Spaces:
Sleeping
Sleeping
Zwea Htet
commited on
Commit
Β·
781a2e4
1
Parent(s):
d38bde6
added langchain openai support document chat
Browse files- .gitignore +3 -0
- app.py +156 -0
- requirements.txt +8 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
venv
|
2 |
+
|
3 |
+
.env
|
app.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Reference https://huggingface.co/spaces/johnmuchiri/anspro1/blob/main/app.py
|
2 |
+
# Resource https://python.langchain.com/docs/modules/chains
|
3 |
+
|
4 |
+
import streamlit as st
|
5 |
+
from langchain_community.document_loaders.pdf import PyPDFLoader
|
6 |
+
from langchain_community.vectorstores import pinecone
|
7 |
+
from langchain_openai import OpenAIEmbeddings, OpenAI
|
8 |
+
from langchain.memory import ConversationBufferMemory
|
9 |
+
from langchain_core.prompts import ChatPromptTemplate
|
10 |
+
from langchain.chains import ConversationalRetrievalChain, RetrievalQA
|
11 |
+
import openai
|
12 |
+
from dotenv import load_dotenv
|
13 |
+
import os
|
14 |
+
|
15 |
+
# import pinecone
|
16 |
+
|
17 |
+
load_dotenv()
|
18 |
+
|
19 |
+
# please create a streamlit app on huggingface that uses openai api
|
20 |
+
# and langchain data framework, the user should be able to upload
|
21 |
+
# a document and ask questions about the document, the app should
|
22 |
+
# respond with an answer and also display where the response is
|
23 |
+
# referenced from using some sort of visual annotation on the document
|
24 |
+
|
25 |
+
# set the path where you want to save the uploaded PDF file
|
26 |
+
SAVE_DIR = "pdf"
|
27 |
+
|
28 |
+
|
29 |
+
def generate_response(pages, query_text, k, chain_type):
|
30 |
+
if pages is not None:
|
31 |
+
pinecone.init(
|
32 |
+
api_key=os.getenv("PINECONE_API_KEY"),
|
33 |
+
environment=os.getenv("PINECONE_ENV_NAME"),
|
34 |
+
)
|
35 |
+
|
36 |
+
vector_db = pinecone.Pinecone.from_documents(
|
37 |
+
documents=pages, embedding=OpenAIEmbeddings(), index_name="openai-index"
|
38 |
+
)
|
39 |
+
|
40 |
+
retriever = vector_db.as_retriever(
|
41 |
+
search_type="similarity", search_kwards={"k": k}
|
42 |
+
)
|
43 |
+
|
44 |
+
# create a chain to answer questions
|
45 |
+
qa = RetrievalQA.from_chain_type(
|
46 |
+
llm=OpenAI(),
|
47 |
+
chain_type=chain_type,
|
48 |
+
retriever=retriever,
|
49 |
+
return_source_documents=True
|
50 |
+
)
|
51 |
+
|
52 |
+
response = qa({"query": query_text})
|
53 |
+
return response
|
54 |
+
|
55 |
+
def visual_annotate(document, answer):
|
56 |
+
# Implement this function according to your specific requirements
|
57 |
+
# Highlight the part of the document where the answer was found
|
58 |
+
start = document.find(answer)
|
59 |
+
annotated_document = (
|
60 |
+
document[:start]
|
61 |
+
+ "**"
|
62 |
+
+ document[start : start + len(answer)]
|
63 |
+
+ "**"
|
64 |
+
+ document[start + len(answer) :]
|
65 |
+
)
|
66 |
+
return annotated_document
|
67 |
+
|
68 |
+
|
69 |
+
st.set_page_config(page_title="π¦π Ask the Doc App")
|
70 |
+
st.title("Document Question Answering App")
|
71 |
+
|
72 |
+
with st.sidebar.form(key="sidebar-form"):
|
73 |
+
st.header("Configurations")
|
74 |
+
|
75 |
+
openai_api_key = st.text_input("Enter OpenAI API key here", type="password")
|
76 |
+
os.environ["OPENAI_API_KEY"] = openai_api_key
|
77 |
+
|
78 |
+
pinecone_api_key = st.text_input(
|
79 |
+
"Enter your Pinecone environment key", type="password"
|
80 |
+
)
|
81 |
+
os.environ["PINECONE_API_KEY"] = pinecone_api_key
|
82 |
+
|
83 |
+
pinecone_env_name = st.text_input("Enter your Pinecone environment name)")
|
84 |
+
os.environ["PINECONE_ENV_NAME"] = pinecone_env_name
|
85 |
+
|
86 |
+
submitted = st.sidebar.form_submit_button(
|
87 |
+
label="Submit",
|
88 |
+
disabled=not (openai_api_key and pinecone_api_key and pinecone_env_name),
|
89 |
+
)
|
90 |
+
|
91 |
+
left_column, right_column = st.columns(2)
|
92 |
+
|
93 |
+
with left_column:
|
94 |
+
uploaded_file = st.file_uploader("Choose a pdf file", type="pdf")
|
95 |
+
|
96 |
+
if uploaded_file is not None:
|
97 |
+
# save the uploaded file to the specified directory
|
98 |
+
file_path = os.path.join(SAVE_DIR, uploaded_file.name)
|
99 |
+
with open(file_path, "wb") as f:
|
100 |
+
f.write(uploaded_file.getbuffer())
|
101 |
+
st.success(f"File {uploaded_file.name} is saved at path {file_path}")
|
102 |
+
|
103 |
+
loader = PyPDFLoader(file_path=file_path)
|
104 |
+
pages = loader.load_and_split()
|
105 |
+
|
106 |
+
query_text = st.text_input(
|
107 |
+
"Enter your question:", placeholder="Please provide a short summary."
|
108 |
+
)
|
109 |
+
|
110 |
+
chain_type = st.selectbox(
|
111 |
+
"chain type", ("stuff", "map_reduce", "refine", "map_rerank")
|
112 |
+
)
|
113 |
+
|
114 |
+
k = st.slider("Number of relevant chunks", 1, 5)
|
115 |
+
|
116 |
+
with st.spinner("Retrieving and generating a response ..."):
|
117 |
+
response = generate_response(
|
118 |
+
pages=pages,
|
119 |
+
query_text=query_text,
|
120 |
+
k=k,
|
121 |
+
chain_type=chain_type
|
122 |
+
)
|
123 |
+
|
124 |
+
with right_column:
|
125 |
+
st.write("Output of your question")
|
126 |
+
|
127 |
+
st.subheader("Result")
|
128 |
+
st.write(response['result'])
|
129 |
+
|
130 |
+
st.subheader("source_documents")
|
131 |
+
st.write(response['source_documents'][0])
|
132 |
+
|
133 |
+
|
134 |
+
# with st.form("myform", clear_on_submit=True):
|
135 |
+
# openai_api_key = st.text_input(
|
136 |
+
# "OpenAI API Key", type="password", disabled=not (uploaded_file and query_text)
|
137 |
+
# )
|
138 |
+
# submitted = st.form_submit_button(
|
139 |
+
# "Submit", disabled=not (pages and query_text)
|
140 |
+
# )
|
141 |
+
# if submitted and openai_api_key.startswith("sk-"):
|
142 |
+
# with st.spinner("Calculating..."):
|
143 |
+
# response = generate_response(pages, openai_api_key, query_text)
|
144 |
+
# result.append(response)
|
145 |
+
# del openai_api_key
|
146 |
+
|
147 |
+
# if len(result):
|
148 |
+
# st.info(response)
|
149 |
+
|
150 |
+
# if st.button("Get Answer"):
|
151 |
+
# answer = get_answer(question, document)
|
152 |
+
# st.write(answer["answer"])
|
153 |
+
|
154 |
+
# # Visual annotation on the document
|
155 |
+
# annotated_document = visual_annotate(document, answer["answer"])
|
156 |
+
# st.markdown(annotated_document)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
langchain
|
3 |
+
openai
|
4 |
+
python-dotenv
|
5 |
+
langchain_openai
|
6 |
+
langchain_community
|
7 |
+
pypdf
|
8 |
+
pinecone-client
|