Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -5,10 +5,6 @@ import torch
|
|
5 |
torch.jit.script = lambda f: f
|
6 |
# torch.autocast = lambda device_type, dtype: torch.autocast(device_type, torch.float)
|
7 |
|
8 |
-
from t2v_metrics import VQAScore, list_all_vqascore_models
|
9 |
-
|
10 |
-
print(list_all_vqascore_models())
|
11 |
-
|
12 |
# Initialize the model only once
|
13 |
# if torch.cuda.is_available():
|
14 |
# model_pipe = VQAScore(model="clip-flant5-xl", device="cpu") # our recommended scoring model
|
@@ -16,6 +12,11 @@ print("Model initialized!")
|
|
16 |
|
17 |
@spaces.GPU
|
18 |
def generate(model_name, image, text):
|
|
|
|
|
|
|
|
|
|
|
19 |
# print("Model_name:", model_name)
|
20 |
print("Image:", image)
|
21 |
print("Text:", text)
|
|
|
5 |
torch.jit.script = lambda f: f
|
6 |
# torch.autocast = lambda device_type, dtype: torch.autocast(device_type, torch.float)
|
7 |
|
|
|
|
|
|
|
|
|
8 |
# Initialize the model only once
|
9 |
# if torch.cuda.is_available():
|
10 |
# model_pipe = VQAScore(model="clip-flant5-xl", device="cpu") # our recommended scoring model
|
|
|
12 |
|
13 |
@spaces.GPU
|
14 |
def generate(model_name, image, text):
|
15 |
+
|
16 |
+
from t2v_metrics import VQAScore, list_all_vqascore_models
|
17 |
+
|
18 |
+
print(list_all_vqascore_models())
|
19 |
+
|
20 |
# print("Model_name:", model_name)
|
21 |
print("Image:", image)
|
22 |
print("Text:", text)
|