
+
neg_ids,
|
125 |
+
attention_mask=neg_mask,
|
126 |
+
labels=torch.zeros(neg_ids.shape[0], dtype=torch.uint8).to(
|
127 |
+
neg_ids.get_device()
|
128 |
+
),
|
129 |
+
)
|
130 |
+
|
131 |
+
pos_logits = pos_outputs.logits
|
132 |
+
pos_preds = torch.argmax(pos_logits, axis=1)
|
133 |
+
self.test_acc(
|
134 |
+
pos_preds.cpu(), torch.ones(pos_ids.shape[0], dtype=torch.uint8).cpu()
|
135 |
+
)
|
136 |
+
|
137 |
+
neg_logits = neg_outputs.logits
|
138 |
+
neg_preds = torch.argmax(neg_logits, axis=1)
|
139 |
+
self.test_acc(
|
140 |
+
neg_preds.cpu(), torch.zeros(neg_ids.shape[0], dtype=torch.uint8).cpu()
|
141 |
+
)
|
142 |
+
|
143 |
+
self.log("test_acc", self.test_acc)
|
averitec/models/JustificationGenerationModule.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytorch_lightning as pl
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import datasets
|
5 |
+
from transformers import MaxLengthCriteria, StoppingCriteriaList
|
6 |
+
from transformers.optimization import AdamW
|
7 |
+
import itertools
|
8 |
+
from averitec.models.utils import count_stats, f1_metric, pairwise_meteor
|
9 |
+
from torchmetrics.text.rouge import ROUGEScore
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import torchmetrics
|
12 |
+
from torchmetrics.classification import F1Score
|
13 |
+
|
14 |
+
def freeze_params(model):
|
15 |
+
for layer in model.parameters():
|
16 |
+
layer.requires_grade = False
|
17 |
+
|
18 |
+
class JustificationGenerationModule(pl.LightningModule):
|
19 |
+
|
20 |
+
def __init__(self, tokenizer, model, learning_rate=1e-3, gen_num_beams=2, gen_max_length=100, should_pad_gen=True):
|
21 |
+
super().__init__()
|
22 |
+
self.tokenizer = tokenizer
|
23 |
+
self.model = model
|
24 |
+
self.learning_rate = learning_rate
|
25 |
+
|
26 |
+
self.gen_num_beams = gen_num_beams
|
27 |
+
self.gen_max_length = gen_max_length
|
28 |
+
self.should_pad_gen = should_pad_gen
|
29 |
+
|
30 |
+
#self.metrics = datasets.load_metric('meteor')
|
31 |
+
|
32 |
+
freeze_params(self.model.get_encoder())
|
33 |
+
self.freeze_embeds()
|
34 |
+
|
35 |
+
def freeze_embeds(self):
|
36 |
+
''' freeze the positional embedding parameters of the model; adapted from finetune.py '''
|
37 |
+
freeze_params(self.model.model.shared)
|
38 |
+
for d in [self.model.model.encoder, self.model.model.decoder]:
|
39 |
+
freeze_params(d.embed_positions)
|
40 |
+
freeze_params(d.embed_tokens)
|
41 |
+
|
42 |
+
# Do a forward pass through the model
|
43 |
+
def forward(self, input_ids, **kwargs):
|
44 |
+
return self.model(input_ids, **kwargs)
|
45 |
+
|
46 |
+
def configure_optimizers(self):
|
47 |
+
optimizer = AdamW(self.parameters(), lr = self.learning_rate)
|
48 |
+
return optimizer
|
49 |
+
|
50 |
+
def shift_tokens_right(self, input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
|
51 |
+
"""
|
52 |
+
Shift input ids one token to the right.
|
53 |
+
https://github.com/huggingface/transformers/blob/main/src/transformers/models/bart/modeling_bart.py.
|
54 |
+
"""
|
55 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
56 |
+
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
|
57 |
+
shifted_input_ids[:, 0] = decoder_start_token_id
|
58 |
+
|
59 |
+
if pad_token_id is None:
|
60 |
+
raise ValueError("self.model.config.pad_token_id has to be defined.")
|
61 |
+
# replace possible -100 values in labels by `pad_token_id`
|
62 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
63 |
+
|
64 |
+
return shifted_input_ids
|
65 |
+
|
66 |
+
def run_model(self, batch):
|
67 |
+
src_ids, src_mask, tgt_ids = batch[0], batch[1], batch[2]
|
68 |
+
|
69 |
+
decoder_input_ids = self.shift_tokens_right(
|
70 |
+
tgt_ids, self.tokenizer.pad_token_id, self.tokenizer.pad_token_id # BART uses the EOS token to start generation as well. Might have to change for other models.
|
71 |
+
)
|
72 |
+
|
73 |
+
outputs = self(src_ids, attention_mask=src_mask, decoder_input_ids=decoder_input_ids, use_cache=False)
|
74 |
+
return outputs
|
75 |
+
|
76 |
+
def compute_loss(self, batch):
|
77 |
+
tgt_ids = batch[2]
|
78 |
+
logits = self.run_model(batch)[0]
|
79 |
+
|
80 |
+
cross_entropy = torch.nn.CrossEntropyLoss(ignore_index=self.tokenizer.pad_token_id)
|
81 |
+
loss = cross_entropy(logits.view(-1, logits.shape[-1]), tgt_ids.view(-1))
|
82 |
+
|
83 |
+
return loss
|
84 |
+
|
85 |
+
def training_step(self, batch, batch_idx):
|
86 |
+
loss = self.compute_loss(batch)
|
87 |
+
|
88 |
+
self.log("train_loss", loss, on_epoch=True)
|
89 |
+
|
90 |
+
return {'loss':loss}
|
91 |
+
|
92 |
+
def validation_step(self, batch, batch_idx):
|
93 |
+
preds, loss, tgts = self.generate_and_compute_loss_and_tgts(batch)
|
94 |
+
if self.should_pad_gen:
|
95 |
+
preds = F.pad(preds, pad=(0, self.gen_max_length - preds.shape[1]), value=self.tokenizer.pad_token_id)
|
96 |
+
|
97 |
+
self.log('val_loss', loss, prog_bar=True, sync_dist=True)
|
98 |
+
|
99 |
+
return {'loss': loss, 'pred': preds, 'target': tgts}
|
100 |
+
|
101 |
+
def test_step(self, batch, batch_idx):
|
102 |
+
test_preds, test_loss, test_tgts = self.generate_and_compute_loss_and_tgts(batch)
|
103 |
+
if self.should_pad_gen:
|
104 |
+
test_preds = F.pad(test_preds, pad=(0, self.gen_max_length - test_preds.shape[1]), value=self.tokenizer.pad_token_id)
|
105 |
+
|
106 |
+
self.log('test_loss', test_loss, prog_bar=True, sync_dist=True)
|
107 |
+
|
108 |
+
return {'loss': test_loss, 'pred': test_preds, 'target': test_tgts}
|
109 |
+
|
110 |
+
def test_epoch_end(self, outputs):
|
111 |
+
self.handle_end_of_epoch_scoring(outputs, "test")
|
112 |
+
|
113 |
+
def validation_epoch_end(self, outputs):
|
114 |
+
self.handle_end_of_epoch_scoring(outputs, "val")
|
115 |
+
|
116 |
+
def handle_end_of_epoch_scoring(self, outputs, prefix):
|
117 |
+
gen = {}
|
118 |
+
tgt = {}
|
119 |
+
rouge = ROUGEScore()
|
120 |
+
rouge_metric = lambda x, y: rouge(x,y)["rougeL_precision"]
|
121 |
+
for out in outputs:
|
122 |
+
preds = out['pred']
|
123 |
+
tgts = out['target']
|
124 |
+
|
125 |
+
preds = self.do_batch_detokenize(preds)
|
126 |
+
tgts = self.do_batch_detokenize(tgts)
|
127 |
+
|
128 |
+
for pred, t in zip(preds, tgts):
|
129 |
+
rouge_d = rouge_metric(pred, t)
|
130 |
+
self.log(prefix+"_rouge", rouge_d)
|
131 |
+
|
132 |
+
meteor_d = pairwise_meteor(pred, t)
|
133 |
+
self.log(prefix+"_meteor", meteor_d)
|
134 |
+
|
135 |
+
def generate_and_compute_loss_and_tgts(self, batch):
|
136 |
+
src_ids = batch[0]
|
137 |
+
loss = self.compute_loss(batch)
|
138 |
+
pred_ids, _ = self.generate_for_batch(src_ids)
|
139 |
+
|
140 |
+
tgt_ids = batch[2]
|
141 |
+
|
142 |
+
return pred_ids, loss, tgt_ids
|
143 |
+
|
144 |
+
def do_batch_detokenize(self, batch):
|
145 |
+
tokens = self.tokenizer.batch_decode(
|
146 |
+
batch,
|
147 |
+
skip_special_tokens=True,
|
148 |
+
clean_up_tokenization_spaces=True
|
149 |
+
)
|
150 |
+
|
151 |
+
# Huggingface skipping of special tokens doesn't work for all models, so we do it manually as well for safety:
|
152 |
+
tokens = [p.replace("<pad>", "") for p in tokens]
|
153 |
+
tokens = [p.replace("<s>", "") for p in tokens]
|
154 |
+
tokens = [p.replace("</s>", "") for p in tokens]
|
155 |
+
|
156 |
+
return [t for t in tokens if t != ""]
|
157 |
+
|
158 |
+
def generate_for_batch(self, batch):
|
159 |
+
generated_ids = self.model.generate(
|
160 |
+
batch,
|
161 |
+
decoder_start_token_id = self.tokenizer.pad_token_id,
|
162 |
+
num_beams = self.gen_num_beams,
|
163 |
+
max_length = self.gen_max_length
|
164 |
+
)
|
165 |
+
|
166 |
+
generated_tokens = self.tokenizer.batch_decode(
|
167 |
+
generated_ids,
|
168 |
+
skip_special_tokens=True,
|
169 |
+
clean_up_tokenization_spaces=True
|
170 |
+
)
|
171 |
+
|
172 |
+
return generated_ids, generated_tokens
|
173 |
+
|
174 |
+
|
175 |
+
def generate(self, text, max_input_length=512, device=None):
|
176 |
+
encoded_dict = self.tokenizer(
|
177 |
+
[text],
|
178 |
+
max_length=max_input_length,
|
179 |
+
padding="longest",
|
180 |
+
truncation=True,
|
181 |
+
return_tensors="pt",
|
182 |
+
add_prefix_space = True
|
183 |
+
)
|
184 |
+
|
185 |
+
input_ids = encoded_dict['input_ids']
|
186 |
+
|
187 |
+
if device is not None:
|
188 |
+
input_ids = input_ids.to(device)
|
189 |
+
|
190 |
+
with torch.no_grad():
|
191 |
+
_, generated_tokens = self.generate_for_batch(input_ids)
|
192 |
+
|
193 |
+
return generated_tokens[0]
|
averitec/models/NaiveSeqClassModule.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytorch_lightning as pl
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import datasets
|
5 |
+
from transformers import MaxLengthCriteria, StoppingCriteriaList
|
6 |
+
from transformers.optimization import AdamW
|
7 |
+
import itertools
|
8 |
+
from utils import count_stats, f1_metric, pairwise_meteor
|
9 |
+
from torchmetrics.text.rouge import ROUGEScore
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import torchmetrics
|
12 |
+
from torchmetrics.classification import F1Score
|
13 |
+
|
14 |
+
class NaiveSeqClassModule(pl.LightningModule):
|
15 |
+
# Instantiate the model
|
16 |
+
def __init__(self, tokenizer, model, use_question_stance_approach=True, learning_rate=1e-3):
|
17 |
+
super().__init__()
|
18 |
+
self.tokenizer = tokenizer
|
19 |
+
self.model = model
|
20 |
+
self.learning_rate = learning_rate
|
21 |
+
|
22 |
+
self.train_acc = torchmetrics.Accuracy()
|
23 |
+
self.val_acc = torchmetrics.Accuracy()
|
24 |
+
self.test_acc = torchmetrics.Accuracy()
|
25 |
+
|
26 |
+
self.train_f1 = F1Score(num_classes=4, average="macro")
|
27 |
+
self.val_f1 = F1Score(num_classes=4, average=None)
|
28 |
+
self.test_f1 = F1Score(num_classes=4, average=None)
|
29 |
+
|
30 |
+
self.use_question_stance_approach = use_question_stance_approach
|
31 |
+
|
32 |
+
|
33 |
+
# Do a forward pass through the model
|
34 |
+
def forward(self, input_ids, **kwargs):
|
35 |
+
return self.model(input_ids, **kwargs)
|
36 |
+
|
37 |
+
def configure_optimizers(self):
|
38 |
+
optimizer = AdamW(self.parameters(), lr = self.learning_rate)
|
39 |
+
return optimizer
|
40 |
+
|
41 |
+
def training_step(self, batch, batch_idx):
|
42 |
+
x, x_mask, y = batch
|
43 |
+
|
44 |
+
outputs = self(x, attention_mask=x_mask, labels=y)
|
45 |
+
logits = outputs.logits
|
46 |
+
loss = outputs.loss
|
47 |
+
|
48 |
+
#cross_entropy = torch.nn.CrossEntropyLoss()
|
49 |
+
#loss = cross_entropy(logits, y)
|
50 |
+
|
51 |
+
preds = torch.argmax(logits, axis=1)
|
52 |
+
|
53 |
+
self.train_acc(preds.cpu(), y.cpu())
|
54 |
+
self.train_f1(preds.cpu(), y.cpu())
|
55 |
+
|
56 |
+
self.log("train_loss", loss)
|
57 |
+
|
58 |
+
return {'loss': loss}
|
59 |
+
|
60 |
+
def training_epoch_end(self, outs):
|
61 |
+
self.log('train_acc_epoch', self.train_acc)
|
62 |
+
self.log('train_f1_epoch', self.train_f1)
|
63 |
+
|
64 |
+
def validation_step(self, batch, batch_idx):
|
65 |
+
x, x_mask, y = batch
|
66 |
+
|
67 |
+
outputs = self(x, attention_mask=x_mask, labels=y)
|
68 |
+
logits = outputs.logits
|
69 |
+
loss = outputs.loss
|
70 |
+
|
71 |
+
preds = torch.argmax(logits, axis=1)
|
72 |
+
|
73 |
+
if not self.use_question_stance_approach:
|
74 |
+
self.val_acc(preds, y)
|
75 |
+
self.log('val_acc_step', self.val_acc)
|
76 |
+
|
77 |
+
self.val_f1(preds, y)
|
78 |
+
self.log("val_loss", loss)
|
79 |
+
|
80 |
+
return {'val_loss':loss, "src": x, "pred": preds, "target": y}
|
81 |
+
|
82 |
+
def validation_epoch_end(self, outs):
|
83 |
+
if self.use_question_stance_approach:
|
84 |
+
self.handle_end_of_epoch_scoring(outs, self.val_acc, self.val_f1)
|
85 |
+
|
86 |
+
self.log('val_acc_epoch', self.val_acc)
|
87 |
+
|
88 |
+
f1 = self.val_f1.compute()
|
89 |
+
self.val_f1.reset()
|
90 |
+
|
91 |
+
self.log('val_f1_epoch', torch.mean(f1))
|
92 |
+
|
93 |
+
class_names = ["supported", "refuted", "nei", "conflicting"]
|
94 |
+
for i, c_name in enumerate(class_names):
|
95 |
+
self.log("val_f1_" + c_name, f1[i])
|
96 |
+
|
97 |
+
|
98 |
+
def test_step(self, batch, batch_idx):
|
99 |
+
x, x_mask, y = batch
|
100 |
+
|
101 |
+
outputs = self(x, attention_mask=x_mask)
|
102 |
+
logits = outputs.logits
|
103 |
+
|
104 |
+
preds = torch.argmax(logits, axis=1)
|
105 |
+
|
106 |
+
if not self.use_question_stance_approach:
|
107 |
+
self.test_acc(preds, y)
|
108 |
+
self.log('test_acc_step', self.test_acc)
|
109 |
+
self.test_f1(preds, y)
|
110 |
+
|
111 |
+
return {"src": x, "pred": preds, "target": y}
|
112 |
+
|
113 |
+
def test_epoch_end(self, outs):
|
114 |
+
if self.use_question_stance_approach:
|
115 |
+
self.handle_end_of_epoch_scoring(outs, self.test_acc, self.test_f1)
|
116 |
+
|
117 |
+
self.log('test_acc_epoch', self.test_acc)
|
118 |
+
|
119 |
+
f1 = self.test_f1.compute()
|
120 |
+
self.test_f1.reset()
|
121 |
+
self.log('test_f1_epoch', torch.mean(f1))
|
122 |
+
|
123 |
+
class_names = ["supported", "refuted", "nei", "conflicting"]
|
124 |
+
for i, c_name in enumerate(class_names):
|
125 |
+
self.log("test_f1_" + c_name, f1[i])
|
126 |
+
|
127 |
+
def handle_end_of_epoch_scoring(self, outputs, acc_scorer, f1_scorer):
|
128 |
+
gold_labels = {}
|
129 |
+
question_support = {}
|
130 |
+
for out in outputs:
|
131 |
+
srcs = out['src']
|
132 |
+
preds = out['pred']
|
133 |
+
tgts = out['target']
|
134 |
+
|
135 |
+
tokens = self.tokenizer.batch_decode(
|
136 |
+
srcs,
|
137 |
+
skip_special_tokens=True,
|
138 |
+
clean_up_tokenization_spaces=True
|
139 |
+
)
|
140 |
+
|
141 |
+
for src, pred, tgt in zip(tokens, preds, tgts):
|
142 |
+
acc_scorer(torch.as_tensor([pred]).to("cuda:0"), torch.as_tensor([tgt]).to("cuda:0"))
|
143 |
+
f1_scorer(torch.as_tensor([pred]).to("cuda:0"), torch.as_tensor([tgt]).to("cuda:0"))
|
144 |
+
|
145 |
+
|
averitec/models/SequenceClassificationModule.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytorch_lightning as pl
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import datasets
|
5 |
+
from transformers import MaxLengthCriteria, StoppingCriteriaList
|
6 |
+
from transformers.optimization import AdamW
|
7 |
+
import itertools
|
8 |
+
# from utils import count_stats, f1_metric, pairwise_meteor
|
9 |
+
from torchmetrics.text.rouge import ROUGEScore
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import torchmetrics
|
12 |
+
from torchmetrics.classification import F1Score
|
13 |
+
|
14 |
+
class SequenceClassificationModule(pl.LightningModule):
|
15 |
+
# Instantiate the model
|
16 |
+
def __init__(self, tokenizer, model, use_question_stance_approach=True, learning_rate=1e-3):
|
17 |
+
super().__init__()
|
18 |
+
self.tokenizer = tokenizer
|
19 |
+
self.model = model
|
20 |
+
self.learning_rate = learning_rate
|
21 |
+
|
22 |
+
self.train_acc = torchmetrics.Accuracy(task="multiclass", num_classes=model.num_labels)
|
23 |
+
self.val_acc = torchmetrics.Accuracy(task="multiclass", num_classes=model.num_labels)
|
24 |
+
self.test_acc = torchmetrics.Accuracy(task="multiclass", num_classes=model.num_labels)
|
25 |
+
|
26 |
+
self.train_f1 = F1Score(task="multiclass", num_classes=model.num_labels, average="macro")
|
27 |
+
self.val_f1 = F1Score(task="multiclass", num_classes=model.num_labels, average=None)
|
28 |
+
self.test_f1 = F1Score(task="multiclass", num_classes=model.num_labels, average=None)
|
29 |
+
# self.train_acc = torchmetrics.Accuracy()
|
30 |
+
# self.val_acc = torchmetrics.Accuracy()
|
31 |
+
# self.test_acc = torchmetrics.Accuracy()
|
32 |
+
|
33 |
+
# self.train_f1 = F1Score(num_classes=4, average="macro")
|
34 |
+
# self.val_f1 = F1Score(num_classes=4, average=None)
|
35 |
+
# self.test_f1 = F1Score(num_classes=4, average=None)
|
36 |
+
|
37 |
+
self.use_question_stance_approach = use_question_stance_approach
|
38 |
+
|
39 |
+
|
40 |
+
# Do a forward pass through the model
|
41 |
+
def forward(self, input_ids, **kwargs):
|
42 |
+
return self.model(input_ids, **kwargs)
|
43 |
+
|
44 |
+
def configure_optimizers(self):
|
45 |
+
optimizer = AdamW(self.parameters(), lr = self.learning_rate)
|
46 |
+
return optimizer
|
47 |
+
|
48 |
+
def training_step(self, batch, batch_idx):
|
49 |
+
x, x_mask, y = batch
|
50 |
+
|
51 |
+
outputs = self(x, attention_mask=x_mask, labels=y)
|
52 |
+
logits = outputs.logits
|
53 |
+
loss = outputs.loss
|
54 |
+
|
55 |
+
#cross_entropy = torch.nn.CrossEntropyLoss()
|
56 |
+
#loss = cross_entropy(logits, y)
|
57 |
+
|
58 |
+
preds = torch.argmax(logits, axis=1)
|
59 |
+
|
60 |
+
self.log("train_loss", loss)
|
61 |
+
|
62 |
+
return {'loss': loss}
|
63 |
+
|
64 |
+
def validation_step(self, batch, batch_idx):
|
65 |
+
x, x_mask, y = batch
|
66 |
+
|
67 |
+
outputs = self(x, attention_mask=x_mask, labels=y)
|
68 |
+
logits = outputs.logits
|
69 |
+
loss = outputs.loss
|
70 |
+
|
71 |
+
preds = torch.argmax(logits, axis=1)
|
72 |
+
|
73 |
+
if not self.use_question_stance_approach:
|
74 |
+
self.val_acc(preds, y)
|
75 |
+
self.log('val_acc_step', self.val_acc)
|
76 |
+
|
77 |
+
self.val_f1(preds, y)
|
78 |
+
self.log("val_loss", loss)
|
79 |
+
|
80 |
+
return {'val_loss':loss, "src": x, "pred": preds, "target": y}
|
81 |
+
|
82 |
+
def validation_epoch_end(self, outs):
|
83 |
+
if self.use_question_stance_approach:
|
84 |
+
self.handle_end_of_epoch_scoring(outs, self.val_acc, self.val_f1)
|
85 |
+
|
86 |
+
self.log('val_acc_epoch', self.val_acc)
|
87 |
+
|
88 |
+
f1 = self.val_f1.compute()
|
89 |
+
self.val_f1.reset()
|
90 |
+
|
91 |
+
self.log('val_f1_epoch', torch.mean(f1))
|
92 |
+
|
93 |
+
class_names = ["supported", "refuted", "nei", "conflicting"]
|
94 |
+
for i, c_name in enumerate(class_names):
|
95 |
+
self.log("val_f1_" + c_name, f1[i])
|
96 |
+
|
97 |
+
|
98 |
+
def test_step(self, batch, batch_idx):
|
99 |
+
x, x_mask, y = batch
|
100 |
+
|
101 |
+
outputs = self(x, attention_mask=x_mask)
|
102 |
+
logits = outputs.logits
|
103 |
+
|
104 |
+
preds = torch.argmax(logits, axis=1)
|
105 |
+
|
106 |
+
if not self.use_question_stance_approach:
|
107 |
+
self.test_acc(preds, y)
|
108 |
+
self.log('test_acc_step', self.test_acc)
|
109 |
+
self.test_f1(preds, y)
|
110 |
+
|
111 |
+
return {"src": x, "pred": preds, "target": y}
|
112 |
+
|
113 |
+
def test_epoch_end(self, outs):
|
114 |
+
if self.use_question_stance_approach:
|
115 |
+
self.handle_end_of_epoch_scoring(outs, self.test_acc, self.test_f1)
|
116 |
+
|
117 |
+
self.log('test_acc_epoch', self.test_acc)
|
118 |
+
|
119 |
+
f1 = self.test_f1.compute()
|
120 |
+
self.test_f1.reset()
|
121 |
+
self.log('test_f1_epoch', torch.mean(f1))
|
122 |
+
|
123 |
+
class_names = ["supported", "refuted", "nei", "conflicting"]
|
124 |
+
for i, c_name in enumerate(class_names):
|
125 |
+
self.log("test_f1_" + c_name, f1[i])
|
126 |
+
|
127 |
+
def handle_end_of_epoch_scoring(self, outputs, acc_scorer, f1_scorer):
|
128 |
+
gold_labels = {}
|
129 |
+
question_support = {}
|
130 |
+
for out in outputs:
|
131 |
+
srcs = out['src']
|
132 |
+
preds = out['pred']
|
133 |
+
tgts = out['target']
|
134 |
+
|
135 |
+
tokens = self.tokenizer.batch_decode(
|
136 |
+
srcs,
|
137 |
+
skip_special_tokens=True,
|
138 |
+
clean_up_tokenization_spaces=True
|
139 |
+
)
|
140 |
+
|
141 |
+
for src, pred, tgt in zip(tokens, preds, tgts):
|
142 |
+
claim_id = src.split("[ question ]")[0]
|
143 |
+
|
144 |
+
if claim_id not in gold_labels:
|
145 |
+
gold_labels[claim_id] = tgt
|
146 |
+
question_support[claim_id] = []
|
147 |
+
|
148 |
+
question_support[claim_id].append(pred)
|
149 |
+
|
150 |
+
for k,gold_label in gold_labels.items():
|
151 |
+
support = question_support[k]
|
152 |
+
|
153 |
+
has_unansw = False
|
154 |
+
has_true = False
|
155 |
+
has_false = False
|
156 |
+
|
157 |
+
for v in support:
|
158 |
+
if v == 0:
|
159 |
+
has_true = True
|
160 |
+
if v == 1:
|
161 |
+
has_false = True
|
162 |
+
if v == 2 or v == 3: # TODO very ugly hack -- we cant have different numbers of labels for train and test so we do this
|
163 |
+
has_unansw = True
|
164 |
+
|
165 |
+
if has_unansw:
|
166 |
+
answer = 2
|
167 |
+
elif has_true and not has_false:
|
168 |
+
answer = 0
|
169 |
+
elif has_false and not has_true:
|
170 |
+
answer = 1
|
171 |
+
elif has_true and has_false:
|
172 |
+
answer = 3
|
173 |
+
|
174 |
+
|
175 |
+
# TODO this is very hacky and wont work if the device is literally anything other than cuda:0
|
176 |
+
acc_scorer(torch.as_tensor([answer]).to("cuda:0"), torch.as_tensor([gold_label]).to("cuda:0"))
|
177 |
+
f1_scorer(torch.as_tensor([answer]).to("cuda:0"), torch.as_tensor([gold_label]).to("cuda:0"))
|
178 |
+
|
179 |
+
|
averitec/models/utils.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import nltk
|
3 |
+
from nltk import word_tokenize
|
4 |
+
import numpy as np
|
5 |
+
from leven import levenshtein
|
6 |
+
from sklearn.cluster import DBSCAN, dbscan
|
7 |
+
|
8 |
+
def delete_if_exists(filepath):
|
9 |
+
if os.path.exists(filepath):
|
10 |
+
os.remove(filepath)
|
11 |
+
|
12 |
+
def pairwise_meteor(candidate, reference): # Todo this is not thread safe, no idea how to make it so
|
13 |
+
return nltk.translate.meteor_score.single_meteor_score(word_tokenize(reference), word_tokenize(candidate))
|
14 |
+
|
15 |
+
def count_stats(candidate_dict, reference_dict):
|
16 |
+
count_match = [0 for _ in candidate_dict]
|
17 |
+
count_diff = [0 for _ in candidate_dict]
|
18 |
+
|
19 |
+
for i, k in enumerate(candidate_dict.keys()):
|
20 |
+
pred_parts = candidate_dict[k]
|
21 |
+
tgt_parts = reference_dict[k]
|
22 |
+
|
23 |
+
if len(pred_parts) == len(tgt_parts):
|
24 |
+
count_match[i] = 1
|
25 |
+
|
26 |
+
count_diff[i] = abs(len(pred_parts) - len(tgt_parts))
|
27 |
+
|
28 |
+
count_match_score = np.mean(count_match)
|
29 |
+
count_diff_score = np.mean(count_diff)
|
30 |
+
|
31 |
+
return {
|
32 |
+
"count_match_score": count_match_score,
|
33 |
+
"count_diff_score": count_diff_score
|
34 |
+
}
|
35 |
+
|
36 |
+
def f1_metric(candidate_dict, reference_dict, pairwise_metric):
|
37 |
+
all_best_p = [0 for _ in candidate_dict]
|
38 |
+
all_best_t = [0 for _ in candidate_dict]
|
39 |
+
p_unnorm = []
|
40 |
+
|
41 |
+
for i, k in enumerate(candidate_dict.keys()):
|
42 |
+
pred_parts = candidate_dict[k]
|
43 |
+
tgt_parts = reference_dict[k]
|
44 |
+
|
45 |
+
best_p_score = [0 for _ in pred_parts]
|
46 |
+
best_t_score = [0 for _ in tgt_parts]
|
47 |
+
|
48 |
+
for p_idx in range(len(pred_parts)):
|
49 |
+
for t_idx in range(len(tgt_parts)):
|
50 |
+
#meteor_score = pairwise_meteor(pred_parts[p_idx], tgt_parts[t_idx])
|
51 |
+
metric_score = pairwise_metric(pred_parts[p_idx], tgt_parts[t_idx])
|
52 |
+
|
53 |
+
if metric_score > best_p_score[p_idx]:
|
54 |
+
best_p_score[p_idx] = metric_score
|
55 |
+
|
56 |
+
if metric_score > best_t_score[t_idx]:
|
57 |
+
best_t_score[t_idx] = metric_score
|
58 |
+
|
59 |
+
all_best_p[i] = np.mean(best_p_score) if len(best_p_score) > 0 else 1.0
|
60 |
+
all_best_t[i] = np.mean(best_t_score) if len(best_t_score) > 0 else 1.0
|
61 |
+
|
62 |
+
p_unnorm.extend(best_p_score)
|
63 |
+
|
64 |
+
p_score = np.mean(all_best_p)
|
65 |
+
r_score = np.mean(all_best_t)
|
66 |
+
avg_score = (p_score + r_score) / 2
|
67 |
+
f1_score = 2 * p_score * r_score / (p_score + r_score + 1e-8)
|
68 |
+
|
69 |
+
p_unnorm_score = np.mean(p_unnorm)
|
70 |
+
|
71 |
+
return {
|
72 |
+
"p": p_score,
|
73 |
+
"r": r_score,
|
74 |
+
"avg": avg_score,
|
75 |
+
"f1": f1_score,
|
76 |
+
"p_unnorm": p_unnorm_score,
|
77 |
+
}
|
78 |
+
|
79 |
+
def edit_distance_dbscan(data):
|
80 |
+
# Inspired by https://scikit-learn.org/stable/faq.html#how-do-i-deal-with-string-data-or-trees-graphs
|
81 |
+
def lev_metric(x, y):
|
82 |
+
i, j = int(x[0]), int(y[0])
|
83 |
+
return levenshtein(data[i], data[j])
|
84 |
+
|
85 |
+
X = np.arange(len(data)).reshape(-1, 1)
|
86 |
+
|
87 |
+
clustering = dbscan(X, metric=lev_metric, eps=20, min_samples=2, algorithm='brute')
|
88 |
+
return clustering
|
89 |
+
|
90 |
+
def compute_all_pairwise_edit_distances(data):
|
91 |
+
X = np.empty((len(data), len(data)))
|
92 |
+
|
93 |
+
for i in range(len(data)):
|
94 |
+
for j in range(len(data)):
|
95 |
+
X[i][j] = levenshtein(data[i], data[j])
|
96 |
+
|
97 |
+
return X
|
98 |
+
|
99 |
+
def compute_all_pairwise_scores(src_data, tgt_data, metric):
|
100 |
+
X = np.empty((len(src_data), len(tgt_data)))
|
101 |
+
|
102 |
+
for i in range(len(src_data)):
|
103 |
+
for j in range(len(tgt_data)):
|
104 |
+
X[i][j] = (metric(src_data[i], tgt_data[j]))
|
105 |
+
|
106 |
+
return X
|
107 |
+
|
108 |
+
def compute_all_pairwise_meteor_scores(data):
|
109 |
+
X = np.empty((len(data), len(data)))
|
110 |
+
|
111 |
+
for i in range(len(data)):
|
112 |
+
for j in range(len(data)):
|
113 |
+
X[i][j] = (pairwise_meteor(data[i], data[j]) + pairwise_meteor(data[j], data[i])) / 2
|
114 |
+
|
115 |
+
return X
|
116 |
+
|
117 |
+
def edit_distance_custom(data, X, eps=0.5, min_samples=3):
|
118 |
+
clustering = DBSCAN(metric="precomputed", eps=eps, min_samples=min_samples).fit(X)
|
119 |
+
return clustering.labels_
|
averitec/pretrained_models/bart_justifications_verdict-epoch=13-val_loss=2.03-val_meteor=0.28.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4b7bf02daaf10b3443f4f2cbe79c3c9f10c453dfdf818a4d14e44b2b4311cf4
|
3 |
+
size 4876206567
|
averitec/pretrained_models/bert_dual_encoder.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fee6737f655f4f1dfb46cc1bb812b5eaf9a72cfc0b69d4e5c05cde27ea7b6051
|
3 |
+
size 1314015751
|
averitec/pretrained_models/bert_veracity.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ddb8132a28ceff149904dd3ad3c3edd3e5f0c7de0169819207104a80e425c9a
|
3 |
+
size 1314034311
|