Spaces:
Sleeping
Sleeping
File size: 5,389 Bytes
19f4fce 215cfd3 19f4fce 183c15c 19f4fce 183c15c 19f4fce 183c15c 19f4fce 991fc6b 069e494 991fc6b 069e494 991fc6b 19f4fce e594eb9 71b7421 e594eb9 13c5bb4 e594eb9 19f4fce e594eb9 19f4fce e594eb9 19f4fce e594eb9 13c5bb4 e594eb9 19f4fce e594eb9 991fc6b 19f4fce e594eb9 6f97473 e594eb9 6f6f650 13c5bb4 991fc6b 6f97473 215cfd3 183c15c e594eb9 19f4fce e594eb9 19f4fce e594eb9 19f4fce e594eb9 215cfd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import os
import pickle
from json import dumps, loads
from typing import Any, List, Mapping, Optional
import numpy as np
import openai
import pandas as pd
import streamlit as st
from dotenv import load_dotenv
from huggingface_hub import HfFileSystem
from langchain.llms.base import LLM
from llama_index import (
Document,
GPTVectorStoreIndex,
LLMPredictor,
PromptHelper,
ServiceContext,
SimpleDirectoryReader,
StorageContext,
load_index_from_storage,
)
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
# from utils.customLLM import CustomLLM
load_dotenv()
# openai.api_key = os.getenv("OPENAI_API_KEY")
fs = HfFileSystem()
# define prompt helper
# set maximum input size
CONTEXT_WINDOW = 2048
# set number of output tokens
NUM_OUTPUT = 525
# set maximum chunk overlap
CHUNK_OVERLAP_RATION = 0.2
@st.cache_resource
def load_model(model_name: str):
# llm_model_name = "bigscience/bloom-560m"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, config="T5Config")
pipe = pipeline(
task="text-generation",
model=model,
tokenizer=tokenizer,
# device=0, # GPU device number
# max_length=512,
do_sample=True,
top_p=0.95,
top_k=50,
temperature=0.7,
)
return pipe
@st.cache_resource
def load_model(mode_name: str):
# llm_model_name = "bigscience/bloom-560m"
tokenizer = AutoTokenizer.from_pretrained(mode_name)
model = AutoModelForCausalLM.from_pretrained(mode_name, config="T5Config")
pipe = pipeline(
task="text-generation",
model=model,
tokenizer=tokenizer,
# device=0, # GPU device number
# max_length=512,
do_sample=True,
top_p=0.95,
top_k=50,
temperature=0.7,
)
return pipe
class OurLLM(CustomLLM):
def __init__(self, model_name: str, model_pipeline):
self.model_name = model_name
self.pipeline = model_pipeline
@property
def metadata(self) -> LLMMetadata:
"""Get LLM metadata."""
return LLMMetadata(
context_window=CONTEXT_WINDOW,
num_output=NUM_OUTPUT,
model_name=self.model_name,
)
def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
prompt_length = len(prompt)
response = self.pipeline(prompt, max_new_tokens=NUM_OUTPUT)[0]["generated_text"]
# only return newly generated tokens
text = response[prompt_length:]
return CompletionResponse(text=text)
def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
raise NotImplementedError()
# def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
# prompt_length = len(prompt)
# response = self.pipeline(prompt, max_new_tokens=525)[0]["generated_text"]
# # only return newly generated tokens
# return response[prompt_length:]
# @property
# def _identifying_params(self) -> Mapping[str, Any]:
# return {"name_of_model": self.model_name}
# @property
# def _llm_type(self) -> str:
# return "custom"
class LlamaCustom:
# define llm
# llm_predictor = LLMPredictor(llm=OurLLM())
# service_context = ServiceContext.from_defaults(
# llm_predictor=llm_predictor, prompt_helper=prompt_helper
# )
def __init__(self, model_name: str) -> None:
pipe = load_model(mode_name=model_name)
llm = OurLLM(model_name=model_name, model_pipeline=pipe)
self.service_context = ServiceContext.from_defaults(
llm=llm, prompt_helper=prompt_helper
)
self.vector_index = self.initialize_index(model_name=model_name)
@st.cache_resource
def initialize_index(_self, model_name: str):
index_name = model_name.split("/")[-1]
file_path = f"./vectorStores/{index_name}"
if os.path.exists(path=file_path):
# rebuild storage context
storage_context = StorageContext.from_defaults(persist_dir=file_path)
# local load index access
index = load_index_from_storage(storage_context)
# huggingface repo load access
# with fs.open(file_path, "r") as file:
# index = pickle.loads(file.readlines())
return index
else:
# documents = prepare_data(r"./assets/regItems.json")
documents = SimpleDirectoryReader(input_dir="./assets/pdf").load_data()
index = GPTVectorStoreIndex.from_documents(
documents, service_context=self.service_context
)
# local write access
index.storage_context.persist(file_path)
# huggingface repo write access
# with fs.open(file_path, "w") as file:
# file.write(pickle.dumps(index))
return index
def get_response(self, query_str):
print("query_str: ", query_str)
# query_engine = self.vector_index.as_query_engine()
query_engine = self.vector_index.as_query_engine(
text_qa_template=text_qa_template, refine_template=refine_template
)
response = query_engine.query(query_str)
print("metadata: ", response.metadata)
return str(response)
|