File size: 30,958 Bytes
dd80156
 
 
 
 
 
 
 
 
 
 
 
 
 
8532c4b
ddd6481
dd80156
ddd6481
dd80156
ddd6481
 
 
 
 
 
 
 
dd80156
 
 
 
 
ddd6481
 
 
8532c4b
 
dd80156
 
 
ddd6481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd80156
 
ddd6481
 
dd80156
 
 
 
ddd6481
 
dd80156
 
 
 
 
 
 
 
8532c4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd80156
 
 
 
ddd6481
dd80156
 
 
 
 
 
 
 
8532c4b
 
 
 
 
 
 
 
 
 
dd80156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8532c4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd80156
 
8532c4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd80156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8532c4b
dd80156
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Created by zd302 at 17/07/2024

from fastapi import FastAPI
from pydantic import BaseModel
# from averitec.models.AveritecModule import Wikipediaretriever, Googleretriever, veracity_prediction, justification_generation
import uvicorn
import spaces

app = FastAPI()

# ---------------------------------------------------------------------------------------------------------------------
import gradio as gr
import tqdm
import torch
import numpy as np
from time import sleep
from datetime import datetime
import threading
import gc
import os
import json
import pytorch_lightning as pl
from urllib.parse import urlparse
from accelerate import Accelerator
import spaces

from transformers import BartTokenizer, BartForConditionalGeneration
from transformers import BloomTokenizerFast, BloomForCausalLM, BertTokenizer, BertForSequenceClassification
from transformers import RobertaTokenizer, RobertaForSequenceClassification

from rank_bm25 import BM25Okapi
# import bm25s
# import Stemmer  # optional: for stemming
from html2lines import url2lines
from googleapiclient.discovery import build
from averitec.models.DualEncoderModule import DualEncoderModule
from averitec.models.SequenceClassificationModule import SequenceClassificationModule
from averitec.models.JustificationGenerationModule import JustificationGenerationModule
from averitec.data.sample_claims import CLAIMS_Type

# ---------------------------------------------------------------------------
# load .env
from utils import create_user_id
user_id = create_user_id()

from azure.storage.fileshare import ShareServiceClient
try:
    from dotenv import load_dotenv
    load_dotenv()
except Exception as e:
    pass

# ---------------------------------------------------------------------------
# os.environ["TOKENIZERS_PARALLELISM"] = "false"
account_url = os.environ["AZURE_ACCOUNT_URL"]
credential = {
    "account_key":  os.environ['AZURE_ACCOUNT_KEY'],
    "account_name": os.environ['AZURE_ACCOUNT_NAME']
}

file_share_name = "averitec"
azure_service = ShareServiceClient(account_url=account_url, credential=credential)
azure_share_client = azure_service.get_share_client(file_share_name)

# ---------------------------------------------------------------------------------------------------------------------
import requests
from bs4 import BeautifulSoup
import wikipediaapi
wiki_wiki = wikipediaapi.Wikipedia('AVeriTeC ([email protected])', 'en')

import nltk
nltk.download('averaged_perceptron_tagger_eng')
nltk.download('averaged_perceptron_tagger')
nltk.download('punkt')
nltk.download('punkt_tab')
from nltk import pos_tag, word_tokenize, sent_tokenize

import spacy
os.system("python -m spacy download en_core_web_sm")
nlp = spacy.load("en_core_web_sm")

# ---------------------------------------------------------------------------
train_examples = json.load(open('averitec/data/train.json', 'r'))

def claim2prompts(example):
    claim = example["claim"]
    # claim_str = "Claim: " + claim + "||Evidence: "
    claim_str = "Evidence: "

    for question in example["questions"]:
        q_text = question["question"].strip()
        if len(q_text) == 0:
            continue

        if not q_text[-1] == "?":
            q_text += "?"

        answer_strings = []

        for a in question["answers"]:
            if a["answer_type"] in ["Extractive", "Abstractive"]:
                answer_strings.append(a["answer"])
            if a["answer_type"] == "Boolean":
                answer_strings.append(a["answer"] + ", because " + a["boolean_explanation"].lower().strip())

        for a_text in answer_strings:
            if not a_text[-1] in [".", "!", ":", "?"]:
                a_text += "."

            # prompt_lookup_str = claim + " " + a_text
            prompt_lookup_str = a_text
            this_q_claim_str = claim_str + " " + a_text.strip() + "||Question answered: " + q_text
            yield (prompt_lookup_str, this_q_claim_str.replace("\n", " ").replace("||", "\n"))


def generate_reference_corpus(reference_file):
    all_data_corpus = []
    tokenized_corpus = []

    for train_example in train_examples:
        train_claim = train_example["claim"]

        speaker = train_example["speaker"].strip() if train_example["speaker"] is not None and len(
            train_example["speaker"]) > 1 else "they"

        questions = [q["question"] for q in train_example["questions"]]

        claim_dict_builder = {}
        claim_dict_builder["claim"] = train_claim
        claim_dict_builder["speaker"] = speaker
        claim_dict_builder["questions"] = questions

        tokenized_corpus.append(nltk.word_tokenize(claim_dict_builder["claim"]))
        all_data_corpus.append(claim_dict_builder)

    return tokenized_corpus, all_data_corpus


def generate_step2_reference_corpus(reference_file):
    prompt_corpus = []
    tokenized_corpus = []

    for example in train_examples:
        for lookup_str, prompt in claim2prompts(example):
            entry = nltk.word_tokenize(lookup_str)
            tokenized_corpus.append(entry)
            prompt_corpus.append(prompt)

    return tokenized_corpus, prompt_corpus

reference_file = "averitec/data/train.json"
tokenized_corpus0, all_data_corpus0 = generate_reference_corpus(reference_file)
qg_bm25 = BM25Okapi(tokenized_corpus0)

tokenized_corpus1, prompt_corpus1 = generate_step2_reference_corpus(reference_file)
prompt_bm25 = BM25Okapi(tokenized_corpus1)

# ---------------------------------------------------------------------------------------------------------------------

# ---------- Setting ----------
# ---------- Load Veracity and Justification prediction model ----------
print("Loading models ...")
LABEL = [
    "Supported",
    "Refuted",
    "Not Enough Evidence",
    "Conflicting Evidence/Cherrypicking",
]

if torch.cuda.is_available():
    # question generation
    qg_tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom-1b1")
    qg_model = BloomForCausalLM.from_pretrained("bigscience/bloom-1b1", torch_dtype=torch.bfloat16).to('cuda')

    # rerank
    rerank_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
    rereank_bert_model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2, problem_type="single_label_classification")  # Must specify single_label for some reason
    best_checkpoint = "averitec/pretrained_models/bert_dual_encoder.ckpt"
    rerank_trained_model = DualEncoderModule.load_from_checkpoint(best_checkpoint, tokenizer=rerank_tokenizer, model=rereank_bert_model)

    # Veracity
    veracity_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
    bert_model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=4, problem_type="single_label_classification")
    veracity_checkpoint_path = os.getcwd() + "/averitec/pretrained_models/bert_veracity.ckpt"
    veracity_model = SequenceClassificationModule.load_from_checkpoint(veracity_checkpoint_path,tokenizer=veracity_tokenizer, model=bert_model)

    # Justification
    justification_tokenizer = BartTokenizer.from_pretrained('facebook/bart-large', add_prefix_space=True)
    bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large")
    best_checkpoint = os.getcwd() + '/averitec/pretrained_models/bart_justifications_verdict-epoch=13-val_loss=2.03-val_meteor=0.28.ckpt'
    justification_model = JustificationGenerationModule.load_from_checkpoint(best_checkpoint, tokenizer=justification_tokenizer, model=bart_model)
# ---------------------------------------------------------------------------

# ----------------------------------------------------------------------------
class Docs:
    def __init__(self, metadata=dict(), page_content=""):
        self.metadata = metadata
        self.page_content = page_content


# ------------------------------ Googleretriever -----------------------------
def doc2prompt(doc):
    prompt_parts = "Outrageously, " + doc["speaker"] + " claimed that \"" + doc[
        "claim"].strip() + "\". Criticism includes questions like: "
    questions = [q.strip() for q in doc["questions"]]
    return prompt_parts + " ".join(questions)


def docs2prompt(top_docs):
    return "\n\n".join([doc2prompt(d) for d in top_docs])

@spaces.GPU
def prompt_question_generation(test_claim, speaker="they", topk=10):
    # --------------------------------------------------
    # test claim
    s = qg_bm25.get_scores(nltk.word_tokenize(test_claim))
    top_n = np.argsort(s)[::-1][:topk]
    docs = [all_data_corpus0[i] for i in top_n]
    # --------------------------------------------------

    prompt = docs2prompt(docs) + "\n\n" + "Outrageously, " + speaker + " claimed that \"" + test_claim.strip() + \
             "\". Criticism includes questions like: "
    sentences = [prompt]

    inputs = qg_tokenizer(sentences, padding=True, return_tensors="pt").to(qg_model.device)
    outputs = qg_model.generate(inputs["input_ids"], max_length=2000, num_beams=2, no_repeat_ngram_size=2, early_stopping=True)

    tgt_text = qg_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
    in_len = len(sentences[0])
    questions_str = tgt_text[in_len:].split("\n")[0]

    qs = questions_str.split("?")
    qs = [q.strip() + "?" for q in qs if q.strip() and len(q.strip()) < 300]

    #
    generate_question = [{"question": q, "answers": []} for q in qs]

    return generate_question


def check_claim_date(check_date):
    try:
        year, month, date = check_date.split("-")
    except:
        month, date, year = "01", "01", "2022"

    if len(year) == 2 and int(year) <= 30:
        year = "20" + year
    elif len(year) == 2:
        year = "19" + year
    elif len(year) == 1:
        year = "200" + year

    if len(month) == 1:
        month = "0" + month

    if len(date) == 1:
        date = "0" + date

    sort_date = year + month + date

    return sort_date


def string_to_search_query(text, author):
    parts = word_tokenize(text.strip())
    tags = pos_tag(parts)

    keep_tags = ["CD", "JJ", "NN", "VB"]

    if author is not None:
        search_string = author.split()
    else:
        search_string = []

    for token, tag in zip(parts, tags):
        for keep_tag in keep_tags:
            if tag[1].startswith(keep_tag):
                search_string.append(token)

    search_string = " ".join(search_string)
    return search_string


def get_google_search_results(api_key, search_engine_id, google_search, sort_date, search_string, page=0):
    search_results = []
    for i in range(1):
        try:
            search_results += google_search(
                search_string,
                api_key,
                search_engine_id,
                num=3,     # num=10,
                start=0 + 10 * page,
                sort="date:r:19000101:" + sort_date,
                dateRestrict=None,
                gl="US"
            )
            break
        except:
            sleep(1)

    return search_results


def google_search(search_term, api_key, cse_id, **kwargs):
    service = build("customsearch", "v1", developerKey=api_key)
    res = service.cse().list(q=search_term, cx=cse_id, **kwargs).execute()

    if "items" in res:
        return res['items']
    else:
        return []


def get_domain_name(url):
    if '://' not in url:
        url = 'http://' + url

    domain = urlparse(url).netloc

    if domain.startswith("www."):
        return domain[4:]
    else:
        return domain


def get_text_from_link(url_link):
    page_lines = url2lines(url_link)

    return "\n".join([url_link] + page_lines)


def averitec_search(claim, generate_question, speaker="they", check_date="2024-07-01", n_pages=1):  # n_pages=3
    # default config
    api_key = os.environ["GOOGLE_API_KEY"]
    search_engine_id = os.environ["GOOGLE_SEARCH_ENGINE_ID"]

    blacklist = [
        "jstor.org",  # Blacklisted because their pdfs are not labelled as such, and clog up the download
        "facebook.com",  # Blacklisted because only post titles can be scraped, but the scraper doesn't know this,
        "ftp.cs.princeton.edu",  # Blacklisted because it hosts many large NLP corpora that keep showing up
        "nlp.cs.princeton.edu",
        "huggingface.co"
    ]

    blacklist_files = [  # Blacklisted some NLP nonsense that crashes my machine with OOM errors
        "/glove.",
        "ftp://ftp.cs.princeton.edu/pub/cs226/autocomplete/words-333333.txt",
        "https://web.mit.edu/adamrose/Public/googlelist",
    ]

    # save to folder
    store_folder = "averitec/data/store/retrieved_docs"
    #
    index = 0
    questions = [q["question"] for q in generate_question][:3]
    # questions = [q["question"] for q in generate_question]    # ori

    # check the date of the claim
    current_date = datetime.now().strftime("%Y-%m-%d")
    sort_date = check_claim_date(current_date)  # check_date="2022-01-01"

    #
    search_strings = []
    search_types = []

    search_string_2 = string_to_search_query(claim, None)
    search_strings += [search_string_2, claim, ]
    search_types += ["claim", "claim-noformat", ]

    search_strings += questions
    search_types += ["question" for _ in questions]

    # start to search
    search_results = []
    visited = {}
    store_counter = 0
    worker_stack = list(range(10))

    retrieve_evidence = []

    for this_search_string, this_search_type in zip(search_strings, search_types):
        for page_num in range(n_pages):
            search_results = get_google_search_results(api_key, search_engine_id, google_search, sort_date,
                                                       this_search_string, page=page_num)

            for result in search_results:
                link = str(result["link"])
                domain = get_domain_name(link)

                if domain in blacklist:
                    continue
                broken = False
                for b_file in blacklist_files:
                    if b_file in link:
                        broken = True
                if broken:
                    continue
                if link.endswith(".pdf") or link.endswith(".doc"):
                    continue

                store_file_path = ""

                if link in visited:
                    web_text = visited[link]
                else:
                    web_text = get_text_from_link(link)
                    visited[link] = web_text

                line = [str(index), claim, link, str(page_num), this_search_string, this_search_type, web_text]
                retrieve_evidence.append(line)

    return retrieve_evidence


@spaces.GPU
def decorate_with_questions(claim, retrieve_evidence, top_k=3):  # top_k=5, 10, 100
    #
    tokenized_corpus = []
    all_data_corpus = []

    for retri_evi in tqdm.tqdm(retrieve_evidence):
        # store_file = retri_evi[-1]
        # with open(store_file, 'r') as f:
        web_text = retri_evi[-1]
        lines_in_web = web_text.split("\n")

        first = True
        for line in lines_in_web:
        # for line in f:
            line = line.strip()

            if first:
                first = False
                location_url = line
                continue

            if len(line) > 3:
                entry = nltk.word_tokenize(line)
                if (location_url, line) not in all_data_corpus:
                    tokenized_corpus.append(entry)
                    all_data_corpus.append((location_url, line))

    if len(tokenized_corpus) == 0:
        print("")

    bm25 = BM25Okapi(tokenized_corpus)
    s = bm25.get_scores(nltk.word_tokenize(claim))
    top_n = np.argsort(s)[::-1][:top_k]
    docs = [all_data_corpus[i] for i in top_n]

    generate_qa_pairs = []
    # Then, generate questions for those top 50:
    for doc in tqdm.tqdm(docs):
        # prompt_lookup_str = example["claim"] + " " + doc[1]
        prompt_lookup_str = doc[1]

        prompt_s = prompt_bm25.get_scores(nltk.word_tokenize(prompt_lookup_str))
        prompt_n = 10
        prompt_top_n = np.argsort(prompt_s)[::-1][:prompt_n]
        prompt_docs = [prompt_corpus1[i] for i in prompt_top_n]

        claim_prompt = "Evidence: " + doc[1].replace("\n", " ") + "\nQuestion answered: "
        prompt = "\n\n".join(prompt_docs + [claim_prompt])
        sentences = [prompt]

        inputs = qg_tokenizer(sentences, padding=True, return_tensors="pt").to(qg_model.device)
        outputs = qg_model.generate(inputs["input_ids"], max_length=5000, num_beams=2, no_repeat_ngram_size=2, early_stopping=True)

        tgt_text = qg_tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[-1]:], skip_special_tokens=True)[0]
        # We are not allowed to generate more than 250 characters:
        tgt_text = tgt_text[:250]

        qa_pair = [tgt_text.strip().split("?")[0].replace("\n", " ") + "?", doc[1].replace("\n", " "), doc[0]]
        generate_qa_pairs.append(qa_pair)

    return generate_qa_pairs


def triple_to_string(x):
    return " </s> ".join([item.strip() for item in x])


@spaces.GPU
def rerank_questions(claim, bm25_qas, topk=3):
    #
    strs_to_score = []
    values = []

    for question, answer, source in bm25_qas:
        str_to_score = triple_to_string([claim, question, answer])

        strs_to_score.append(str_to_score)
        values.append([question, answer, source])

    if len(bm25_qas) > 0:
        encoded_dict = rerank_tokenizer(strs_to_score, max_length=512, padding="longest", truncation=True, return_tensors="pt").to(rerank_trained_model.device)

        input_ids = encoded_dict['input_ids']
        attention_masks = encoded_dict['attention_mask']

        scores = torch.softmax(rerank_trained_model(input_ids, attention_mask=attention_masks).logits, axis=-1)[:, 1]

        top_n = torch.argsort(scores, descending=True)[:topk]
        pass_through = [{"question": values[i][0], "answers": values[i][1], "source_url": values[i][2]} for i in top_n]
    else:
        pass_through = []

    top3_qa_pairs = pass_through

    return top3_qa_pairs


@spaces.GPU
def Googleretriever(query):
    # ----- Generate QA pairs using AVeriTeC
    # step 1: generate questions for the query/claim using Bloom
    generate_question = prompt_question_generation(query)
    # step 2: retrieve evidence for the generated questions using Google API
    retrieve_evidence = averitec_search(query, generate_question)
    # step 3: generate QA pairs for each retrieved document
    bm25_qa_pairs = decorate_with_questions(query, retrieve_evidence)
    # step 4: rerank QA pairs
    top3_qa_pairs = rerank_questions(query, bm25_qa_pairs)

    # Add score to metadata
    results = []
    for i, qa in enumerate(top3_qa_pairs):
        metadata = dict()

        metadata['name'] = qa['question']
        metadata['url'] = qa['source_url']
        metadata['cached_source_url'] = qa['source_url']
        metadata['short_name'] = "Evidence {}".format(i + 1)
        metadata['page_number'] = ""
        metadata['title'] = qa['question']
        metadata['evidence'] = qa['answers']
        metadata['query'] = qa['question']
        metadata['answer'] = qa['answers']
        metadata['page_content'] = "<b>Question</b>: " + qa['question'] + "<br>" + "<b>Answer</b>: " + qa['answers']
        page_content = f"""{metadata['page_content']}"""

        results.append(Docs(metadata, page_content))

    return results

# ------------------------------ Googleretriever -----------------------------

# ------------------------------ Wikipediaretriever --------------------------
def search_entity_wikipeida(entity):
    find_evidence = []

    page_py = wiki_wiki.page(entity)
    if page_py.exists():
        introduction = page_py.summary
        find_evidence.append([str(entity), introduction])

    return find_evidence


def clean_str(p):
    return p.encode().decode("unicode-escape").encode("latin1").decode("utf-8")


def find_similar_wikipedia(entity, relevant_wikipages):
    # If the relevant wikipeida page of the entity is less than 5, find similar wikipedia pages.
    ent_ = entity.replace(" ", "+")
    search_url = f"https://en.wikipedia.org/w/index.php?search={ent_}&title=Special:Search&profile=advanced&fulltext=1&ns0=1"
    response_text = requests.get(search_url).text
    soup = BeautifulSoup(response_text, features="html.parser")
    result_divs = soup.find_all("div", {"class": "mw-search-result-heading"})

    if result_divs:
        result_titles = [clean_str(div.get_text().strip()) for div in result_divs]
        similar_titles = result_titles[:5]

        saved_titles = [ent[0] for ent in relevant_wikipages] if relevant_wikipages else relevant_wikipages
        for _t in similar_titles:
            if _t not in saved_titles and len(relevant_wikipages) < 5:
                _evi = search_entity_wikipeida(_t)
                # _evi = search_step(_t)
                relevant_wikipages.extend(_evi)

    return relevant_wikipages


def find_evidence_from_wikipedia(claim):
    #
    doc = nlp(claim)
    #
    wikipedia_page = []
    for ent in doc.ents:
        relevant_wikipages = search_entity_wikipeida(ent)

        if len(relevant_wikipages) < 5:
            relevant_wikipages = find_similar_wikipedia(str(ent), relevant_wikipages)

        wikipedia_page.extend(relevant_wikipages)

    return wikipedia_page


def bm25_retriever(query, corpus, topk=3):
    bm25 = BM25Okapi(corpus)
    #
    query_tokens = word_tokenize(query)
    scores = bm25.get_scores(query_tokens)
    top_n = np.argsort(scores)[::-1][:topk]
    top_n_scores = [scores[i] for i in top_n]

    return top_n, top_n_scores


def relevant_sentence_retrieval(query, wiki_intro, k):
    # 1. Create corpus here
    corpus, sentences = [], []
    titles = []
    for i, (title, intro) in enumerate(wiki_intro):
        sents_in_intro = sent_tokenize(intro)

        for sent in sents_in_intro:
            corpus.append(word_tokenize(sent))
            sentences.append(sent)
            titles.append(title)

    # ----- BM25
    bm25_top_n, bm25_top_n_scores = bm25_retriever(query, corpus, topk=k)
    bm25_top_n_sents = [sentences[i] for i in bm25_top_n]
    bm25_top_n_titles = [titles[i] for i in bm25_top_n]

    return bm25_top_n_sents, bm25_top_n_titles

# ------------------------------ Wikipediaretriever -----------------------------

def Wikipediaretriever(claim):
    # 1. extract relevant wikipedia pages from wikipedia dumps
    wikipedia_page = find_evidence_from_wikipedia(claim)

    # 2. extract relevant sentences from extracted wikipedia pages
    sents, titles = relevant_sentence_retrieval(claim, wikipedia_page, k=3)

    #
    results = []
    for i, (sent, title) in enumerate(zip(sents, titles)):
        metadata = dict()
        metadata['name'] = claim
        metadata['url'] = "https://en.wikipedia.org/wiki/" + "_".join(title.split())
        metadata['cached_source_url'] = "https://en.wikipedia.org/wiki/" + "_".join(title)
        metadata['short_name'] = "Evidence {}".format(i + 1)
        metadata['page_number'] = ""
        metadata['query'] = sent
        metadata['title'] = title
        metadata['evidence'] = sent
        metadata['answer'] = ""
        metadata['page_content'] = "<b>Title</b>: " + str(metadata['title']) + "<br>" + "<b>Evidence</b>: " + metadata['evidence']
        page_content = f"""{metadata['page_content']}"""

        results.append(Docs(metadata, page_content))

    return results


# ------------------------------ Veracity Prediction ------------------------------
class SequenceClassificationDataLoader(pl.LightningDataModule):
    def __init__(self, tokenizer, data_file, batch_size, add_extra_nee=False):
        super().__init__()
        self.tokenizer = tokenizer
        self.data_file = data_file
        self.batch_size = batch_size
        self.add_extra_nee = add_extra_nee

    def tokenize_strings(
            self,
            source_sentences,
            max_length=400,
            pad_to_max_length=False,
            return_tensors="pt",
    ):
        encoded_dict = self.tokenizer(
            source_sentences,
            max_length=max_length,
            padding="max_length" if pad_to_max_length else "longest",
            truncation=True,
            return_tensors=return_tensors,
        )

        input_ids = encoded_dict["input_ids"]
        attention_masks = encoded_dict["attention_mask"]

        return input_ids, attention_masks

    def quadruple_to_string(self, claim, question, answer, bool_explanation=""):
        if bool_explanation is not None and len(bool_explanation) > 0:
            bool_explanation = ", because " + bool_explanation.lower().strip()
        else:
            bool_explanation = ""
        return (
                "[CLAIM] "
                + claim.strip()
                + " [QUESTION] "
                + question.strip()
                + " "
                + answer.strip()
                + bool_explanation
        )


@spaces.GPU
def veracity_prediction(claim, evidence):
    dataLoader = SequenceClassificationDataLoader(
        tokenizer=veracity_tokenizer,
        data_file="this_is_discontinued",
        batch_size=32,
        add_extra_nee=False,
    )

    evidence_strings = []
    for evi in evidence:
        evidence_strings.append(dataLoader.quadruple_to_string(claim, evi.metadata["query"], evi.metadata["answer"], ""))

    if len(evidence_strings) == 0:  # If we found no evidence e.g. because google returned 0 pages, just output NEI.
        pred_label = "Not Enough Evidence"
        return pred_label

    tokenized_strings, attention_mask = dataLoader.tokenize_strings(evidence_strings)
    example_support = torch.argmax(veracity_model(tokenized_strings.to(veracity_model.device), attention_mask=attention_mask.to(veracity_model.device)).logits, axis=1)
    # example_support = torch.argmax(veracity_model(tokenized_strings.to(device), attention_mask=attention_mask.to(device)).logits, axis=1)

    has_unanswerable = False
    has_true = False
    has_false = False

    for v in example_support:
        if v == 0:
            has_true = True
        if v == 1:
            has_false = True
        if v in (2, 3,):  # TODO another hack -- we cant have different labels for train and test so we do this
            has_unanswerable = True

    if has_unanswerable:
        answer = 2
    elif has_true and not has_false:
        answer = 0
    elif not has_true and has_false:
        answer = 1
    else:
        answer = 3

    pred_label = LABEL[answer]

    return pred_label


# ------------------------------ Justification Generation ------------------------------
def extract_claim_str(claim, evidence, verdict_label):
    claim_str = "[CLAIM] " + claim + " [EVIDENCE] "

    for evi in evidence:
        q_text = evi.metadata['query'].strip()

        if len(q_text) == 0:
            continue

        if not q_text[-1] == "?":
            q_text += "?"

        answer_strings = []
        answer_strings.append(evi.metadata['answer'])

        claim_str += q_text
        for a_text in answer_strings:
            if a_text:
                if not a_text[-1] == ".":
                    a_text += "."
                claim_str += " " + a_text.strip()

        claim_str += " "

    claim_str += " [VERDICT] " + verdict_label

    return claim_str


@spaces.GPU
def justification_generation(claim, evidence, verdict_label):
    #
    # claim_str = extract_claim_str(claim, evidence, verdict_label)
    claim_str = "[CLAIM] " + claim + " [EVIDENCE] "

    for evi in evidence:
        q_text = evi.metadata['query'].strip()

        if len(q_text) == 0:
            continue

        if not q_text[-1] == "?":
            q_text += "?"

        answer_strings = []
        answer_strings.append(evi.metadata['answer'])

        claim_str += q_text
        for a_text in answer_strings:
            if a_text:
                if not a_text[-1] == ".":
                    a_text += "."
                claim_str += " " + a_text.strip()

        claim_str += " "

    claim_str += " [VERDICT] " + verdict_label
    #
    claim_str.strip()
    pred_justification = justification_model.generate(claim_str, device=justification_model.device)
    # pred_justification = justification_model.generate(claim_str, device=device)

    return pred_justification.strip()


# ---------------------------------------------------------------------------------------------------------------------
class Item(BaseModel):
    claim: str
    source: str


@app.get("/")
@spaces.GPU
def greet_json():
    return {"Hello": "World!"}


def log_on_azure(file, logs, azure_share_client):
    logs = json.dumps(logs)
    file_client = azure_share_client.get_file_client(file)
    file_client.upload_file(logs)


@app.post("/predict/")
@spaces.GPU
def fact_checking(item: Item):
    # claim = item['claim']
    # source = item['source']
    claim = item.claim
    source = item.source

    # Step1: Evidence Retrieval
    if source == "Wikipedia":
        evidence = Wikipediaretriever(claim)
    elif source == "Google":
        evidence = Googleretriever(claim)

    # Step2: Veracity Prediction and Justification Generation
    verdict_label = veracity_prediction(claim, evidence)
    justification_label = justification_generation(claim, evidence, verdict_label)

    ############################################################
    evidence_list = []
    for evi in evidence:
        title_str = evi.metadata['title']
        evi_str = evi.metadata['evidence']
        url_str = evi.metadata['url']
        evidence_list.append([title_str, evi_str, url_str])

    try:
        # Log answer on Azure Blob Storage
        # IF AZURE_ISSAVE=TRUE, save the logs into the Azure share client.
        if os.environ["AZURE_ISSAVE"] == "TRUE":
            timestamp = str(datetime.now().timestamp())
            # timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
            file = timestamp + ".json"
            logs = {
                "user_id": str(user_id),
                "claim": claim,
                "sources": source,
                "evidence": evidence_list,
                "answer": [verdict_label, justification_label],
                "time": timestamp,
            }
            log_on_azure(file, logs, azure_share_client)
    except Exception as e:
        print(f"Error logging on Azure Blob Storage: {e}")
        raise gr.Error(
            f"AVeriTeC Error: {str(e)[:100]} - The error has been noted, try another question and if the error remains, you can contact us :)")
    ##########

    return  {"Verdict": verdict_label, "Justification": justification_label, "Evidence": evidence_list}


if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)


# if __name__ == "__main__":
#     item = {
#         "claim": "England won the Euro 2024.",
#         "source": "Google",  # Google, Wikipedia
#     }
#
#     results = fact_checking(item)
#
#     print(results)