#!/usr/bin/env python # -*- coding: utf-8 -*- # Created by zd302 at 17/07/2024 from fastapi import FastAPI from pydantic import BaseModel # from averitec.models.AveritecModule import Wikipediaretriever, Googleretriever, veracity_prediction, justification_generation import uvicorn import spaces app = FastAPI() # --------------------------------------------------------------------------------------------------------------------- import gradio as gr import os import torch import json import tqdm from time import sleep import numpy as np import requests from rank_bm25 import BM25Okapi from bs4 import BeautifulSoup from datetime import datetime from transformers import BartTokenizer, BartForConditionalGeneration from transformers import BloomTokenizerFast, BloomForCausalLM, BertTokenizer, BertForSequenceClassification from transformers import RobertaTokenizer, RobertaForSequenceClassification import pytorch_lightning as pl from urllib.parse import urlparse from html2lines import url2lines from googleapiclient.discovery import build from averitec.models.DualEncoderModule import DualEncoderModule from averitec.models.SequenceClassificationModule import SequenceClassificationModule from averitec.models.JustificationGenerationModule import JustificationGenerationModule # --------------------------------------------------------------------------------------------------------------------- import wikipediaapi wiki_wiki = wikipediaapi.Wikipedia('AVeriTeC (zd302@cam.ac.uk)', 'en') import nltk nltk.download('punkt') nltk.download('punkt_tab') from nltk import pos_tag, word_tokenize, sent_tokenize import spacy os.system("python -m spacy download en_core_web_sm") nlp = spacy.load("en_core_web_sm") # --------------------------------------------------------------------------- train_examples = json.load(open('averitec/data/train.json', 'r')) def claim2prompts(example): claim = example["claim"] # claim_str = "Claim: " + claim + "||Evidence: " claim_str = "Evidence: " for question in example["questions"]: q_text = question["question"].strip() if len(q_text) == 0: continue if not q_text[-1] == "?": q_text += "?" answer_strings = [] for a in question["answers"]: if a["answer_type"] in ["Extractive", "Abstractive"]: answer_strings.append(a["answer"]) if a["answer_type"] == "Boolean": answer_strings.append(a["answer"] + ", because " + a["boolean_explanation"].lower().strip()) for a_text in answer_strings: if not a_text[-1] in [".", "!", ":", "?"]: a_text += "." # prompt_lookup_str = claim + " " + a_text prompt_lookup_str = a_text this_q_claim_str = claim_str + " " + a_text.strip() + "||Question answered: " + q_text yield (prompt_lookup_str, this_q_claim_str.replace("\n", " ").replace("||", "\n")) def generate_reference_corpus(reference_file): all_data_corpus = [] tokenized_corpus = [] for train_example in train_examples: train_claim = train_example["claim"] speaker = train_example["speaker"].strip() if train_example["speaker"] is not None and len( train_example["speaker"]) > 1 else "they" questions = [q["question"] for q in train_example["questions"]] claim_dict_builder = {} claim_dict_builder["claim"] = train_claim claim_dict_builder["speaker"] = speaker claim_dict_builder["questions"] = questions tokenized_corpus.append(nltk.word_tokenize(claim_dict_builder["claim"])) all_data_corpus.append(claim_dict_builder) return tokenized_corpus, all_data_corpus def generate_step2_reference_corpus(reference_file): prompt_corpus = [] tokenized_corpus = [] for example in train_examples: for lookup_str, prompt in claim2prompts(example): entry = nltk.word_tokenize(lookup_str) tokenized_corpus.append(entry) prompt_corpus.append(prompt) return tokenized_corpus, prompt_corpus reference_file = "averitec/data/train.json" tokenized_corpus0, all_data_corpus0 = generate_reference_corpus(reference_file) qg_bm25 = BM25Okapi(tokenized_corpus0) tokenized_corpus1, prompt_corpus1 = generate_step2_reference_corpus(reference_file) prompt_bm25 = BM25Okapi(tokenized_corpus1) # --------------------------------------------------------------------------------------------------------------------- # --------------------------------------------------------------------------- # load .env from utils import create_user_id user_id = create_user_id() from azure.storage.fileshare import ShareServiceClient try: from dotenv import load_dotenv load_dotenv() except Exception as e: pass account_url = os.environ["AZURE_ACCOUNT_URL"] credential = { "account_key": os.environ['AZURE_ACCOUNT_KEY'], "account_name": os.environ['AZURE_ACCOUNT_NAME'] } file_share_name = "averitec" azure_service = ShareServiceClient(account_url=account_url, credential=credential) azure_share_client = azure_service.get_share_client(file_share_name) # ---------- Setting ---------- # ---------- Load Veracity and Justification prediction model ---------- LABEL = [ "Supported", "Refuted", "Not Enough Evidence", "Conflicting Evidence/Cherrypicking", ] if torch.cuda.is_available(): # question generation qg_tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom-1b1") qg_model = BloomForCausalLM.from_pretrained("bigscience/bloom-1b1", torch_dtype=torch.bfloat16).to('cuda') # rerank rerank_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") rereank_bert_model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2, problem_type="single_label_classification") # Must specify single_label for some reason best_checkpoint = "averitec/pretrained_models/bert_dual_encoder.ckpt" rerank_trained_model = DualEncoderModule.load_from_checkpoint(best_checkpoint, tokenizer=rerank_tokenizer, model=rereank_bert_model) # Veracity veracity_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") bert_model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=4, problem_type="single_label_classification") veracity_checkpoint_path = os.getcwd() + "/averitec/pretrained_models/bert_veracity.ckpt" veracity_model = SequenceClassificationModule.load_from_checkpoint(veracity_checkpoint_path,tokenizer=veracity_tokenizer, model=bert_model) # Justification justification_tokenizer = BartTokenizer.from_pretrained('facebook/bart-large', add_prefix_space=True) bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large") best_checkpoint = os.getcwd() + '/averitec/pretrained_models/bart_justifications_verdict-epoch=13-val_loss=2.03-val_meteor=0.28.ckpt' justification_model = JustificationGenerationModule.load_from_checkpoint(best_checkpoint, tokenizer=justification_tokenizer, model=bart_model) # --------------------------------------------------------------------------- # ---------------------------------------------------------------------------- class Docs: def __init__(self, metadata=dict(), page_content=""): self.metadata = metadata self.page_content = page_content # ------------------------------ Googleretriever ----------------------------- def doc2prompt(doc): prompt_parts = "Outrageously, " + doc["speaker"] + " claimed that \"" + doc[ "claim"].strip() + "\". Criticism includes questions like: " questions = [q.strip() for q in doc["questions"]] return prompt_parts + " ".join(questions) def docs2prompt(top_docs): return "\n\n".join([doc2prompt(d) for d in top_docs]) @spaces.GPU def prompt_question_generation(test_claim, speaker="they", topk=10): # -------------------------------------------------- # test claim s = qg_bm25.get_scores(nltk.word_tokenize(test_claim)) top_n = np.argsort(s)[::-1][:topk] docs = [all_data_corpus0[i] for i in top_n] # -------------------------------------------------- prompt = docs2prompt(docs) + "\n\n" + "Outrageously, " + speaker + " claimed that \"" + test_claim.strip() + \ "\". Criticism includes questions like: " sentences = [prompt] inputs = qg_tokenizer(sentences, padding=True, return_tensors="pt").to(qg_model.device) outputs = qg_model.generate(inputs["input_ids"], max_length=2000, num_beams=2, no_repeat_ngram_size=2, early_stopping=True) tgt_text = qg_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] in_len = len(sentences[0]) questions_str = tgt_text[in_len:].split("\n")[0] qs = questions_str.split("?") qs = [q.strip() + "?" for q in qs if q.strip() and len(q.strip()) < 300] # generate_question = [{"question": q, "answers": []} for q in qs] return generate_question def check_claim_date(check_date): try: year, month, date = check_date.split("-") except: month, date, year = "01", "01", "2022" if len(year) == 2 and int(year) <= 30: year = "20" + year elif len(year) == 2: year = "19" + year elif len(year) == 1: year = "200" + year if len(month) == 1: month = "0" + month if len(date) == 1: date = "0" + date sort_date = year + month + date return sort_date def string_to_search_query(text, author): parts = word_tokenize(text.strip()) tags = pos_tag(parts) keep_tags = ["CD", "JJ", "NN", "VB"] if author is not None: search_string = author.split() else: search_string = [] for token, tag in zip(parts, tags): for keep_tag in keep_tags: if tag[1].startswith(keep_tag): search_string.append(token) search_string = " ".join(search_string) return search_string def get_google_search_results(api_key, search_engine_id, google_search, sort_date, search_string, page=0): search_results = [] for i in range(1): try: search_results += google_search( search_string, api_key, search_engine_id, num=3, # num=10, start=0 + 10 * page, sort="date:r:19000101:" + sort_date, dateRestrict=None, gl="US" ) break except: sleep(1) return search_results def google_search(search_term, api_key, cse_id, **kwargs): service = build("customsearch", "v1", developerKey=api_key) res = service.cse().list(q=search_term, cx=cse_id, **kwargs).execute() if "items" in res: return res['items'] else: return [] def get_domain_name(url): if '://' not in url: url = 'http://' + url domain = urlparse(url).netloc if domain.startswith("www."): return domain[4:] else: return domain def get_text_from_link(url_link): page_lines = url2lines(url_link) return "\n".join([url_link] + page_lines) def averitec_search(claim, generate_question, speaker="they", check_date="2024-07-01", n_pages=1): # n_pages=3 # default config api_key = os.environ["GOOGLE_API_KEY"] search_engine_id = os.environ["GOOGLE_SEARCH_ENGINE_ID"] blacklist = [ "jstor.org", # Blacklisted because their pdfs are not labelled as such, and clog up the download "facebook.com", # Blacklisted because only post titles can be scraped, but the scraper doesn't know this, "ftp.cs.princeton.edu", # Blacklisted because it hosts many large NLP corpora that keep showing up "nlp.cs.princeton.edu", "huggingface.co" ] blacklist_files = [ # Blacklisted some NLP nonsense that crashes my machine with OOM errors "/glove.", "ftp://ftp.cs.princeton.edu/pub/cs226/autocomplete/words-333333.txt", "https://web.mit.edu/adamrose/Public/googlelist", ] # save to folder store_folder = "averitec/data/store/retrieved_docs" # index = 0 questions = [q["question"] for q in generate_question][:3] # questions = [q["question"] for q in generate_question] # ori # check the date of the claim current_date = datetime.now().strftime("%Y-%m-%d") sort_date = check_claim_date(current_date) # check_date="2022-01-01" # search_strings = [] search_types = [] search_string_2 = string_to_search_query(claim, None) search_strings += [search_string_2, claim, ] search_types += ["claim", "claim-noformat", ] search_strings += questions search_types += ["question" for _ in questions] # start to search search_results = [] visited = {} store_counter = 0 worker_stack = list(range(10)) retrieve_evidence = [] for this_search_string, this_search_type in zip(search_strings, search_types): for page_num in range(n_pages): search_results = get_google_search_results(api_key, search_engine_id, google_search, sort_date, this_search_string, page=page_num) for result in search_results: link = str(result["link"]) domain = get_domain_name(link) if domain in blacklist: continue broken = False for b_file in blacklist_files: if b_file in link: broken = True if broken: continue if link.endswith(".pdf") or link.endswith(".doc"): continue store_file_path = "" if link in visited: web_text = visited[link] else: web_text = get_text_from_link(link) visited[link] = web_text line = [str(index), claim, link, str(page_num), this_search_string, this_search_type, web_text] retrieve_evidence.append(line) return retrieve_evidence @spaces.GPU def decorate_with_questions(claim, retrieve_evidence, top_k=3): # top_k=5, 10, 100 # tokenized_corpus = [] all_data_corpus = [] for retri_evi in tqdm.tqdm(retrieve_evidence): # store_file = retri_evi[-1] # with open(store_file, 'r') as f: web_text = retri_evi[-1] lines_in_web = web_text.split("\n") first = True for line in lines_in_web: # for line in f: line = line.strip() if first: first = False location_url = line continue if len(line) > 3: entry = nltk.word_tokenize(line) if (location_url, line) not in all_data_corpus: tokenized_corpus.append(entry) all_data_corpus.append((location_url, line)) if len(tokenized_corpus) == 0: print("") bm25 = BM25Okapi(tokenized_corpus) s = bm25.get_scores(nltk.word_tokenize(claim)) top_n = np.argsort(s)[::-1][:top_k] docs = [all_data_corpus[i] for i in top_n] generate_qa_pairs = [] # Then, generate questions for those top 50: for doc in tqdm.tqdm(docs): # prompt_lookup_str = example["claim"] + " " + doc[1] prompt_lookup_str = doc[1] prompt_s = prompt_bm25.get_scores(nltk.word_tokenize(prompt_lookup_str)) prompt_n = 10 prompt_top_n = np.argsort(prompt_s)[::-1][:prompt_n] prompt_docs = [prompt_corpus1[i] for i in prompt_top_n] claim_prompt = "Evidence: " + doc[1].replace("\n", " ") + "\nQuestion answered: " prompt = "\n\n".join(prompt_docs + [claim_prompt]) sentences = [prompt] inputs = qg_tokenizer(sentences, padding=True, return_tensors="pt").to(qg_model.device) outputs = qg_model.generate(inputs["input_ids"], max_length=5000, num_beams=2, no_repeat_ngram_size=2, early_stopping=True) tgt_text = qg_tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[-1]:], skip_special_tokens=True)[0] # We are not allowed to generate more than 250 characters: tgt_text = tgt_text[:250] qa_pair = [tgt_text.strip().split("?")[0].replace("\n", " ") + "?", doc[1].replace("\n", " "), doc[0]] generate_qa_pairs.append(qa_pair) return generate_qa_pairs def triple_to_string(x): return " ".join([item.strip() for item in x]) @spaces.GPU def rerank_questions(claim, bm25_qas, topk=3): # strs_to_score = [] values = [] for question, answer, source in bm25_qas: str_to_score = triple_to_string([claim, question, answer]) strs_to_score.append(str_to_score) values.append([question, answer, source]) if len(bm25_qas) > 0: encoded_dict = rerank_tokenizer(strs_to_score, max_length=512, padding="longest", truncation=True, return_tensors="pt").to(rerank_trained_model.device) input_ids = encoded_dict['input_ids'] attention_masks = encoded_dict['attention_mask'] scores = torch.softmax(rerank_trained_model(input_ids, attention_mask=attention_masks).logits, axis=-1)[:, 1] top_n = torch.argsort(scores, descending=True)[:topk] pass_through = [{"question": values[i][0], "answers": values[i][1], "source_url": values[i][2]} for i in top_n] else: pass_through = [] top3_qa_pairs = pass_through return top3_qa_pairs @spaces.GPU def Googleretriever(query): # ----- Generate QA pairs using AVeriTeC # step 1: generate questions for the query/claim using Bloom generate_question = prompt_question_generation(query) # step 2: retrieve evidence for the generated questions using Google API retrieve_evidence = averitec_search(query, generate_question) # step 3: generate QA pairs for each retrieved document bm25_qa_pairs = decorate_with_questions(query, retrieve_evidence) # step 4: rerank QA pairs top3_qa_pairs = rerank_questions(query, bm25_qa_pairs) # Add score to metadata results = [] for i, qa in enumerate(top3_qa_pairs): metadata = dict() metadata['name'] = qa['question'] metadata['url'] = qa['source_url'] metadata['cached_source_url'] = qa['source_url'] metadata['short_name'] = "Evidence {}".format(i + 1) metadata['page_number'] = "" metadata['title'] = qa['question'] metadata['evidence'] = qa['answers'] metadata['query'] = qa['question'] metadata['answer'] = qa['answers'] metadata['page_content'] = "Question: " + qa['question'] + "
" + "Answer: " + qa['answers'] page_content = f"""{metadata['page_content']}""" results.append(Docs(metadata, page_content)) return results # ------------------------------ Googleretriever ----------------------------- # ------------------------------ Wikipediaretriever -------------------------- def search_entity_wikipeida(entity): find_evidence = [] page_py = wiki_wiki.page(entity) if page_py.exists(): introduction = page_py.summary find_evidence.append([str(entity), introduction]) return find_evidence def clean_str(p): return p.encode().decode("unicode-escape").encode("latin1").decode("utf-8") def find_similar_wikipedia(entity, relevant_wikipages): # If the relevant wikipeida page of the entity is less than 5, find similar wikipedia pages. ent_ = entity.replace(" ", "+") search_url = f"https://en.wikipedia.org/w/index.php?search={ent_}&title=Special:Search&profile=advanced&fulltext=1&ns0=1" response_text = requests.get(search_url).text soup = BeautifulSoup(response_text, features="html.parser") result_divs = soup.find_all("div", {"class": "mw-search-result-heading"}) if result_divs: result_titles = [clean_str(div.get_text().strip()) for div in result_divs] similar_titles = result_titles[:5] saved_titles = [ent[0] for ent in relevant_wikipages] if relevant_wikipages else relevant_wikipages for _t in similar_titles: if _t not in saved_titles and len(relevant_wikipages) < 5: _evi = search_entity_wikipeida(_t) # _evi = search_step(_t) relevant_wikipages.extend(_evi) return relevant_wikipages def find_evidence_from_wikipedia(claim): # doc = nlp(claim) # wikipedia_page = [] for ent in doc.ents: relevant_wikipages = search_entity_wikipeida(ent) if len(relevant_wikipages) < 5: relevant_wikipages = find_similar_wikipedia(str(ent), relevant_wikipages) wikipedia_page.extend(relevant_wikipages) return wikipedia_page def bm25_retriever(query, corpus, topk=3): bm25 = BM25Okapi(corpus) # query_tokens = word_tokenize(query) scores = bm25.get_scores(query_tokens) top_n = np.argsort(scores)[::-1][:topk] top_n_scores = [scores[i] for i in top_n] return top_n, top_n_scores def relevant_sentence_retrieval(query, wiki_intro, k): # 1. Create corpus here corpus, sentences = [], [] titles = [] for i, (title, intro) in enumerate(wiki_intro): sents_in_intro = sent_tokenize(intro) for sent in sents_in_intro: corpus.append(word_tokenize(sent)) sentences.append(sent) titles.append(title) # ----- BM25 bm25_top_n, bm25_top_n_scores = bm25_retriever(query, corpus, topk=k) bm25_top_n_sents = [sentences[i] for i in bm25_top_n] bm25_top_n_titles = [titles[i] for i in bm25_top_n] return bm25_top_n_sents, bm25_top_n_titles # ------------------------------ Wikipediaretriever ----------------------------- def Wikipediaretriever(claim): # 1. extract relevant wikipedia pages from wikipedia dumps wikipedia_page = find_evidence_from_wikipedia(claim) # 2. extract relevant sentences from extracted wikipedia pages sents, titles = relevant_sentence_retrieval(claim, wikipedia_page, k=3) # results = [] for i, (sent, title) in enumerate(zip(sents, titles)): metadata = dict() metadata['name'] = claim metadata['url'] = "https://en.wikipedia.org/wiki/" + "_".join(title.split()) metadata['cached_source_url'] = "https://en.wikipedia.org/wiki/" + "_".join(title) metadata['short_name'] = "Evidence {}".format(i + 1) metadata['page_number'] = "" metadata['query'] = sent metadata['title'] = title metadata['evidence'] = sent metadata['answer'] = "" metadata['page_content'] = "Title: " + str(metadata['title']) + "
" + "Evidence: " + metadata['evidence'] page_content = f"""{metadata['page_content']}""" results.append(Docs(metadata, page_content)) return results # ------------------------------ Veracity Prediction ------------------------------ class SequenceClassificationDataLoader(pl.LightningDataModule): def __init__(self, tokenizer, data_file, batch_size, add_extra_nee=False): super().__init__() self.tokenizer = tokenizer self.data_file = data_file self.batch_size = batch_size self.add_extra_nee = add_extra_nee def tokenize_strings( self, source_sentences, max_length=400, pad_to_max_length=False, return_tensors="pt", ): encoded_dict = self.tokenizer( source_sentences, max_length=max_length, padding="max_length" if pad_to_max_length else "longest", truncation=True, return_tensors=return_tensors, ) input_ids = encoded_dict["input_ids"] attention_masks = encoded_dict["attention_mask"] return input_ids, attention_masks def quadruple_to_string(self, claim, question, answer, bool_explanation=""): if bool_explanation is not None and len(bool_explanation) > 0: bool_explanation = ", because " + bool_explanation.lower().strip() else: bool_explanation = "" return ( "[CLAIM] " + claim.strip() + " [QUESTION] " + question.strip() + " " + answer.strip() + bool_explanation ) @spaces.GPU def veracity_prediction(claim, evidence): dataLoader = SequenceClassificationDataLoader( tokenizer=veracity_tokenizer, data_file="this_is_discontinued", batch_size=32, add_extra_nee=False, ) evidence_strings = [] for evi in evidence: evidence_strings.append(dataLoader.quadruple_to_string(claim, evi.metadata["query"], evi.metadata["answer"], "")) if len(evidence_strings) == 0: # If we found no evidence e.g. because google returned 0 pages, just output NEI. pred_label = "Not Enough Evidence" return pred_label tokenized_strings, attention_mask = dataLoader.tokenize_strings(evidence_strings) example_support = torch.argmax(veracity_model(tokenized_strings.to(veracity_model.device), attention_mask=attention_mask.to(veracity_model.device)).logits, axis=1) # example_support = torch.argmax(veracity_model(tokenized_strings.to(device), attention_mask=attention_mask.to(device)).logits, axis=1) has_unanswerable = False has_true = False has_false = False for v in example_support: if v == 0: has_true = True if v == 1: has_false = True if v in (2, 3,): # TODO another hack -- we cant have different labels for train and test so we do this has_unanswerable = True if has_unanswerable: answer = 2 elif has_true and not has_false: answer = 0 elif not has_true and has_false: answer = 1 else: answer = 3 pred_label = LABEL[answer] return pred_label # ------------------------------ Justification Generation ------------------------------ def extract_claim_str(claim, evidence, verdict_label): claim_str = "[CLAIM] " + claim + " [EVIDENCE] " for evi in evidence: q_text = evi.metadata['query'].strip() if len(q_text) == 0: continue if not q_text[-1] == "?": q_text += "?" answer_strings = [] answer_strings.append(evi.metadata['answer']) claim_str += q_text for a_text in answer_strings: if a_text: if not a_text[-1] == ".": a_text += "." claim_str += " " + a_text.strip() claim_str += " " claim_str += " [VERDICT] " + verdict_label return claim_str @spaces.GPU def justification_generation(claim, evidence, verdict_label): # # claim_str = extract_claim_str(claim, evidence, verdict_label) claim_str = "[CLAIM] " + claim + " [EVIDENCE] " for evi in evidence: q_text = evi.metadata['query'].strip() if len(q_text) == 0: continue if not q_text[-1] == "?": q_text += "?" answer_strings = [] answer_strings.append(evi.metadata['answer']) claim_str += q_text for a_text in answer_strings: if a_text: if not a_text[-1] == ".": a_text += "." claim_str += " " + a_text.strip() claim_str += " " claim_str += " [VERDICT] " + verdict_label # claim_str.strip() pred_justification = justification_model.generate(claim_str, device=justification_model.device) # pred_justification = justification_model.generate(claim_str, device=device) return pred_justification.strip() # --------------------------------------------------------------------------------------------------------------------- class Item(BaseModel): claim: str source: str @app.get("/") @spaces.GPU def greet_json(): return {"Hello": "World!"} def log_on_azure(file, logs, azure_share_client): logs = json.dumps(logs) file_client = azure_share_client.get_file_client(file) file_client.upload_file(logs) @app.post("/predict/") @spaces.GPU def fact_checking(item: Item): # claim = item['claim'] # source = item['source'] claim = item.claim source = item.source # Step1: Evidence Retrieval if source == "Wikipedia": evidence = Wikipediaretriever(claim) elif source == "Google": evidence = Googleretriever(claim) # Step2: Veracity Prediction and Justification Generation verdict_label = veracity_prediction(claim, evidence) justification_label = justification_generation(claim, evidence, verdict_label) ############################################################ evidence_list = [] for evi in evidence: title_str = evi.metadata['title'] evi_str = evi.metadata['evidence'] url_str = evi.metadata['url'] evidence_list.append([title_str, evi_str, url_str]) try: # Log answer on Azure Blob Storage # IF AZURE_ISSAVE=TRUE, save the logs into the Azure share client. if os.environ["AZURE_ISSAVE"] == "TRUE": timestamp = str(datetime.now().timestamp()) # timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") file = timestamp + ".json" logs = { "user_id": str(user_id), "claim": claim, "sources": source, "evidence": evidence_list, "answer": [verdict_label, justification_label], "time": timestamp, } log_on_azure(file, logs, azure_share_client) except Exception as e: print(f"Error logging on Azure Blob Storage: {e}") raise gr.Error( f"AVeriTeC Error: {str(e)[:100]} - The error has been noted, try another question and if the error remains, you can contact us :)") ########## return {"Verdict": verdict_label, "Justification": justification_label, "Evidence": evidence_list} if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=7860) # if __name__ == "__main__": # item = { # "claim": "England won the Euro 2024.", # "source": "Google", # Google, Wikipedia # } # # results = fact_checking(item) # # print(results)