File size: 12,960 Bytes
afdeeca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Created by zd302 at 17/07/2024

from fastapi import FastAPI
from pydantic import BaseModel
# from averitec.models.AveritecModule import Wikipediaretriever, Googleretriever, veracity_prediction, justification_generation
import uvicorn

app = FastAPI()

# ---------------------------------------------------------------------------------------------------------------------
import os
import torch
import numpy as np
import requests
from rank_bm25 import BM25Okapi
from bs4 import BeautifulSoup

from transformers import BartTokenizer, BartForConditionalGeneration
from transformers import BloomTokenizerFast, BloomForCausalLM, BertTokenizer, BertForSequenceClassification
from transformers import RobertaTokenizer, RobertaForSequenceClassification
import pytorch_lightning as pl

from averitec.models.DualEncoderModule import DualEncoderModule
from averitec.models.SequenceClassificationModule import SequenceClassificationModule
from averitec.models.JustificationGenerationModule import JustificationGenerationModule

# ---------------------------------------------------------------------------------------------------------------------
import wikipediaapi
wiki_wiki = wikipediaapi.Wikipedia('AVeriTeC ([email protected])', 'en')

import nltk
nltk.download('punkt')
from nltk import pos_tag, word_tokenize, sent_tokenize

import spacy
os.system("python -m spacy download en_core_web_sm")
nlp = spacy.load("en_core_web_sm")

# ---------------------------------------------------------------------------------------------------------------------
# ---------- Load Veracity and Justification prediction model ----------
LABEL = [
    "Supported",
    "Refuted",
    "Not Enough Evidence",
    "Conflicting Evidence/Cherrypicking",
]

# Veracity
device = "cuda:0" if torch.cuda.is_available() else "cpu"
veracity_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
bert_model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=4, problem_type="single_label_classification")
veracity_checkpoint_path = os.getcwd() + "/averitec/pretrained_models/bert_veracity.ckpt"
veracity_model = SequenceClassificationModule.load_from_checkpoint(veracity_checkpoint_path,tokenizer=veracity_tokenizer, model=bert_model).to(device)
# Justification
justification_tokenizer = BartTokenizer.from_pretrained('facebook/bart-large', add_prefix_space=True)
bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large")
best_checkpoint = os.getcwd()+ '/averitec/pretrained_models/bart_justifications_verdict-epoch=13-val_loss=2.03-val_meteor=0.28.ckpt'
justification_model = JustificationGenerationModule.load_from_checkpoint(best_checkpoint, tokenizer=justification_tokenizer, model=bart_model).to(device)
# ---------------------------------------------------------------------------

# ----------------------------------------------------------------------------
class Docs:
    def __init__(self, metadata=dict(), page_content=""):
        self.metadata = metadata
        self.page_content = page_content


# ------------------------------ Googleretriever -----------------------------
def Googleretriever():


    return 0

# ------------------------------ Googleretriever -----------------------------

# ------------------------------ Wikipediaretriever --------------------------
def search_entity_wikipeida(entity):
    find_evidence = []

    page_py = wiki_wiki.page(entity)
    if page_py.exists():
        introduction = page_py.summary
        find_evidence.append([str(entity), introduction])

    return find_evidence


def clean_str(p):
    return p.encode().decode("unicode-escape").encode("latin1").decode("utf-8")


def find_similar_wikipedia(entity, relevant_wikipages):
    # If the relevant wikipeida page of the entity is less than 5, find similar wikipedia pages.
    ent_ = entity.replace(" ", "+")
    search_url = f"https://en.wikipedia.org/w/index.php?search={ent_}&title=Special:Search&profile=advanced&fulltext=1&ns0=1"
    response_text = requests.get(search_url).text
    soup = BeautifulSoup(response_text, features="html.parser")
    result_divs = soup.find_all("div", {"class": "mw-search-result-heading"})

    if result_divs:
        result_titles = [clean_str(div.get_text().strip()) for div in result_divs]
        similar_titles = result_titles[:5]

        saved_titles = [ent[0] for ent in relevant_wikipages] if relevant_wikipages else relevant_wikipages
        for _t in similar_titles:
            if _t not in saved_titles and len(relevant_wikipages) < 5:
                _evi = search_entity_wikipeida(_t)
                # _evi = search_step(_t)
                relevant_wikipages.extend(_evi)

    return relevant_wikipages


def find_evidence_from_wikipedia(claim):
    #
    doc = nlp(claim)
    #
    wikipedia_page = []
    for ent in doc.ents:
        relevant_wikipages = search_entity_wikipeida(ent)

        if len(relevant_wikipages) < 5:
            relevant_wikipages = find_similar_wikipedia(str(ent), relevant_wikipages)

        wikipedia_page.extend(relevant_wikipages)

    return wikipedia_page


def bm25_retriever(query, corpus, topk=3):
    bm25 = BM25Okapi(corpus)
    #
    query_tokens = word_tokenize(query)
    scores = bm25.get_scores(query_tokens)
    top_n = np.argsort(scores)[::-1][:topk]
    top_n_scores = [scores[i] for i in top_n]

    return top_n, top_n_scores


def relevant_sentence_retrieval(query, wiki_intro, k):
    # 1. Create corpus here
    corpus, sentences = [], []
    titles = []
    for i, (title, intro) in enumerate(wiki_intro):
        sents_in_intro = sent_tokenize(intro)

        for sent in sents_in_intro:
            corpus.append(word_tokenize(sent))
            sentences.append(sent)
            titles.append(title)

    # ----- BM25
    bm25_top_n, bm25_top_n_scores = bm25_retriever(query, corpus, topk=k)
    bm25_top_n_sents = [sentences[i] for i in bm25_top_n]
    bm25_top_n_titles = [titles[i] for i in bm25_top_n]

    return bm25_top_n_sents, bm25_top_n_titles

# ------------------------------ Wikipediaretriever -----------------------------

def Wikipediaretriever(claim):
    # 1. extract relevant wikipedia pages from wikipedia dumps
    wikipedia_page = find_evidence_from_wikipedia(claim)

    # 2. extract relevant sentences from extracted wikipedia pages
    sents, titles = relevant_sentence_retrieval(claim, wikipedia_page, k=3)

    #
    results = []
    for i, (sent, title) in enumerate(zip(sents, titles)):
        metadata = dict()
        metadata['name'] = claim
        metadata['url'] = "https://en.wikipedia.org/wiki/" + "_".join(title.split())
        metadata['cached_source_url'] = "https://en.wikipedia.org/wiki/" + "_".join(title)
        metadata['short_name'] = "Evidence {}".format(i + 1)
        metadata['page_number'] = ""
        metadata['query'] = sent
        metadata['title'] = title
        metadata['evidence'] = sent
        metadata['answer'] = ""
        metadata['page_content'] = "<b>Title</b>: " + str(metadata['title']) + "<br>" + "<b>Evidence</b>: " + metadata['evidence']
        page_content = f"""{metadata['page_content']}"""

        results.append(Docs(metadata, page_content))

    return results


# ------------------------------ Veracity Prediction ------------------------------
class SequenceClassificationDataLoader(pl.LightningDataModule):
    def __init__(self, tokenizer, data_file, batch_size, add_extra_nee=False):
        super().__init__()
        self.tokenizer = tokenizer
        self.data_file = data_file
        self.batch_size = batch_size
        self.add_extra_nee = add_extra_nee

    def tokenize_strings(
            self,
            source_sentences,
            max_length=400,
            pad_to_max_length=False,
            return_tensors="pt",
    ):
        encoded_dict = self.tokenizer(
            source_sentences,
            max_length=max_length,
            padding="max_length" if pad_to_max_length else "longest",
            truncation=True,
            return_tensors=return_tensors,
        )

        input_ids = encoded_dict["input_ids"]
        attention_masks = encoded_dict["attention_mask"]

        return input_ids, attention_masks

    def quadruple_to_string(self, claim, question, answer, bool_explanation=""):
        if bool_explanation is not None and len(bool_explanation) > 0:
            bool_explanation = ", because " + bool_explanation.lower().strip()
        else:
            bool_explanation = ""
        return (
                "[CLAIM] "
                + claim.strip()
                + " [QUESTION] "
                + question.strip()
                + " "
                + answer.strip()
                + bool_explanation
        )


def veracity_prediction(claim, evidence):
    dataLoader = SequenceClassificationDataLoader(
        tokenizer=veracity_tokenizer,
        data_file="this_is_discontinued",
        batch_size=32,
        add_extra_nee=False,
    )

    evidence_strings = []
    for evi in evidence:
        evidence_strings.append(dataLoader.quadruple_to_string(claim, evi.metadata["query"], evi.metadata["answer"], ""))

    if len(evidence_strings) == 0:  # If we found no evidence e.g. because google returned 0 pages, just output NEI.
        pred_label = "Not Enough Evidence"
        return pred_label

    tokenized_strings, attention_mask = dataLoader.tokenize_strings(evidence_strings)
    example_support = torch.argmax(
        veracity_model(tokenized_strings.to(device), attention_mask=attention_mask.to(device)).logits, axis=1)

    has_unanswerable = False
    has_true = False
    has_false = False

    for v in example_support:
        if v == 0:
            has_true = True
        if v == 1:
            has_false = True
        if v in (2, 3,):  # TODO another hack -- we cant have different labels for train and test so we do this
            has_unanswerable = True

    if has_unanswerable:
        answer = 2
    elif has_true and not has_false:
        answer = 0
    elif not has_true and has_false:
        answer = 1
    else:
        answer = 3

    pred_label = LABEL[answer]

    return pred_label


# ------------------------------ Justification Generation ------------------------------
def extract_claim_str(claim, evidence, verdict_label):
    claim_str = "[CLAIM] " + claim + " [EVIDENCE] "

    for evi in evidence:
        q_text = evi.metadata['query'].strip()

        if len(q_text) == 0:
            continue

        if not q_text[-1] == "?":
            q_text += "?"

        answer_strings = []
        answer_strings.append(evi.metadata['answer'])

        claim_str += q_text
        for a_text in answer_strings:
            if a_text:
                if not a_text[-1] == ".":
                    a_text += "."
                claim_str += " " + a_text.strip()

        claim_str += " "

    claim_str += " [VERDICT] " + verdict_label

    return claim_str


def justification_generation(claim, evidence, verdict_label):
    #
    claim_str = extract_claim_str(claim, evidence, verdict_label)
    claim_str.strip()
    pred_justification = justification_model.generate(claim_str, device=device)

    return pred_justification.strip()


# ---------------------------------------------------------------------------------------------------------------------
class Item(BaseModel):
    claim: str
    source: str


@app.get("/")
def greet_json():
    return {"Hello": "World!"}


@app.post("/predict/")
def fact_checking(item: Item):
    claim = item['claim']
    source = item['source']
    # claim = item.claim
    # source = item.source

    # Step1: Evidence Retrieval
    if source == "Wikipedia":
        evidence = Wikipediaretriever(claim)
    elif source == "Google":
        evidence = Googleretriever(claim)

    # Step2: Veracity Prediction and Justification Generation
    verdict_label = veracity_prediction(claim, evidence)
    justification_label = justification_generation(claim, evidence, verdict_label)

    evidence_list = []
    for evi in evidence:
        evidence_list.append(evi.metadata["query"])

    return  {"Verdict": verdict_label, "Justification": justification_label, "Evidence": evidence_list}


if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)


# if __name__ == "__main__":
#     item = {
#         "claim": "England won the Euro 2024.",
#         "source": "Wikipedia",
#     }
#
#     results = fact_checking(item)
#
#     print(results)



# # -----------------------------------------------------------------------------------------
# import requests
#
# # 定义API URL
# api_url = "https://zhenyundeng-zd-api.hf.space/generate/"
#
# # 定义请求数据
# item = {
#     "name": "Alice"
# }
#
# # 发送Get请求
# # response = requests.get("https://zhenyundeng-zd-api.hf.space/")
# # 发送POST请求
# response = requests.post(api_url, json=item)
#
# # 打印响应
# print(response.json())