Spaces:
Build error
Build error
File size: 30,958 Bytes
dd80156 8532c4b ddd6481 dd80156 ddd6481 dd80156 ddd6481 dd80156 ddd6481 8532c4b dd80156 ddd6481 dd80156 ddd6481 dd80156 ddd6481 dd80156 8532c4b dd80156 ddd6481 dd80156 8532c4b dd80156 8532c4b dd80156 8532c4b dd80156 8532c4b dd80156 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Created by zd302 at 17/07/2024
from fastapi import FastAPI
from pydantic import BaseModel
# from averitec.models.AveritecModule import Wikipediaretriever, Googleretriever, veracity_prediction, justification_generation
import uvicorn
import spaces
app = FastAPI()
# ---------------------------------------------------------------------------------------------------------------------
import gradio as gr
import tqdm
import torch
import numpy as np
from time import sleep
from datetime import datetime
import threading
import gc
import os
import json
import pytorch_lightning as pl
from urllib.parse import urlparse
from accelerate import Accelerator
import spaces
from transformers import BartTokenizer, BartForConditionalGeneration
from transformers import BloomTokenizerFast, BloomForCausalLM, BertTokenizer, BertForSequenceClassification
from transformers import RobertaTokenizer, RobertaForSequenceClassification
from rank_bm25 import BM25Okapi
# import bm25s
# import Stemmer # optional: for stemming
from html2lines import url2lines
from googleapiclient.discovery import build
from averitec.models.DualEncoderModule import DualEncoderModule
from averitec.models.SequenceClassificationModule import SequenceClassificationModule
from averitec.models.JustificationGenerationModule import JustificationGenerationModule
from averitec.data.sample_claims import CLAIMS_Type
# ---------------------------------------------------------------------------
# load .env
from utils import create_user_id
user_id = create_user_id()
from azure.storage.fileshare import ShareServiceClient
try:
from dotenv import load_dotenv
load_dotenv()
except Exception as e:
pass
# ---------------------------------------------------------------------------
# os.environ["TOKENIZERS_PARALLELISM"] = "false"
account_url = os.environ["AZURE_ACCOUNT_URL"]
credential = {
"account_key": os.environ['AZURE_ACCOUNT_KEY'],
"account_name": os.environ['AZURE_ACCOUNT_NAME']
}
file_share_name = "averitec"
azure_service = ShareServiceClient(account_url=account_url, credential=credential)
azure_share_client = azure_service.get_share_client(file_share_name)
# ---------------------------------------------------------------------------------------------------------------------
import requests
from bs4 import BeautifulSoup
import wikipediaapi
wiki_wiki = wikipediaapi.Wikipedia('AVeriTeC ([email protected])', 'en')
import nltk
nltk.download('averaged_perceptron_tagger_eng')
nltk.download('averaged_perceptron_tagger')
nltk.download('punkt')
nltk.download('punkt_tab')
from nltk import pos_tag, word_tokenize, sent_tokenize
import spacy
os.system("python -m spacy download en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
# ---------------------------------------------------------------------------
train_examples = json.load(open('averitec/data/train.json', 'r'))
def claim2prompts(example):
claim = example["claim"]
# claim_str = "Claim: " + claim + "||Evidence: "
claim_str = "Evidence: "
for question in example["questions"]:
q_text = question["question"].strip()
if len(q_text) == 0:
continue
if not q_text[-1] == "?":
q_text += "?"
answer_strings = []
for a in question["answers"]:
if a["answer_type"] in ["Extractive", "Abstractive"]:
answer_strings.append(a["answer"])
if a["answer_type"] == "Boolean":
answer_strings.append(a["answer"] + ", because " + a["boolean_explanation"].lower().strip())
for a_text in answer_strings:
if not a_text[-1] in [".", "!", ":", "?"]:
a_text += "."
# prompt_lookup_str = claim + " " + a_text
prompt_lookup_str = a_text
this_q_claim_str = claim_str + " " + a_text.strip() + "||Question answered: " + q_text
yield (prompt_lookup_str, this_q_claim_str.replace("\n", " ").replace("||", "\n"))
def generate_reference_corpus(reference_file):
all_data_corpus = []
tokenized_corpus = []
for train_example in train_examples:
train_claim = train_example["claim"]
speaker = train_example["speaker"].strip() if train_example["speaker"] is not None and len(
train_example["speaker"]) > 1 else "they"
questions = [q["question"] for q in train_example["questions"]]
claim_dict_builder = {}
claim_dict_builder["claim"] = train_claim
claim_dict_builder["speaker"] = speaker
claim_dict_builder["questions"] = questions
tokenized_corpus.append(nltk.word_tokenize(claim_dict_builder["claim"]))
all_data_corpus.append(claim_dict_builder)
return tokenized_corpus, all_data_corpus
def generate_step2_reference_corpus(reference_file):
prompt_corpus = []
tokenized_corpus = []
for example in train_examples:
for lookup_str, prompt in claim2prompts(example):
entry = nltk.word_tokenize(lookup_str)
tokenized_corpus.append(entry)
prompt_corpus.append(prompt)
return tokenized_corpus, prompt_corpus
reference_file = "averitec/data/train.json"
tokenized_corpus0, all_data_corpus0 = generate_reference_corpus(reference_file)
qg_bm25 = BM25Okapi(tokenized_corpus0)
tokenized_corpus1, prompt_corpus1 = generate_step2_reference_corpus(reference_file)
prompt_bm25 = BM25Okapi(tokenized_corpus1)
# ---------------------------------------------------------------------------------------------------------------------
# ---------- Setting ----------
# ---------- Load Veracity and Justification prediction model ----------
print("Loading models ...")
LABEL = [
"Supported",
"Refuted",
"Not Enough Evidence",
"Conflicting Evidence/Cherrypicking",
]
if torch.cuda.is_available():
# question generation
qg_tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom-1b1")
qg_model = BloomForCausalLM.from_pretrained("bigscience/bloom-1b1", torch_dtype=torch.bfloat16).to('cuda')
# rerank
rerank_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
rereank_bert_model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2, problem_type="single_label_classification") # Must specify single_label for some reason
best_checkpoint = "averitec/pretrained_models/bert_dual_encoder.ckpt"
rerank_trained_model = DualEncoderModule.load_from_checkpoint(best_checkpoint, tokenizer=rerank_tokenizer, model=rereank_bert_model)
# Veracity
veracity_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
bert_model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=4, problem_type="single_label_classification")
veracity_checkpoint_path = os.getcwd() + "/averitec/pretrained_models/bert_veracity.ckpt"
veracity_model = SequenceClassificationModule.load_from_checkpoint(veracity_checkpoint_path,tokenizer=veracity_tokenizer, model=bert_model)
# Justification
justification_tokenizer = BartTokenizer.from_pretrained('facebook/bart-large', add_prefix_space=True)
bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large")
best_checkpoint = os.getcwd() + '/averitec/pretrained_models/bart_justifications_verdict-epoch=13-val_loss=2.03-val_meteor=0.28.ckpt'
justification_model = JustificationGenerationModule.load_from_checkpoint(best_checkpoint, tokenizer=justification_tokenizer, model=bart_model)
# ---------------------------------------------------------------------------
# ----------------------------------------------------------------------------
class Docs:
def __init__(self, metadata=dict(), page_content=""):
self.metadata = metadata
self.page_content = page_content
# ------------------------------ Googleretriever -----------------------------
def doc2prompt(doc):
prompt_parts = "Outrageously, " + doc["speaker"] + " claimed that \"" + doc[
"claim"].strip() + "\". Criticism includes questions like: "
questions = [q.strip() for q in doc["questions"]]
return prompt_parts + " ".join(questions)
def docs2prompt(top_docs):
return "\n\n".join([doc2prompt(d) for d in top_docs])
@spaces.GPU
def prompt_question_generation(test_claim, speaker="they", topk=10):
# --------------------------------------------------
# test claim
s = qg_bm25.get_scores(nltk.word_tokenize(test_claim))
top_n = np.argsort(s)[::-1][:topk]
docs = [all_data_corpus0[i] for i in top_n]
# --------------------------------------------------
prompt = docs2prompt(docs) + "\n\n" + "Outrageously, " + speaker + " claimed that \"" + test_claim.strip() + \
"\". Criticism includes questions like: "
sentences = [prompt]
inputs = qg_tokenizer(sentences, padding=True, return_tensors="pt").to(qg_model.device)
outputs = qg_model.generate(inputs["input_ids"], max_length=2000, num_beams=2, no_repeat_ngram_size=2, early_stopping=True)
tgt_text = qg_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
in_len = len(sentences[0])
questions_str = tgt_text[in_len:].split("\n")[0]
qs = questions_str.split("?")
qs = [q.strip() + "?" for q in qs if q.strip() and len(q.strip()) < 300]
#
generate_question = [{"question": q, "answers": []} for q in qs]
return generate_question
def check_claim_date(check_date):
try:
year, month, date = check_date.split("-")
except:
month, date, year = "01", "01", "2022"
if len(year) == 2 and int(year) <= 30:
year = "20" + year
elif len(year) == 2:
year = "19" + year
elif len(year) == 1:
year = "200" + year
if len(month) == 1:
month = "0" + month
if len(date) == 1:
date = "0" + date
sort_date = year + month + date
return sort_date
def string_to_search_query(text, author):
parts = word_tokenize(text.strip())
tags = pos_tag(parts)
keep_tags = ["CD", "JJ", "NN", "VB"]
if author is not None:
search_string = author.split()
else:
search_string = []
for token, tag in zip(parts, tags):
for keep_tag in keep_tags:
if tag[1].startswith(keep_tag):
search_string.append(token)
search_string = " ".join(search_string)
return search_string
def get_google_search_results(api_key, search_engine_id, google_search, sort_date, search_string, page=0):
search_results = []
for i in range(1):
try:
search_results += google_search(
search_string,
api_key,
search_engine_id,
num=3, # num=10,
start=0 + 10 * page,
sort="date:r:19000101:" + sort_date,
dateRestrict=None,
gl="US"
)
break
except:
sleep(1)
return search_results
def google_search(search_term, api_key, cse_id, **kwargs):
service = build("customsearch", "v1", developerKey=api_key)
res = service.cse().list(q=search_term, cx=cse_id, **kwargs).execute()
if "items" in res:
return res['items']
else:
return []
def get_domain_name(url):
if '://' not in url:
url = 'http://' + url
domain = urlparse(url).netloc
if domain.startswith("www."):
return domain[4:]
else:
return domain
def get_text_from_link(url_link):
page_lines = url2lines(url_link)
return "\n".join([url_link] + page_lines)
def averitec_search(claim, generate_question, speaker="they", check_date="2024-07-01", n_pages=1): # n_pages=3
# default config
api_key = os.environ["GOOGLE_API_KEY"]
search_engine_id = os.environ["GOOGLE_SEARCH_ENGINE_ID"]
blacklist = [
"jstor.org", # Blacklisted because their pdfs are not labelled as such, and clog up the download
"facebook.com", # Blacklisted because only post titles can be scraped, but the scraper doesn't know this,
"ftp.cs.princeton.edu", # Blacklisted because it hosts many large NLP corpora that keep showing up
"nlp.cs.princeton.edu",
"huggingface.co"
]
blacklist_files = [ # Blacklisted some NLP nonsense that crashes my machine with OOM errors
"/glove.",
"ftp://ftp.cs.princeton.edu/pub/cs226/autocomplete/words-333333.txt",
"https://web.mit.edu/adamrose/Public/googlelist",
]
# save to folder
store_folder = "averitec/data/store/retrieved_docs"
#
index = 0
questions = [q["question"] for q in generate_question][:3]
# questions = [q["question"] for q in generate_question] # ori
# check the date of the claim
current_date = datetime.now().strftime("%Y-%m-%d")
sort_date = check_claim_date(current_date) # check_date="2022-01-01"
#
search_strings = []
search_types = []
search_string_2 = string_to_search_query(claim, None)
search_strings += [search_string_2, claim, ]
search_types += ["claim", "claim-noformat", ]
search_strings += questions
search_types += ["question" for _ in questions]
# start to search
search_results = []
visited = {}
store_counter = 0
worker_stack = list(range(10))
retrieve_evidence = []
for this_search_string, this_search_type in zip(search_strings, search_types):
for page_num in range(n_pages):
search_results = get_google_search_results(api_key, search_engine_id, google_search, sort_date,
this_search_string, page=page_num)
for result in search_results:
link = str(result["link"])
domain = get_domain_name(link)
if domain in blacklist:
continue
broken = False
for b_file in blacklist_files:
if b_file in link:
broken = True
if broken:
continue
if link.endswith(".pdf") or link.endswith(".doc"):
continue
store_file_path = ""
if link in visited:
web_text = visited[link]
else:
web_text = get_text_from_link(link)
visited[link] = web_text
line = [str(index), claim, link, str(page_num), this_search_string, this_search_type, web_text]
retrieve_evidence.append(line)
return retrieve_evidence
@spaces.GPU
def decorate_with_questions(claim, retrieve_evidence, top_k=3): # top_k=5, 10, 100
#
tokenized_corpus = []
all_data_corpus = []
for retri_evi in tqdm.tqdm(retrieve_evidence):
# store_file = retri_evi[-1]
# with open(store_file, 'r') as f:
web_text = retri_evi[-1]
lines_in_web = web_text.split("\n")
first = True
for line in lines_in_web:
# for line in f:
line = line.strip()
if first:
first = False
location_url = line
continue
if len(line) > 3:
entry = nltk.word_tokenize(line)
if (location_url, line) not in all_data_corpus:
tokenized_corpus.append(entry)
all_data_corpus.append((location_url, line))
if len(tokenized_corpus) == 0:
print("")
bm25 = BM25Okapi(tokenized_corpus)
s = bm25.get_scores(nltk.word_tokenize(claim))
top_n = np.argsort(s)[::-1][:top_k]
docs = [all_data_corpus[i] for i in top_n]
generate_qa_pairs = []
# Then, generate questions for those top 50:
for doc in tqdm.tqdm(docs):
# prompt_lookup_str = example["claim"] + " " + doc[1]
prompt_lookup_str = doc[1]
prompt_s = prompt_bm25.get_scores(nltk.word_tokenize(prompt_lookup_str))
prompt_n = 10
prompt_top_n = np.argsort(prompt_s)[::-1][:prompt_n]
prompt_docs = [prompt_corpus1[i] for i in prompt_top_n]
claim_prompt = "Evidence: " + doc[1].replace("\n", " ") + "\nQuestion answered: "
prompt = "\n\n".join(prompt_docs + [claim_prompt])
sentences = [prompt]
inputs = qg_tokenizer(sentences, padding=True, return_tensors="pt").to(qg_model.device)
outputs = qg_model.generate(inputs["input_ids"], max_length=5000, num_beams=2, no_repeat_ngram_size=2, early_stopping=True)
tgt_text = qg_tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[-1]:], skip_special_tokens=True)[0]
# We are not allowed to generate more than 250 characters:
tgt_text = tgt_text[:250]
qa_pair = [tgt_text.strip().split("?")[0].replace("\n", " ") + "?", doc[1].replace("\n", " "), doc[0]]
generate_qa_pairs.append(qa_pair)
return generate_qa_pairs
def triple_to_string(x):
return " </s> ".join([item.strip() for item in x])
@spaces.GPU
def rerank_questions(claim, bm25_qas, topk=3):
#
strs_to_score = []
values = []
for question, answer, source in bm25_qas:
str_to_score = triple_to_string([claim, question, answer])
strs_to_score.append(str_to_score)
values.append([question, answer, source])
if len(bm25_qas) > 0:
encoded_dict = rerank_tokenizer(strs_to_score, max_length=512, padding="longest", truncation=True, return_tensors="pt").to(rerank_trained_model.device)
input_ids = encoded_dict['input_ids']
attention_masks = encoded_dict['attention_mask']
scores = torch.softmax(rerank_trained_model(input_ids, attention_mask=attention_masks).logits, axis=-1)[:, 1]
top_n = torch.argsort(scores, descending=True)[:topk]
pass_through = [{"question": values[i][0], "answers": values[i][1], "source_url": values[i][2]} for i in top_n]
else:
pass_through = []
top3_qa_pairs = pass_through
return top3_qa_pairs
@spaces.GPU
def Googleretriever(query):
# ----- Generate QA pairs using AVeriTeC
# step 1: generate questions for the query/claim using Bloom
generate_question = prompt_question_generation(query)
# step 2: retrieve evidence for the generated questions using Google API
retrieve_evidence = averitec_search(query, generate_question)
# step 3: generate QA pairs for each retrieved document
bm25_qa_pairs = decorate_with_questions(query, retrieve_evidence)
# step 4: rerank QA pairs
top3_qa_pairs = rerank_questions(query, bm25_qa_pairs)
# Add score to metadata
results = []
for i, qa in enumerate(top3_qa_pairs):
metadata = dict()
metadata['name'] = qa['question']
metadata['url'] = qa['source_url']
metadata['cached_source_url'] = qa['source_url']
metadata['short_name'] = "Evidence {}".format(i + 1)
metadata['page_number'] = ""
metadata['title'] = qa['question']
metadata['evidence'] = qa['answers']
metadata['query'] = qa['question']
metadata['answer'] = qa['answers']
metadata['page_content'] = "<b>Question</b>: " + qa['question'] + "<br>" + "<b>Answer</b>: " + qa['answers']
page_content = f"""{metadata['page_content']}"""
results.append(Docs(metadata, page_content))
return results
# ------------------------------ Googleretriever -----------------------------
# ------------------------------ Wikipediaretriever --------------------------
def search_entity_wikipeida(entity):
find_evidence = []
page_py = wiki_wiki.page(entity)
if page_py.exists():
introduction = page_py.summary
find_evidence.append([str(entity), introduction])
return find_evidence
def clean_str(p):
return p.encode().decode("unicode-escape").encode("latin1").decode("utf-8")
def find_similar_wikipedia(entity, relevant_wikipages):
# If the relevant wikipeida page of the entity is less than 5, find similar wikipedia pages.
ent_ = entity.replace(" ", "+")
search_url = f"https://en.wikipedia.org/w/index.php?search={ent_}&title=Special:Search&profile=advanced&fulltext=1&ns0=1"
response_text = requests.get(search_url).text
soup = BeautifulSoup(response_text, features="html.parser")
result_divs = soup.find_all("div", {"class": "mw-search-result-heading"})
if result_divs:
result_titles = [clean_str(div.get_text().strip()) for div in result_divs]
similar_titles = result_titles[:5]
saved_titles = [ent[0] for ent in relevant_wikipages] if relevant_wikipages else relevant_wikipages
for _t in similar_titles:
if _t not in saved_titles and len(relevant_wikipages) < 5:
_evi = search_entity_wikipeida(_t)
# _evi = search_step(_t)
relevant_wikipages.extend(_evi)
return relevant_wikipages
def find_evidence_from_wikipedia(claim):
#
doc = nlp(claim)
#
wikipedia_page = []
for ent in doc.ents:
relevant_wikipages = search_entity_wikipeida(ent)
if len(relevant_wikipages) < 5:
relevant_wikipages = find_similar_wikipedia(str(ent), relevant_wikipages)
wikipedia_page.extend(relevant_wikipages)
return wikipedia_page
def bm25_retriever(query, corpus, topk=3):
bm25 = BM25Okapi(corpus)
#
query_tokens = word_tokenize(query)
scores = bm25.get_scores(query_tokens)
top_n = np.argsort(scores)[::-1][:topk]
top_n_scores = [scores[i] for i in top_n]
return top_n, top_n_scores
def relevant_sentence_retrieval(query, wiki_intro, k):
# 1. Create corpus here
corpus, sentences = [], []
titles = []
for i, (title, intro) in enumerate(wiki_intro):
sents_in_intro = sent_tokenize(intro)
for sent in sents_in_intro:
corpus.append(word_tokenize(sent))
sentences.append(sent)
titles.append(title)
# ----- BM25
bm25_top_n, bm25_top_n_scores = bm25_retriever(query, corpus, topk=k)
bm25_top_n_sents = [sentences[i] for i in bm25_top_n]
bm25_top_n_titles = [titles[i] for i in bm25_top_n]
return bm25_top_n_sents, bm25_top_n_titles
# ------------------------------ Wikipediaretriever -----------------------------
def Wikipediaretriever(claim):
# 1. extract relevant wikipedia pages from wikipedia dumps
wikipedia_page = find_evidence_from_wikipedia(claim)
# 2. extract relevant sentences from extracted wikipedia pages
sents, titles = relevant_sentence_retrieval(claim, wikipedia_page, k=3)
#
results = []
for i, (sent, title) in enumerate(zip(sents, titles)):
metadata = dict()
metadata['name'] = claim
metadata['url'] = "https://en.wikipedia.org/wiki/" + "_".join(title.split())
metadata['cached_source_url'] = "https://en.wikipedia.org/wiki/" + "_".join(title)
metadata['short_name'] = "Evidence {}".format(i + 1)
metadata['page_number'] = ""
metadata['query'] = sent
metadata['title'] = title
metadata['evidence'] = sent
metadata['answer'] = ""
metadata['page_content'] = "<b>Title</b>: " + str(metadata['title']) + "<br>" + "<b>Evidence</b>: " + metadata['evidence']
page_content = f"""{metadata['page_content']}"""
results.append(Docs(metadata, page_content))
return results
# ------------------------------ Veracity Prediction ------------------------------
class SequenceClassificationDataLoader(pl.LightningDataModule):
def __init__(self, tokenizer, data_file, batch_size, add_extra_nee=False):
super().__init__()
self.tokenizer = tokenizer
self.data_file = data_file
self.batch_size = batch_size
self.add_extra_nee = add_extra_nee
def tokenize_strings(
self,
source_sentences,
max_length=400,
pad_to_max_length=False,
return_tensors="pt",
):
encoded_dict = self.tokenizer(
source_sentences,
max_length=max_length,
padding="max_length" if pad_to_max_length else "longest",
truncation=True,
return_tensors=return_tensors,
)
input_ids = encoded_dict["input_ids"]
attention_masks = encoded_dict["attention_mask"]
return input_ids, attention_masks
def quadruple_to_string(self, claim, question, answer, bool_explanation=""):
if bool_explanation is not None and len(bool_explanation) > 0:
bool_explanation = ", because " + bool_explanation.lower().strip()
else:
bool_explanation = ""
return (
"[CLAIM] "
+ claim.strip()
+ " [QUESTION] "
+ question.strip()
+ " "
+ answer.strip()
+ bool_explanation
)
@spaces.GPU
def veracity_prediction(claim, evidence):
dataLoader = SequenceClassificationDataLoader(
tokenizer=veracity_tokenizer,
data_file="this_is_discontinued",
batch_size=32,
add_extra_nee=False,
)
evidence_strings = []
for evi in evidence:
evidence_strings.append(dataLoader.quadruple_to_string(claim, evi.metadata["query"], evi.metadata["answer"], ""))
if len(evidence_strings) == 0: # If we found no evidence e.g. because google returned 0 pages, just output NEI.
pred_label = "Not Enough Evidence"
return pred_label
tokenized_strings, attention_mask = dataLoader.tokenize_strings(evidence_strings)
example_support = torch.argmax(veracity_model(tokenized_strings.to(veracity_model.device), attention_mask=attention_mask.to(veracity_model.device)).logits, axis=1)
# example_support = torch.argmax(veracity_model(tokenized_strings.to(device), attention_mask=attention_mask.to(device)).logits, axis=1)
has_unanswerable = False
has_true = False
has_false = False
for v in example_support:
if v == 0:
has_true = True
if v == 1:
has_false = True
if v in (2, 3,): # TODO another hack -- we cant have different labels for train and test so we do this
has_unanswerable = True
if has_unanswerable:
answer = 2
elif has_true and not has_false:
answer = 0
elif not has_true and has_false:
answer = 1
else:
answer = 3
pred_label = LABEL[answer]
return pred_label
# ------------------------------ Justification Generation ------------------------------
def extract_claim_str(claim, evidence, verdict_label):
claim_str = "[CLAIM] " + claim + " [EVIDENCE] "
for evi in evidence:
q_text = evi.metadata['query'].strip()
if len(q_text) == 0:
continue
if not q_text[-1] == "?":
q_text += "?"
answer_strings = []
answer_strings.append(evi.metadata['answer'])
claim_str += q_text
for a_text in answer_strings:
if a_text:
if not a_text[-1] == ".":
a_text += "."
claim_str += " " + a_text.strip()
claim_str += " "
claim_str += " [VERDICT] " + verdict_label
return claim_str
@spaces.GPU
def justification_generation(claim, evidence, verdict_label):
#
# claim_str = extract_claim_str(claim, evidence, verdict_label)
claim_str = "[CLAIM] " + claim + " [EVIDENCE] "
for evi in evidence:
q_text = evi.metadata['query'].strip()
if len(q_text) == 0:
continue
if not q_text[-1] == "?":
q_text += "?"
answer_strings = []
answer_strings.append(evi.metadata['answer'])
claim_str += q_text
for a_text in answer_strings:
if a_text:
if not a_text[-1] == ".":
a_text += "."
claim_str += " " + a_text.strip()
claim_str += " "
claim_str += " [VERDICT] " + verdict_label
#
claim_str.strip()
pred_justification = justification_model.generate(claim_str, device=justification_model.device)
# pred_justification = justification_model.generate(claim_str, device=device)
return pred_justification.strip()
# ---------------------------------------------------------------------------------------------------------------------
class Item(BaseModel):
claim: str
source: str
@app.get("/")
@spaces.GPU
def greet_json():
return {"Hello": "World!"}
def log_on_azure(file, logs, azure_share_client):
logs = json.dumps(logs)
file_client = azure_share_client.get_file_client(file)
file_client.upload_file(logs)
@app.post("/predict/")
@spaces.GPU
def fact_checking(item: Item):
# claim = item['claim']
# source = item['source']
claim = item.claim
source = item.source
# Step1: Evidence Retrieval
if source == "Wikipedia":
evidence = Wikipediaretriever(claim)
elif source == "Google":
evidence = Googleretriever(claim)
# Step2: Veracity Prediction and Justification Generation
verdict_label = veracity_prediction(claim, evidence)
justification_label = justification_generation(claim, evidence, verdict_label)
############################################################
evidence_list = []
for evi in evidence:
title_str = evi.metadata['title']
evi_str = evi.metadata['evidence']
url_str = evi.metadata['url']
evidence_list.append([title_str, evi_str, url_str])
try:
# Log answer on Azure Blob Storage
# IF AZURE_ISSAVE=TRUE, save the logs into the Azure share client.
if os.environ["AZURE_ISSAVE"] == "TRUE":
timestamp = str(datetime.now().timestamp())
# timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
file = timestamp + ".json"
logs = {
"user_id": str(user_id),
"claim": claim,
"sources": source,
"evidence": evidence_list,
"answer": [verdict_label, justification_label],
"time": timestamp,
}
log_on_azure(file, logs, azure_share_client)
except Exception as e:
print(f"Error logging on Azure Blob Storage: {e}")
raise gr.Error(
f"AVeriTeC Error: {str(e)[:100]} - The error has been noted, try another question and if the error remains, you can contact us :)")
##########
return {"Verdict": verdict_label, "Justification": justification_label, "Evidence": evidence_list}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)
# if __name__ == "__main__":
# item = {
# "claim": "England won the Euro 2024.",
# "source": "Google", # Google, Wikipedia
# }
#
# results = fact_checking(item)
#
# print(results)
|