zhtet commited on
Commit
21fbffd
·
1 Parent(s): 6f6f650

Update models/llamaCustom.py

Browse files
Files changed (1) hide show
  1. models/llamaCustom.py +6 -7
models/llamaCustom.py CHANGED
@@ -36,12 +36,6 @@ NUM_OUTPUT = 525
36
  # set maximum chunk overlap
37
  CHUNK_OVERLAP_RATION = 0.2
38
 
39
- prompt_helper = PromptHelper(
40
- context_window=CONTEXT_WINDOW,
41
- num_output=NUM_OUTPUT,
42
- chunk_overlap_ratio=CHUNK_OVERLAP_RATION,
43
- )
44
-
45
  llm_model_name = "bigscience/bloom-560m"
46
  tokenizer = AutoTokenizer.from_pretrained(llm_model_name)
47
  model = AutoModelForCausalLM.from_pretrained(llm_model_name, config="T5Config")
@@ -71,7 +65,7 @@ class CustomLLM(LLM):
71
 
72
  @property
73
  def _identifying_params(self) -> Mapping[str, Any]:
74
- return {"name_of_model": self.model_name}
75
 
76
  @property
77
  def _llm_type(self) -> str:
@@ -80,6 +74,11 @@ class CustomLLM(LLM):
80
  @st.cache_resource
81
  class LlamaCustom:
82
  # define llm
 
 
 
 
 
83
  llm_predictor = LLMPredictor(llm=CustomLLM())
84
  service_context = ServiceContext.from_defaults(
85
  llm_predictor=llm_predictor, prompt_helper=prompt_helper
 
36
  # set maximum chunk overlap
37
  CHUNK_OVERLAP_RATION = 0.2
38
 
 
 
 
 
 
 
39
  llm_model_name = "bigscience/bloom-560m"
40
  tokenizer = AutoTokenizer.from_pretrained(llm_model_name)
41
  model = AutoModelForCausalLM.from_pretrained(llm_model_name, config="T5Config")
 
65
 
66
  @property
67
  def _identifying_params(self) -> Mapping[str, Any]:
68
+ return {"name_of_model": llm_model_name}
69
 
70
  @property
71
  def _llm_type(self) -> str:
 
74
  @st.cache_resource
75
  class LlamaCustom:
76
  # define llm
77
+ prompt_helper = PromptHelper(
78
+ context_window=CONTEXT_WINDOW,
79
+ num_output=NUM_OUTPUT,
80
+ chunk_overlap_ratio=CHUNK_OVERLAP_RATION,
81
+ )
82
  llm_predictor = LLMPredictor(llm=CustomLLM())
83
  service_context = ServiceContext.from_defaults(
84
  llm_predictor=llm_predictor, prompt_helper=prompt_helper