File size: 19,091 Bytes
78ab311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
# Copyright (c) Open-MMLab. All rights reserved.
import io
import os
import os.path as osp
import pkgutil
import time
import warnings
from collections import OrderedDict
from importlib import import_module
from tempfile import TemporaryDirectory

import torch
import torchvision
from torch.optim import Optimizer
from torch.utils import model_zoo
from torch.nn import functional as F

import annotator.uniformer.mmcv as mmcv
from annotator.uniformer.mmcv.fileio import FileClient
from annotator.uniformer.mmcv.fileio import load as load_file
from annotator.uniformer.mmcv.parallel import is_module_wrapper
from annotator.uniformer.mmcv.utils import mkdir_or_exist
from annotator.uniformer.mmcv.runner import get_dist_info

ENV_MMCV_HOME = 'MMCV_HOME'
ENV_XDG_CACHE_HOME = 'XDG_CACHE_HOME'
DEFAULT_CACHE_DIR = '~/.cache'


def _get_mmcv_home():
    mmcv_home = os.path.expanduser(
        os.getenv(
            ENV_MMCV_HOME,
            os.path.join(
                os.getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'mmcv')))

    mkdir_or_exist(mmcv_home)
    return mmcv_home


def load_state_dict(module, state_dict, strict=False, logger=None):
    """Load state_dict to a module.

    This method is modified from :meth:`torch.nn.Module.load_state_dict`.
    Default value for ``strict`` is set to ``False`` and the message for
    param mismatch will be shown even if strict is False.

    Args:
        module (Module): Module that receives the state_dict.
        state_dict (OrderedDict): Weights.
        strict (bool): whether to strictly enforce that the keys
            in :attr:`state_dict` match the keys returned by this module's
            :meth:`~torch.nn.Module.state_dict` function. Default: ``False``.
        logger (:obj:`logging.Logger`, optional): Logger to log the error
            message. If not specified, print function will be used.
    """
    unexpected_keys = []
    all_missing_keys = []
    err_msg = []

    metadata = getattr(state_dict, '_metadata', None)
    state_dict = state_dict.copy()
    if metadata is not None:
        state_dict._metadata = metadata

    # use _load_from_state_dict to enable checkpoint version control
    def load(module, prefix=''):
        # recursively check parallel module in case that the model has a
        # complicated structure, e.g., nn.Module(nn.Module(DDP))
        if is_module_wrapper(module):
            module = module.module
        local_metadata = {} if metadata is None else metadata.get(
            prefix[:-1], {})
        module._load_from_state_dict(state_dict, prefix, local_metadata, True,
                                     all_missing_keys, unexpected_keys,
                                     err_msg)
        for name, child in module._modules.items():
            if child is not None:
                load(child, prefix + name + '.')

    load(module)
    load = None  # break load->load reference cycle

    # ignore "num_batches_tracked" of BN layers
    missing_keys = [
        key for key in all_missing_keys if 'num_batches_tracked' not in key
    ]

    if unexpected_keys:
        err_msg.append('unexpected key in source '
                       f'state_dict: {", ".join(unexpected_keys)}\n')
    if missing_keys:
        err_msg.append(
            f'missing keys in source state_dict: {", ".join(missing_keys)}\n')

    rank, _ = get_dist_info()
    if len(err_msg) > 0 and rank == 0:
        err_msg.insert(
            0, 'The model and loaded state dict do not match exactly\n')
        err_msg = '\n'.join(err_msg)
        if strict:
            raise RuntimeError(err_msg)
        elif logger is not None:
            logger.warning(err_msg)
        else:
            print(err_msg)


def load_url_dist(url, model_dir=None):
    """In distributed setting, this function only download checkpoint at local
    rank 0."""
    rank, world_size = get_dist_info()
    rank = int(os.environ.get('LOCAL_RANK', rank))
    if rank == 0:
        checkpoint = model_zoo.load_url(url, model_dir=model_dir)
    if world_size > 1:
        torch.distributed.barrier()
        if rank > 0:
            checkpoint = model_zoo.load_url(url, model_dir=model_dir)
    return checkpoint


def load_pavimodel_dist(model_path, map_location=None):
    """In distributed setting, this function only download checkpoint at local
    rank 0."""
    try:
        from pavi import modelcloud
    except ImportError:
        raise ImportError(
            'Please install pavi to load checkpoint from modelcloud.')
    rank, world_size = get_dist_info()
    rank = int(os.environ.get('LOCAL_RANK', rank))
    if rank == 0:
        model = modelcloud.get(model_path)
        with TemporaryDirectory() as tmp_dir:
            downloaded_file = osp.join(tmp_dir, model.name)
            model.download(downloaded_file)
            checkpoint = torch.load(downloaded_file, map_location=map_location)
    if world_size > 1:
        torch.distributed.barrier()
        if rank > 0:
            model = modelcloud.get(model_path)
            with TemporaryDirectory() as tmp_dir:
                downloaded_file = osp.join(tmp_dir, model.name)
                model.download(downloaded_file)
                checkpoint = torch.load(
                    downloaded_file, map_location=map_location)
    return checkpoint


def load_fileclient_dist(filename, backend, map_location):
    """In distributed setting, this function only download checkpoint at local
    rank 0."""
    rank, world_size = get_dist_info()
    rank = int(os.environ.get('LOCAL_RANK', rank))
    allowed_backends = ['ceph']
    if backend not in allowed_backends:
        raise ValueError(f'Load from Backend {backend} is not supported.')
    if rank == 0:
        fileclient = FileClient(backend=backend)
        buffer = io.BytesIO(fileclient.get(filename))
        checkpoint = torch.load(buffer, map_location=map_location)
    if world_size > 1:
        torch.distributed.barrier()
        if rank > 0:
            fileclient = FileClient(backend=backend)
            buffer = io.BytesIO(fileclient.get(filename))
            checkpoint = torch.load(buffer, map_location=map_location)
    return checkpoint


def get_torchvision_models():
    model_urls = dict()
    for _, name, ispkg in pkgutil.walk_packages(torchvision.models.__path__):
        if ispkg:
            continue
        _zoo = import_module(f'torchvision.models.{name}')
        if hasattr(_zoo, 'model_urls'):
            _urls = getattr(_zoo, 'model_urls')
            model_urls.update(_urls)
    return model_urls


def get_external_models():
    mmcv_home = _get_mmcv_home()
    default_json_path = osp.join(mmcv.__path__[0], 'model_zoo/open_mmlab.json')
    default_urls = load_file(default_json_path)
    assert isinstance(default_urls, dict)
    external_json_path = osp.join(mmcv_home, 'open_mmlab.json')
    if osp.exists(external_json_path):
        external_urls = load_file(external_json_path)
        assert isinstance(external_urls, dict)
        default_urls.update(external_urls)

    return default_urls


def get_mmcls_models():
    mmcls_json_path = osp.join(mmcv.__path__[0], 'model_zoo/mmcls.json')
    mmcls_urls = load_file(mmcls_json_path)

    return mmcls_urls


def get_deprecated_model_names():
    deprecate_json_path = osp.join(mmcv.__path__[0],
                                   'model_zoo/deprecated.json')
    deprecate_urls = load_file(deprecate_json_path)
    assert isinstance(deprecate_urls, dict)

    return deprecate_urls


def _process_mmcls_checkpoint(checkpoint):
    state_dict = checkpoint['state_dict']
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        if k.startswith('backbone.'):
            new_state_dict[k[9:]] = v
    new_checkpoint = dict(state_dict=new_state_dict)

    return new_checkpoint


def _load_checkpoint(filename, map_location=None):
    """Load checkpoint from somewhere (modelzoo, file, url).

    Args:
        filename (str): Accept local filepath, URL, ``torchvision://xxx``,
            ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for
            details.
        map_location (str | None): Same as :func:`torch.load`. Default: None.

    Returns:
        dict | OrderedDict: The loaded checkpoint. It can be either an
            OrderedDict storing model weights or a dict containing other
            information, which depends on the checkpoint.
    """
    if filename.startswith('modelzoo://'):
        warnings.warn('The URL scheme of "modelzoo://" is deprecated, please '
                      'use "torchvision://" instead')
        model_urls = get_torchvision_models()
        model_name = filename[11:]
        checkpoint = load_url_dist(model_urls[model_name])
    elif filename.startswith('torchvision://'):
        model_urls = get_torchvision_models()
        model_name = filename[14:]
        checkpoint = load_url_dist(model_urls[model_name])
    elif filename.startswith('open-mmlab://'):
        model_urls = get_external_models()
        model_name = filename[13:]
        deprecated_urls = get_deprecated_model_names()
        if model_name in deprecated_urls:
            warnings.warn(f'open-mmlab://{model_name} is deprecated in favor '
                          f'of open-mmlab://{deprecated_urls[model_name]}')
            model_name = deprecated_urls[model_name]
        model_url = model_urls[model_name]
        # check if is url
        if model_url.startswith(('http://', 'https://')):
            checkpoint = load_url_dist(model_url)
        else:
            filename = osp.join(_get_mmcv_home(), model_url)
            if not osp.isfile(filename):
                raise IOError(f'{filename} is not a checkpoint file')
            checkpoint = torch.load(filename, map_location=map_location)
    elif filename.startswith('mmcls://'):
        model_urls = get_mmcls_models()
        model_name = filename[8:]
        checkpoint = load_url_dist(model_urls[model_name])
        checkpoint = _process_mmcls_checkpoint(checkpoint)
    elif filename.startswith(('http://', 'https://')):
        checkpoint = load_url_dist(filename)
    elif filename.startswith('pavi://'):
        model_path = filename[7:]
        checkpoint = load_pavimodel_dist(model_path, map_location=map_location)
    elif filename.startswith('s3://'):
        checkpoint = load_fileclient_dist(
            filename, backend='ceph', map_location=map_location)
    else:
        if not osp.isfile(filename):
            raise IOError(f'{filename} is not a checkpoint file')
        checkpoint = torch.load(filename, map_location=map_location)
    return checkpoint


def load_checkpoint(model,
                    filename,
                    map_location='cpu',
                    strict=False,
                    logger=None):
    """Load checkpoint from a file or URI.

    Args:
        model (Module): Module to load checkpoint.
        filename (str): Accept local filepath, URL, ``torchvision://xxx``,
            ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for
            details.
        map_location (str): Same as :func:`torch.load`.
        strict (bool): Whether to allow different params for the model and
            checkpoint.
        logger (:mod:`logging.Logger` or None): The logger for error message.

    Returns:
        dict or OrderedDict: The loaded checkpoint.
    """
    checkpoint = _load_checkpoint(filename, map_location)
    # OrderedDict is a subclass of dict
    if not isinstance(checkpoint, dict):
        raise RuntimeError(
            f'No state_dict found in checkpoint file {filename}')
    # get state_dict from checkpoint
    if 'state_dict' in checkpoint:
        state_dict = checkpoint['state_dict']
    elif 'model' in checkpoint:
        state_dict = checkpoint['model']
    else:
        state_dict = checkpoint
    # strip prefix of state_dict
    if list(state_dict.keys())[0].startswith('module.'):
        state_dict = {k[7:]: v for k, v in state_dict.items()}

    # for MoBY, load model of online branch
    if sorted(list(state_dict.keys()))[0].startswith('encoder'):
        state_dict = {k.replace('encoder.', ''): v for k, v in state_dict.items() if k.startswith('encoder.')}

    # reshape absolute position embedding
    if state_dict.get('absolute_pos_embed') is not None:
        absolute_pos_embed = state_dict['absolute_pos_embed']
        N1, L, C1 = absolute_pos_embed.size()
        N2, C2, H, W = model.absolute_pos_embed.size()
        if N1 != N2 or C1 != C2 or L != H*W:
            logger.warning("Error in loading absolute_pos_embed, pass")
        else:
            state_dict['absolute_pos_embed'] = absolute_pos_embed.view(N2, H, W, C2).permute(0, 3, 1, 2)

    # interpolate position bias table if needed
    relative_position_bias_table_keys = [k for k in state_dict.keys() if "relative_position_bias_table" in k]
    for table_key in relative_position_bias_table_keys:
        table_pretrained = state_dict[table_key]
        table_current = model.state_dict()[table_key]
        L1, nH1 = table_pretrained.size()
        L2, nH2 = table_current.size()
        if nH1 != nH2:
            logger.warning(f"Error in loading {table_key}, pass")
        else:
            if L1 != L2:
                S1 = int(L1 ** 0.5)
                S2 = int(L2 ** 0.5)
                table_pretrained_resized = F.interpolate(
                     table_pretrained.permute(1, 0).view(1, nH1, S1, S1),
                     size=(S2, S2), mode='bicubic')
                state_dict[table_key] = table_pretrained_resized.view(nH2, L2).permute(1, 0)

    # load state_dict
    load_state_dict(model, state_dict, strict, logger)
    return checkpoint


def weights_to_cpu(state_dict):
    """Copy a model state_dict to cpu.

    Args:
        state_dict (OrderedDict): Model weights on GPU.

    Returns:
        OrderedDict: Model weights on GPU.
    """
    state_dict_cpu = OrderedDict()
    for key, val in state_dict.items():
        state_dict_cpu[key] = val.cpu()
    return state_dict_cpu


def _save_to_state_dict(module, destination, prefix, keep_vars):
    """Saves module state to `destination` dictionary.

    This method is modified from :meth:`torch.nn.Module._save_to_state_dict`.

    Args:
        module (nn.Module): The module to generate state_dict.
        destination (dict): A dict where state will be stored.
        prefix (str): The prefix for parameters and buffers used in this
            module.
    """
    for name, param in module._parameters.items():
        if param is not None:
            destination[prefix + name] = param if keep_vars else param.detach()
    for name, buf in module._buffers.items():
        # remove check of _non_persistent_buffers_set to allow nn.BatchNorm2d
        if buf is not None:
            destination[prefix + name] = buf if keep_vars else buf.detach()


def get_state_dict(module, destination=None, prefix='', keep_vars=False):
    """Returns a dictionary containing a whole state of the module.

    Both parameters and persistent buffers (e.g. running averages) are
    included. Keys are corresponding parameter and buffer names.

    This method is modified from :meth:`torch.nn.Module.state_dict` to
    recursively check parallel module in case that the model has a complicated
    structure, e.g., nn.Module(nn.Module(DDP)).

    Args:
        module (nn.Module): The module to generate state_dict.
        destination (OrderedDict): Returned dict for the state of the
            module.
        prefix (str): Prefix of the key.
        keep_vars (bool): Whether to keep the variable property of the
            parameters. Default: False.

    Returns:
        dict: A dictionary containing a whole state of the module.
    """
    # recursively check parallel module in case that the model has a
    # complicated structure, e.g., nn.Module(nn.Module(DDP))
    if is_module_wrapper(module):
        module = module.module

    # below is the same as torch.nn.Module.state_dict()
    if destination is None:
        destination = OrderedDict()
        destination._metadata = OrderedDict()
    destination._metadata[prefix[:-1]] = local_metadata = dict(
        version=module._version)
    _save_to_state_dict(module, destination, prefix, keep_vars)
    for name, child in module._modules.items():
        if child is not None:
            get_state_dict(
                child, destination, prefix + name + '.', keep_vars=keep_vars)
    for hook in module._state_dict_hooks.values():
        hook_result = hook(module, destination, prefix, local_metadata)
        if hook_result is not None:
            destination = hook_result
    return destination


def save_checkpoint(model, filename, optimizer=None, meta=None):
    """Save checkpoint to file.

    The checkpoint will have 3 fields: ``meta``, ``state_dict`` and
    ``optimizer``. By default ``meta`` will contain version and time info.

    Args:
        model (Module): Module whose params are to be saved.
        filename (str): Checkpoint filename.
        optimizer (:obj:`Optimizer`, optional): Optimizer to be saved.
        meta (dict, optional): Metadata to be saved in checkpoint.
    """
    if meta is None:
        meta = {}
    elif not isinstance(meta, dict):
        raise TypeError(f'meta must be a dict or None, but got {type(meta)}')
    meta.update(mmcv_version=mmcv.__version__, time=time.asctime())

    if is_module_wrapper(model):
        model = model.module

    if hasattr(model, 'CLASSES') and model.CLASSES is not None:
        # save class name to the meta
        meta.update(CLASSES=model.CLASSES)

    checkpoint = {
        'meta': meta,
        'state_dict': weights_to_cpu(get_state_dict(model))
    }
    # save optimizer state dict in the checkpoint
    if isinstance(optimizer, Optimizer):
        checkpoint['optimizer'] = optimizer.state_dict()
    elif isinstance(optimizer, dict):
        checkpoint['optimizer'] = {}
        for name, optim in optimizer.items():
            checkpoint['optimizer'][name] = optim.state_dict()

    if filename.startswith('pavi://'):
        try:
            from pavi import modelcloud
            from pavi.exception import NodeNotFoundError
        except ImportError:
            raise ImportError(
                'Please install pavi to load checkpoint from modelcloud.')
        model_path = filename[7:]
        root = modelcloud.Folder()
        model_dir, model_name = osp.split(model_path)
        try:
            model = modelcloud.get(model_dir)
        except NodeNotFoundError:
            model = root.create_training_model(model_dir)
        with TemporaryDirectory() as tmp_dir:
            checkpoint_file = osp.join(tmp_dir, model_name)
            with open(checkpoint_file, 'wb') as f:
                torch.save(checkpoint, f)
                f.flush()
            model.create_file(checkpoint_file, name=model_name)
    else:
        mmcv.mkdir_or_exist(osp.dirname(filename))
        # immediately flush buffer
        with open(filename, 'wb') as f:
            torch.save(checkpoint, f)
            f.flush()