Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from t2v_metrics import VQAScore, list_all_vqascore_models | |
print(list_all_vqascore_models()) | |
# Initialize the model only once | |
model_pipe = None | |
def initialize_model(model_name): | |
print("Initializing model...") | |
global model_pipe | |
if model_pipe is None: | |
model_pipe = VQAScore(model=model_name) # our recommended scoring model | |
print("Model initialized!") | |
return model_pipe | |
def generate(model_name, image, text): | |
pipe = initialize_model(model_name) | |
return pipe(image, text) | |
iface = gr.Interface( | |
fn=generate, # function to call | |
inputs=[gr.Dropdown(["clip-flant5-xl", "clip-flant5-xxl"], label="Model Name"), gr.Image(type="pil"), gr.Textbox(label="Prompt")], # define the types of inputs | |
outputs="number", # define the type of output | |
title="VQAScore", # title of the app | |
description="This model evaluates the similarity between an image and a text prompt." | |
).launch() | |