QinOwen commited on
Commit
12fc597
·
1 Parent(s): cb70887

debug-seed

Browse files
VADER-VideoCrafter/lvdm/models/samplers/ddim.py CHANGED
@@ -152,8 +152,10 @@ class DDIMSampler(object):
152
  img = torch.randn(shape, device=device)
153
  else:
154
  img = x_T
155
-
156
- print('random seed debug: ', torch.randn(100).sum())
 
 
157
  print("Debug initial noise: ", img.sum().item())
158
  print("noise device: ", img.device)
159
 
 
152
  img = torch.randn(shape, device=device)
153
  else:
154
  img = x_T
155
+
156
+ print("x_T: ", x_T)
157
+ print("shape: ", shape)
158
+ print('random seed debug: ', torch.randn(100, device=device).sum())
159
  print("Debug initial noise: ", img.sum().item())
160
  print("noise device: ", img.device)
161
 
VADER-VideoCrafter/scripts/main/train_t2v_lora.py CHANGED
@@ -589,7 +589,7 @@ def run_training(args, model, **kwargs):
589
  # load the pretrained LoRA model
590
  peft.set_peft_model_state_dict(peft_model, torch.load(args.lora_ckpt_path))
591
 
592
- print('random seed debug: ', torch.randn(100).sum())
593
  print("precision: ", peft_model.dtype)
594
  # precision of first_stage_model
595
  print("precision of first_stage_model: ", peft_model.first_stage_model.dtype)
@@ -639,7 +639,6 @@ def run_training(args, model, **kwargs):
639
  if isinstance(prompts, str):
640
  prompts = [prompts]
641
 
642
- seed_everything_self(args.seed)
643
  with accelerator.autocast(): # mixed precision
644
  if isinstance(peft_model, torch.nn.parallel.DistributedDataParallel):
645
  text_emb = peft_model.module.get_learned_conditioning(prompts).to(accelerator.device)
@@ -652,7 +651,8 @@ def run_training(args, model, **kwargs):
652
  raise NotImplementedError
653
 
654
  # Inference Step 3.2: inference, batch_samples shape: batch, <samples>, c, t, h, w
655
- # no backprop_mode=args.backprop_mode because it is inference process
 
656
  if isinstance(peft_model, torch.nn.parallel.DistributedDataParallel):
657
  batch_samples = batch_ddim_sampling(peft_model.module, cond, noise_shape, args.n_samples, \
658
  args.ddim_steps, args.ddim_eta, args.unconditional_guidance_scale, None, decode_frame=args.decode_frame, **kwargs)
 
589
  # load the pretrained LoRA model
590
  peft.set_peft_model_state_dict(peft_model, torch.load(args.lora_ckpt_path))
591
 
592
+ print('random seed debug: ', torch.randn(100, device=accelerator.device).sum())
593
  print("precision: ", peft_model.dtype)
594
  # precision of first_stage_model
595
  print("precision of first_stage_model: ", peft_model.first_stage_model.dtype)
 
639
  if isinstance(prompts, str):
640
  prompts = [prompts]
641
 
 
642
  with accelerator.autocast(): # mixed precision
643
  if isinstance(peft_model, torch.nn.parallel.DistributedDataParallel):
644
  text_emb = peft_model.module.get_learned_conditioning(prompts).to(accelerator.device)
 
651
  raise NotImplementedError
652
 
653
  # Inference Step 3.2: inference, batch_samples shape: batch, <samples>, c, t, h, w
654
+ # no backprop_mode=args.backprop_mode because it is inference process
655
+ seed_everything_self(args.seed)
656
  if isinstance(peft_model, torch.nn.parallel.DistributedDataParallel):
657
  batch_samples = batch_ddim_sampling(peft_model.module, cond, noise_shape, args.n_samples, \
658
  args.ddim_steps, args.ddim_eta, args.unconditional_guidance_scale, None, decode_frame=args.decode_frame, **kwargs)