import os import pickle from json import dumps, loads from typing import Any, List, Mapping, Optional import numpy as np import openai import streamlit as st import pandas as pd from dotenv import load_dotenv from huggingface_hub import HfFileSystem from langchain.llms.base import LLM from llama_index import ( Document, GPTVectorStoreIndex, LLMPredictor, PromptHelper, ServiceContext, SimpleDirectoryReader, StorageContext, load_index_from_storage, ) from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline # from utils.customLLM import CustomLLM load_dotenv() # openai.api_key = os.getenv("OPENAI_API_KEY") fs = HfFileSystem() # define prompt helper # set maximum input size CONTEXT_WINDOW = 2048 # set number of output tokens NUM_OUTPUT = 525 # set maximum chunk overlap CHUNK_OVERLAP_RATION = 0.2 llm_model_name = "bigscience/bloom-560m" tokenizer = AutoTokenizer.from_pretrained(llm_model_name) model = AutoModelForCausalLM.from_pretrained(llm_model_name, config="T5Config") model_pipeline = pipeline( model=model, tokenizer=tokenizer, task="text-generation", # device=0, # GPU device number # max_length=512, do_sample=True, top_p=0.95, top_k=50, temperature=0.7, ) class CustomLLM(LLM): pipeline = model_pipeline def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: prompt_length = len(prompt) response = self.pipeline(prompt, max_new_tokens=525)[0]["generated_text"] # only return newly generated tokens return response[prompt_length:] @property def _identifying_params(self) -> Mapping[str, Any]: return {"name_of_model": llm_model_name} @property def _llm_type(self) -> str: return "custom" class LlamaCustom: def __init__(self, model_name: str) -> None: self.vector_index = self.initialize_index(model_name=model_name) def initialize_index(self, model_name: str): index_name = model_name.split("/")[-1] file_path = f"./vectorStores/{index_name}" if os.path.exists(path=file_path): # rebuild storage context storage_context = StorageContext.from_defaults(persist_dir=file_path) # local load index access index = load_index_from_storage(storage_context) # huggingface repo load access # with fs.open(file_path, "r") as file: # index = pickle.loads(file.readlines()) return index else: # define llm prompt_helper = PromptHelper( context_window=CONTEXT_WINDOW, num_output=NUM_OUTPUT, chunk_overlap_ratio=CHUNK_OVERLAP_RATION, ) llm_predictor = LLMPredictor(llm=CustomLLM()) service_context = ServiceContext.from_defaults( llm_predictor=llm_predictor, prompt_helper=prompt_helper ) # documents = prepare_data(r"./assets/regItems.json") documents = SimpleDirectoryReader(input_dir="./assets/pdf").load_data() index = GPTVectorStoreIndex.from_documents( documents, service_context=service_context ) # local write access index.storage_context.persist(file_path) # huggingface repo write access # with fs.open(file_path, "w") as file: # file.write(pickle.dumps(index)) return index def get_response(self, query_str): print("query_str: ", query_str) query_engine = self.vector_index.as_query_engine() response = query_engine.query(query_str) return str(response)