Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,43 +2,29 @@ import spaces
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
torch.jit.script = lambda f: f # Avoid script error in lambda
|
5 |
-
from t2v_metrics import VQAScore
|
|
|
6 |
|
|
|
|
|
7 |
|
8 |
-
|
|
|
|
|
9 |
return VQAScore(model=model_name, device="cuda")
|
10 |
|
11 |
-
#
|
12 |
-
global model_pipe, cur_model_name
|
13 |
-
cur_model_name = "clip-flant5-xl"
|
14 |
-
model_pipe = update_model(cur_model_name)
|
15 |
-
|
16 |
-
|
17 |
-
# Ensure GPU context manager is imported correctly (assuming spaces is a module you have)
|
18 |
-
#try:
|
19 |
-
#from spaces import GPU # i believe this is wrong, spaces package does not have "GPU"
|
20 |
-
#except ImportError:
|
21 |
-
# GPU = lambda duration: (lambda f: f) # Dummy decorator if spaces.GPU is not available
|
22 |
-
|
23 |
-
if torch.cuda.is_available():
|
24 |
-
model_pipe.device = "cuda"
|
25 |
-
else:
|
26 |
-
print("CUDA is not available")
|
27 |
-
|
28 |
-
@spaces.GPU # a duration lower than 60 does not work, leave as is.
|
29 |
def generate(model_name, image, text):
|
30 |
-
|
31 |
-
|
32 |
-
if model_name != cur_model_name:
|
33 |
-
cur_model_name = model_name # Update the current model name
|
34 |
-
model_pipe = update_model(model_name)
|
35 |
|
36 |
-
print("Image:", image)
|
37 |
-
print("Text:", text)
|
38 |
print("Using model:", model_name)
|
39 |
|
40 |
try:
|
41 |
-
|
|
|
42 |
print("Result:", result)
|
43 |
except RuntimeError as e:
|
44 |
print(f"RuntimeError during model inference: {e}")
|
@@ -46,30 +32,106 @@ def generate(model_name, image, text):
|
|
46 |
|
47 |
return result
|
48 |
|
49 |
-
|
50 |
def rank_images(model_name, images, text):
|
51 |
-
|
52 |
-
|
53 |
-
if model_name != cur_model_name:
|
54 |
-
cur_model_name = model_name # Update the current model name
|
55 |
-
model_pipe = update_model(model_name)
|
56 |
|
57 |
images = [image_tuple[0] for image_tuple in images]
|
58 |
-
print("Images:", images)
|
59 |
-
print("Text:", text)
|
60 |
print("Using model:", model_name)
|
61 |
|
62 |
try:
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
print("Ranked Results:", ranked_results)
|
68 |
except RuntimeError as e:
|
69 |
print(f"RuntimeError during model inference: {e}")
|
70 |
raise e
|
71 |
|
72 |
return ranked_images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
|
75 |
### EXAMPLES ###
|
@@ -190,4 +252,4 @@ with gr.Blocks() as demo_vqascore_ranking:
|
|
190 |
|
191 |
# Launch the interface
|
192 |
demo_vqascore_ranking.queue()
|
193 |
-
demo_vqascore_ranking.launch(share=
|
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
torch.jit.script = lambda f: f # Avoid script error in lambda
|
5 |
+
from t2v_metrics import VQAScore
|
6 |
+
from functools import lru_cache
|
7 |
|
8 |
+
# Remove any global model loading or CUDA initialization
|
9 |
+
# Do not call torch.cuda.is_available() at the global scope
|
10 |
|
11 |
+
@lru_cache()
|
12 |
+
def get_model(model_name):
|
13 |
+
# This function will cache the model per process
|
14 |
return VQAScore(model=model_name, device="cuda")
|
15 |
|
16 |
+
@spaces.GPU # Decorate the function to use GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def generate(model_name, image, text):
|
18 |
+
# Load the model inside the GPU context
|
19 |
+
model_pipe = get_model(model_name)
|
|
|
|
|
|
|
20 |
|
21 |
+
print("Image:", image)
|
22 |
+
print("Text:", text)
|
23 |
print("Using model:", model_name)
|
24 |
|
25 |
try:
|
26 |
+
# Perform the model inference
|
27 |
+
result = model_pipe(images=[image], texts=[text]).cpu()[0][0].item()
|
28 |
print("Result:", result)
|
29 |
except RuntimeError as e:
|
30 |
print(f"RuntimeError during model inference: {e}")
|
|
|
32 |
|
33 |
return result
|
34 |
|
35 |
+
@spaces.GPU # Decorate the function to use GPU
|
36 |
def rank_images(model_name, images, text):
|
37 |
+
# Load the model inside the GPU context
|
38 |
+
model_pipe = get_model(model_name)
|
|
|
|
|
|
|
39 |
|
40 |
images = [image_tuple[0] for image_tuple in images]
|
41 |
+
print("Images:", images)
|
42 |
+
print("Text:", text)
|
43 |
print("Using model:", model_name)
|
44 |
|
45 |
try:
|
46 |
+
# Perform the model inference on all images
|
47 |
+
results = model_pipe(images=images, texts=[text]).cpu()[:, 0].tolist()
|
48 |
+
print("Initial results:", results)
|
49 |
+
# Rank results
|
50 |
+
ranked_results = sorted(zip(images, results), key=lambda x: x[1], reverse=True)
|
51 |
+
# Pair images with their scores and rank
|
52 |
+
ranked_images = [
|
53 |
+
(img, f"Rank: {rank + 1} - Score: {score:.2f}")
|
54 |
+
for rank, (img, score) in enumerate(ranked_results)
|
55 |
+
]
|
56 |
print("Ranked Results:", ranked_results)
|
57 |
except RuntimeError as e:
|
58 |
print(f"RuntimeError during model inference: {e}")
|
59 |
raise e
|
60 |
|
61 |
return ranked_images
|
62 |
+
|
63 |
+
# import spaces
|
64 |
+
# import gradio as gr
|
65 |
+
# import torch
|
66 |
+
# torch.jit.script = lambda f: f # Avoid script error in lambda
|
67 |
+
# from t2v_metrics import VQAScore, list_all_vqascore_models
|
68 |
+
|
69 |
+
|
70 |
+
# def update_model(model_name):
|
71 |
+
# return VQAScore(model=model_name, device="cuda")
|
72 |
+
|
73 |
+
# # Use global variables for model pipe and current model name
|
74 |
+
# global model_pipe, cur_model_name
|
75 |
+
# cur_model_name = "clip-flant5-xl"
|
76 |
+
# model_pipe = update_model(cur_model_name)
|
77 |
+
|
78 |
+
|
79 |
+
# # Ensure GPU context manager is imported correctly (assuming spaces is a module you have)
|
80 |
+
# #try:
|
81 |
+
# #from spaces import GPU # i believe this is wrong, spaces package does not have "GPU"
|
82 |
+
# #except ImportError:
|
83 |
+
# # GPU = lambda duration: (lambda f: f) # Dummy decorator if spaces.GPU is not available
|
84 |
+
|
85 |
+
# if torch.cuda.is_available():
|
86 |
+
# model_pipe.device = "cuda"
|
87 |
+
# else:
|
88 |
+
# print("CUDA is not available")
|
89 |
+
|
90 |
+
# @spaces.GPU # a duration lower than 60 does not work, leave as is.
|
91 |
+
# def generate(model_name, image, text):
|
92 |
+
# global model_pipe, cur_model_name
|
93 |
+
|
94 |
+
# if model_name != cur_model_name:
|
95 |
+
# cur_model_name = model_name # Update the current model name
|
96 |
+
# model_pipe = update_model(model_name)
|
97 |
+
|
98 |
+
# print("Image:", image) # Debug: Print image path
|
99 |
+
# print("Text:", text) # Debug: Print text input
|
100 |
+
# print("Using model:", model_name)
|
101 |
+
|
102 |
+
# try:
|
103 |
+
# result = model_pipe(images=[image], texts=[text]).cpu()[0][0].item() # Perform the model inference
|
104 |
+
# print("Result:", result)
|
105 |
+
# except RuntimeError as e:
|
106 |
+
# print(f"RuntimeError during model inference: {e}")
|
107 |
+
# raise e
|
108 |
+
|
109 |
+
# return result
|
110 |
+
|
111 |
+
|
112 |
+
# def rank_images(model_name, images, text):
|
113 |
+
# global model_pipe, cur_model_name
|
114 |
+
|
115 |
+
# if model_name != cur_model_name:
|
116 |
+
# cur_model_name = model_name # Update the current model name
|
117 |
+
# model_pipe = update_model(model_name)
|
118 |
+
|
119 |
+
# images = [image_tuple[0] for image_tuple in images]
|
120 |
+
# print("Images:", images) # Debug: Print image paths
|
121 |
+
# print("Text:", text) # Debug: Print text input
|
122 |
+
# print("Using model:", model_name)
|
123 |
+
|
124 |
+
# try:
|
125 |
+
# results = model_pipe(images=images, texts=[text]).cpu()[:, 0].tolist() # Perform the model inference on all images
|
126 |
+
# print("Initial results: should be imgs x texts", results)
|
127 |
+
# ranked_results = sorted(zip(images, results), key=lambda x: x[1], reverse=True) # Rank results
|
128 |
+
# ranked_images = [(img, f"Rank: {rank + 1} - Score: {score:.2f}") for rank, (img, score) in enumerate(ranked_results)] # Pair images with their scores and rank
|
129 |
+
# print("Ranked Results:", ranked_results)
|
130 |
+
# except RuntimeError as e:
|
131 |
+
# print(f"RuntimeError during model inference: {e}")
|
132 |
+
# raise e
|
133 |
+
|
134 |
+
# return ranked_images
|
135 |
|
136 |
|
137 |
### EXAMPLES ###
|
|
|
252 |
|
253 |
# Launch the interface
|
254 |
demo_vqascore_ranking.queue()
|
255 |
+
demo_vqascore_ranking.launch(share=True)
|