#!/usr/bin/env python3 # Copyright 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """Various retriever utilities.""" import regex import unicodedata import numpy as np import scipy.sparse as sp from sklearn.utils import murmurhash3_32 # ------------------------------------------------------------------------------ # Sparse matrix saving/loading helpers. # ------------------------------------------------------------------------------ def save_sparse_csr(filename, matrix, metadata=None): data = { 'data': matrix.data, 'indices': matrix.indices, 'indptr': matrix.indptr, 'shape': matrix.shape, 'metadata': metadata, } np.savez(filename, **data) def load_sparse_csr(filename): loader = np.load(filename, allow_pickle=True) matrix = sp.csr_matrix((loader['data'], loader['indices'], loader['indptr']), shape=loader['shape']) return matrix, loader['metadata'].item(0) if 'metadata' in loader else None # ------------------------------------------------------------------------------ # Token hashing. # ------------------------------------------------------------------------------ def hash(token, num_buckets): """Unsigned 32 bit murmurhash for feature hashing.""" return murmurhash3_32(token, positive=True) % num_buckets # ------------------------------------------------------------------------------ # Text cleaning. # ------------------------------------------------------------------------------ STOPWORDS = { 'i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', 'her', 'hers', 'herself', 'it', 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', 'should', 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', 'couldn', 'didn', 'doesn', 'hadn', 'hasn', 'haven', 'isn', 'ma', 'mightn', 'mustn', 'needn', 'shan', 'shouldn', 'wasn', 'weren', 'won', 'wouldn', "'ll", "'re", "'ve", "n't", "'s", "'d", "'m", "''", "``" } def normalize(text): """Resolve different type of unicode encodings.""" return unicodedata.normalize('NFD', text) def filter_word(text): """Take out english stopwords, punctuation, and compound endings.""" text = normalize(text) if regex.match(r'^\p{P}+$', text): return True if text.lower() in STOPWORDS: return True return False def filter_ngram(gram, mode='any'): """Decide whether to keep or discard an n-gram. Args: gram: list of tokens (length N) mode: Option to throw out ngram if 'any': any single token passes filter_word 'all': all tokens pass filter_word 'ends': book-ended by filterable tokens """ filtered = [filter_word(w) for w in gram] if mode == 'any': return any(filtered) elif mode == 'all': return all(filtered) elif mode == 'ends': return filtered[0] or filtered[-1] else: raise ValueError('Invalid mode: %s' % mode) def get_field(d, field_list): """get the subfield associated to a list of elastic fields E.g. ['file', 'filename'] to d['file']['filename'] """ if isinstance(field_list, str): return d[field_list] else: idx = d.copy() for field in field_list: idx = idx[field] return idx