from llama_index.llms.huggingface import HuggingFaceLLM, HuggingFaceInferenceAPI from llama_index.llms.openai import OpenAI from llama_index.llms.replicate import Replicate from dotenv import load_dotenv import os load_dotenv() llm_mixtral_8x7b = HuggingFaceInferenceAPI( model_name="mistralai/Mixtral-8x7B-Instruct-v0.1", token=os.getenv("HUGGINGFACE_API_TOKEN"), ) # download the model from the Hugging Face Hub and run it locally # llm_mixtral_8x7b = HuggingFaceLLM(model_name="mistralai/Mixtral-8x7B-Instruct-v0.1") llm_llama_2_7b_chat = HuggingFaceInferenceAPI( model_name="meta-llama/Llama-2-7b-chat-hf", token=os.getenv("HUGGINGFACE_API_TOKEN"), ) llm_bloomz_560m = HuggingFaceInferenceAPI( model_name="bigscience/bloomz-560m", token=os.getenv("HUGGINGFACE_API_TOKEN"), ) llm_gpt_3_5_turbo = OpenAI( api_key=os.getenv("OPENAI_API_KEY"), ) llm_gpt_3_5_turbo_0125 = OpenAI( model="gpt-3.5-turbo-0125", api_key="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", ) llm_gpt_4_0125 = OpenAI( model="gpt-4-0125-preview", api_key=os.getenv("OPENAI_API_KEY"), ) llm_llama_13b_v2_replicate = Replicate( model="meta/llama-2-13b-chat", prompt_key=os.getenv("REPLICATE_API_KEY"), )