Spaces:
Runtime error
Runtime error
File size: 11,912 Bytes
78ab311 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Zhenyu Li
from ControlNet.share import *
import einops
import torch
import random
import ControlNet.config as config
from pytorch_lightning import seed_everything
from ControlNet.cldm.model import create_model, load_state_dict
from ControlNet.cldm.ddim_hacked import DDIMSampler
import gradio as gr
import torch
import numpy as np
from zoedepth.utils.arg_utils import parse_unknown
import argparse
from zoedepth.models.builder import build_model
from zoedepth.utils.config import get_config_user
import gradio as gr
from ui_prediction import predict_depth
import torch.nn.functional as F
from huggingface_hub import hf_hub_download
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
def depth_load_state_dict(model, state_dict):
"""Load state_dict into model, handling DataParallel and DistributedDataParallel. Also checks for "model" key in state_dict.
DataParallel prefixes state_dict keys with 'module.' when saving.
If the model is not a DataParallel model but the state_dict is, then prefixes are removed.
If the model is a DataParallel model but the state_dict is not, then prefixes are added.
"""
state_dict = state_dict.get('model', state_dict)
# if model is a DataParallel model, then state_dict keys are prefixed with 'module.'
do_prefix = isinstance(
model, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel))
state = {}
for k, v in state_dict.items():
if k.startswith('module.') and not do_prefix:
k = k[7:]
if not k.startswith('module.') and do_prefix:
k = 'module.' + k
state[k] = v
model.load_state_dict(state, strict=True)
print("Loaded successfully")
return model
def load_wts(model, checkpoint_path):
ckpt = torch.load(checkpoint_path, map_location='cpu')
return depth_load_state_dict(model, ckpt)
def load_ckpt(model, checkpoint):
model = load_wts(model, checkpoint)
print("Loaded weights from {0}".format(checkpoint))
return model
pf_ckp = hf_hub_download(repo_id="zhyever/PatchFusion", filename="patchfusion_u4k.pt")
parser = argparse.ArgumentParser()
parser.add_argument("--ckp_path", type=str, default=pf_ckp)
parser.add_argument("-m", "--model", type=str, default="zoedepth_custom")
parser.add_argument("--model_cfg_path", type=str, default="./zoedepth/models/zoedepth_custom/configs/config_zoedepth_patchfusion.json")
args, unknown_args = parser.parse_known_args()
overwrite_kwargs = parse_unknown(unknown_args)
overwrite_kwargs['model_cfg_path'] = args.model_cfg_path
overwrite_kwargs["model"] = args.model
config_depth = get_config_user(args.model, **overwrite_kwargs)
config_depth["pretrained_resource"] = ''
depth_model = build_model(config_depth)
depth_model = load_ckpt(depth_model, args.ckp_path)
depth_model.eval()
depth_model.to(DEVICE)
controlnet_ckp = hf_hub_download(repo_id="zhyever/PatchFusion", filename="control_sd15_depth.pth")
model = create_model('./ControlNet/models/cldm_v15.yaml')
model.load_state_dict(load_state_dict(controlnet_ckp, location=DEVICE), strict=False)
model = model.to(DEVICE)
ddim_sampler = DDIMSampler(model)
# controlnet
title = "# PatchFusion"
description = """Official demo for **PatchFusion: An End-to-End Tile-Based Framework for High-Resolution Monocular Metric Depth Estimation**.
PatchFusion is a deep learning model for high-resolution metric depth estimation from a single image.
Please refer to our [paper](???) or [github](???) for more details."""
def rescale(A, lbound=-1, ubound=1):
"""
Rescale an array to [lbound, ubound].
Parameters:
- A: Input data as numpy array
- lbound: Lower bound of the scale, default is 0.
- ubound: Upper bound of the scale, default is 1.
Returns:
- Rescaled array
"""
A_min = np.min(A)
A_max = np.max(A)
return (ubound - lbound) * (A - A_min) / (A_max - A_min) + lbound
def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, mode, patch_number, resolution, patch_size):
with torch.no_grad():
w, h = input_image.size
detected_map = predict_depth(depth_model, input_image, mode, patch_number, resolution, patch_size, device=DEVICE)
detected_map = F.interpolate(torch.from_numpy(detected_map).unsqueeze(dim=0).unsqueeze(dim=0), (image_resolution, image_resolution), mode='bicubic', align_corners=True).squeeze().numpy()
H, W = detected_map.shape
detected_map_temp = ((1 - detected_map / np.max(detected_map)) * 255)
detected_map = detected_map_temp.astype("uint8")
detected_map_temp = detected_map_temp[:, :, None]
detected_map_temp = np.concatenate([detected_map_temp, detected_map_temp, detected_map_temp], axis=2)
detected_map = detected_map[:, :, None]
detected_map = np.concatenate([detected_map, detected_map, detected_map], axis=2)
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
shape = (4, H // 8, W // 8)
if config.save_memory:
model.low_vram_shift(is_diffusing=True)
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
x_samples = model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255)
results = [x_samples[i] for i in range(num_samples)]
return_list = [detected_map_temp] + results
update_return_list = []
for r in return_list:
t_r = torch.from_numpy(r).unsqueeze(dim=0).permute(0, 3, 1, 2)
t_r = F.interpolate(t_r, (h, w), mode='bicubic', align_corners=True).squeeze().permute(1, 2, 0).numpy().astype(np.uint8)
update_return_list.append(t_r)
return update_return_list
title = "# PatchFusion"
description = """Official demo for **PatchFusion: An End-to-End Tile-Based Framework for High-Resolution Monocular Metric Depth Estimation**.
PatchFusion is a deep learning model for high-resolution metric depth estimation from a single image.
Please refer to our [paper](https://arxiv.org/abs/2312.02284) or [github](https://github.com/zhyever/PatchFusion) for more details."""
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
gr.Markdown("## Control Stable Diffusion with Depth Maps")
with gr.Row():
with gr.Column():
# input_image = gr.Image(source='upload', type="pil")
input_image = gr.Image(label="Input Image", type='pil')
prompt = gr.Textbox(label="Prompt (input your description)", value='An evening scene with the Eiffel Tower, the bridge under the glow of street lamps and a twilight sky')
run_button = gr.Button("Run")
with gr.Accordion("Advanced options", open=False):
# mode = gr.Radio(["P49", "R"], label="Tiling mode", info="We recommand using P49 for fast evaluation and R with 1024 patches for best visualization results, respectively", elem_id='mode', value='R'),
mode = gr.Radio(["P49", "R"], label="Tiling mode", info="We recommand using P49 for fast evaluation and R with 1024 patches for best visualization results, respectively", elem_id='mode', value='R'),
patch_number = gr.Slider(1, 1024, label="Please decide the number of random patches (Only useful in mode=R)", step=1, value=256)
resolution = gr.Textbox(label="PatchFusion proccessing resolution (Default 4K. Use 'x' to split height and width.)", elem_id='mode', value='2160x3840')
patch_size = gr.Textbox(label="Patch size (Default 1/4 of image resolution. Use 'x' to split height and width.)", elem_id='mode', value='540x960')
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
image_resolution = gr.Slider(label="ControlNet image resolution", minimum=256, maximum=2048, value=1024, step=64)
strength = gr.Slider(label="Control strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
# detect_resolution = gr.Slider(label="Depth Resolution", minimum=128, maximum=1024, value=384, step=1)
ddim_steps = gr.Slider(label="steps", minimum=1, maximum=100, value=20, step=1)
scale = gr.Slider(label="guidance scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = gr.Slider(label="seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
eta = gr.Number(label="eta (DDIM)", value=0.0)
a_prompt = gr.Textbox(label="Added prompt", value='best quality, extremely detailed')
n_prompt = gr.Textbox(label="Negative prompt", value='worst quality, low quality, lose details')
with gr.Column():
# result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery")
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, mode[0], patch_number, resolution, patch_size]
run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
examples = gr.Examples(examples=["examples/example_2.jpeg", "examples/example_4.jpeg", "examples/example_5.jpeg"], inputs=[input_image])
if __name__ == '__main__':
demo.queue().launch(share=True) |