Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,39 +1,34 @@
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
|
4 |
-
|
5 |
-
#
|
6 |
-
|
7 |
-
# Initialize the model only once
|
8 |
-
# if torch.cuda.is_available():
|
9 |
-
# model_pipe = VQAScore(model="clip-flant5-xl", device="cpu") # our recommended scoring model
|
10 |
-
# print("Model initialized!")
|
11 |
|
12 |
@spaces.GPU
|
13 |
def generate(model_name, image, text):
|
|
|
14 |
import torch
|
15 |
torch.jit.script = lambda f: f
|
16 |
|
17 |
from t2v_metrics import VQAScore, list_all_vqascore_models
|
18 |
|
19 |
-
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
print("Image:", image)
|
23 |
print("Text:", text)
|
24 |
-
|
25 |
-
# print("Model initialized, now moving to cuda")
|
26 |
-
model_pipe.to("cuda")
|
27 |
print("Generating!")
|
28 |
-
# with torch.autocast(device_type='cuda'):
|
29 |
-
# with torch.autocast(device_type='cuda', dtype=torch.float):
|
30 |
result = model_pipe(images=[image], texts=[text])
|
31 |
return result
|
32 |
|
33 |
iface = gr.Interface(
|
34 |
fn=generate, # function to call
|
35 |
inputs=[gr.Dropdown(["clip-flant5-xl", "clip-flant5-xxl"], label="Model Name"), gr.Image(type="filepath"), gr.Textbox(label="Prompt")], # define the types of inputs
|
36 |
-
# inputs=[gr.Image(type="filepath"), gr.Textbox(label="Prompt")], # define the types of inputs
|
37 |
outputs="number", # define the type of output
|
38 |
title="VQAScore", # title of the app
|
39 |
description="This model evaluates the similarity between an image and a text prompt."
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
|
4 |
+
# Initialize the model only once, outside of any function
|
5 |
+
# Ensure that CUDA initialization happens within the worker process
|
6 |
+
model_pipe = None
|
|
|
|
|
|
|
|
|
7 |
|
8 |
@spaces.GPU
|
9 |
def generate(model_name, image, text):
|
10 |
+
global model_pipe
|
11 |
import torch
|
12 |
torch.jit.script = lambda f: f
|
13 |
|
14 |
from t2v_metrics import VQAScore, list_all_vqascore_models
|
15 |
|
16 |
+
if model_pipe is None:
|
17 |
+
print("Initializing model...")
|
18 |
+
model_pipe = VQAScore(model="clip-flant5-xl", device="cuda") # our recommended scoring model
|
19 |
+
# model_pipe.to("cuda")
|
20 |
|
21 |
+
print(list_all_vqascore_models())
|
22 |
print("Image:", image)
|
23 |
print("Text:", text)
|
24 |
+
|
|
|
|
|
25 |
print("Generating!")
|
|
|
|
|
26 |
result = model_pipe(images=[image], texts=[text])
|
27 |
return result
|
28 |
|
29 |
iface = gr.Interface(
|
30 |
fn=generate, # function to call
|
31 |
inputs=[gr.Dropdown(["clip-flant5-xl", "clip-flant5-xxl"], label="Model Name"), gr.Image(type="filepath"), gr.Textbox(label="Prompt")], # define the types of inputs
|
|
|
32 |
outputs="number", # define the type of output
|
33 |
title="VQAScore", # title of the app
|
34 |
description="This model evaluates the similarity between an image and a text prompt."
|