File size: 11,912 Bytes
78ab311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# MIT License

# Copyright (c) 2022 Intelligent Systems Lab Org

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# File author: Zhenyu Li

from ControlNet.share import *
import einops
import torch
import random

import ControlNet.config as config
from pytorch_lightning import seed_everything
from ControlNet.cldm.model import create_model, load_state_dict
from ControlNet.cldm.ddim_hacked import DDIMSampler

import gradio as gr
import torch
import numpy as np
from zoedepth.utils.arg_utils import parse_unknown
import argparse
from zoedepth.models.builder import build_model
from zoedepth.utils.config import get_config_user
import gradio as gr

from ui_prediction import predict_depth
import torch.nn.functional as F

from huggingface_hub import hf_hub_download 

DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'

def depth_load_state_dict(model, state_dict):
    """Load state_dict into model, handling DataParallel and DistributedDataParallel. Also checks for "model" key in state_dict.

    DataParallel prefixes state_dict keys with 'module.' when saving.
    If the model is not a DataParallel model but the state_dict is, then prefixes are removed.
    If the model is a DataParallel model but the state_dict is not, then prefixes are added.
    """
    state_dict = state_dict.get('model', state_dict)
    # if model is a DataParallel model, then state_dict keys are prefixed with 'module.'

    do_prefix = isinstance(
        model, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel))
    state = {}
    for k, v in state_dict.items():
        if k.startswith('module.') and not do_prefix:
            k = k[7:]

        if not k.startswith('module.') and do_prefix:
            k = 'module.' + k

        state[k] = v

    model.load_state_dict(state, strict=True)
    print("Loaded successfully")
    return model

def load_wts(model, checkpoint_path):
    ckpt = torch.load(checkpoint_path, map_location='cpu')
    return depth_load_state_dict(model, ckpt)

def load_ckpt(model, checkpoint):
    model = load_wts(model, checkpoint)
    print("Loaded weights from {0}".format(checkpoint))
    return model


pf_ckp = hf_hub_download(repo_id="zhyever/PatchFusion", filename="patchfusion_u4k.pt")
parser = argparse.ArgumentParser()
parser.add_argument("--ckp_path", type=str, default=pf_ckp)
parser.add_argument("-m", "--model", type=str, default="zoedepth_custom")
parser.add_argument("--model_cfg_path", type=str, default="./zoedepth/models/zoedepth_custom/configs/config_zoedepth_patchfusion.json")
args, unknown_args = parser.parse_known_args()
overwrite_kwargs = parse_unknown(unknown_args)
overwrite_kwargs['model_cfg_path'] = args.model_cfg_path
overwrite_kwargs["model"] = args.model
config_depth = get_config_user(args.model, **overwrite_kwargs)
config_depth["pretrained_resource"] = ''
depth_model = build_model(config_depth)
depth_model = load_ckpt(depth_model, args.ckp_path)
depth_model.eval()
depth_model.to(DEVICE)


controlnet_ckp = hf_hub_download(repo_id="zhyever/PatchFusion", filename="control_sd15_depth.pth")
model = create_model('./ControlNet/models/cldm_v15.yaml')
model.load_state_dict(load_state_dict(controlnet_ckp, location=DEVICE), strict=False)
model = model.to(DEVICE)
ddim_sampler = DDIMSampler(model)


# controlnet
title = "# PatchFusion"
description = """Official demo for **PatchFusion: An End-to-End Tile-Based Framework for High-Resolution Monocular Metric Depth Estimation**.

PatchFusion is a deep learning model for high-resolution metric depth estimation from a single image.

Please refer to our [paper](???) or [github](???) for more details."""

def rescale(A, lbound=-1, ubound=1):
    """
    Rescale an array to [lbound, ubound].

    Parameters:
    - A: Input data as numpy array
    - lbound: Lower bound of the scale, default is 0.
    - ubound: Upper bound of the scale, default is 1.

    Returns:
    - Rescaled array
    """
    A_min = np.min(A)
    A_max = np.max(A)
    return (ubound - lbound) * (A - A_min) / (A_max - A_min) + lbound

def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, mode, patch_number, resolution, patch_size):
    with torch.no_grad():
        w, h = input_image.size
        detected_map = predict_depth(depth_model, input_image, mode, patch_number, resolution, patch_size, device=DEVICE)
        detected_map = F.interpolate(torch.from_numpy(detected_map).unsqueeze(dim=0).unsqueeze(dim=0), (image_resolution, image_resolution), mode='bicubic', align_corners=True).squeeze().numpy()

        H, W = detected_map.shape
        detected_map_temp = ((1 - detected_map / np.max(detected_map)) * 255)
        detected_map = detected_map_temp.astype("uint8")

        detected_map_temp = detected_map_temp[:, :, None]
        detected_map_temp = np.concatenate([detected_map_temp, detected_map_temp, detected_map_temp], axis=2)
        detected_map = detected_map[:, :, None]
        detected_map = np.concatenate([detected_map, detected_map, detected_map], axis=2)
        
        control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
        control = torch.stack([control for _ in range(num_samples)], dim=0)
        control = einops.rearrange(control, 'b h w c -> b c h w').clone()

        if seed == -1:
            seed = random.randint(0, 65535)
        seed_everything(seed)

        if config.save_memory:
            model.low_vram_shift(is_diffusing=False)

        cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
        un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
        shape = (4, H // 8, W // 8)

        if config.save_memory:
            model.low_vram_shift(is_diffusing=True)

        model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13)  # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
        samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
                                                     shape, cond, verbose=False, eta=eta,
                                                     unconditional_guidance_scale=scale,
                                                     unconditional_conditioning=un_cond)

        if config.save_memory:
            model.low_vram_shift(is_diffusing=False)

        x_samples = model.decode_first_stage(samples)
        x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255)

        results = [x_samples[i] for i in range(num_samples)]

        return_list = [detected_map_temp] + results
        update_return_list = []
        for r in return_list:
            t_r = torch.from_numpy(r).unsqueeze(dim=0).permute(0, 3, 1, 2)
            t_r = F.interpolate(t_r, (h, w), mode='bicubic', align_corners=True).squeeze().permute(1, 2, 0).numpy().astype(np.uint8)
            update_return_list.append(t_r)

    return update_return_list

title = "# PatchFusion"
description = """Official demo for **PatchFusion: An End-to-End Tile-Based Framework for High-Resolution Monocular Metric Depth Estimation**.

PatchFusion is a deep learning model for high-resolution metric depth estimation from a single image.

Please refer to our [paper](https://arxiv.org/abs/2312.02284) or [github](https://github.com/zhyever/PatchFusion) for more details."""

with gr.Blocks() as demo:
    gr.Markdown(title)
    gr.Markdown(description)
    
    with gr.Row():
        gr.Markdown("## Control Stable Diffusion with Depth Maps")
    with gr.Row():
        with gr.Column():
            # input_image = gr.Image(source='upload', type="pil")
            input_image = gr.Image(label="Input Image", type='pil')
            prompt = gr.Textbox(label="Prompt (input your description)", value='An evening scene with the Eiffel Tower, the bridge under the glow of street lamps and a twilight sky')
            run_button = gr.Button("Run")
            with gr.Accordion("Advanced options", open=False):
                # mode = gr.Radio(["P49", "R"], label="Tiling mode", info="We recommand using P49 for fast evaluation and R with 1024 patches for best visualization results, respectively", elem_id='mode', value='R'),
                mode = gr.Radio(["P49", "R"], label="Tiling mode", info="We recommand using P49 for fast evaluation and R with 1024 patches for best visualization results, respectively", elem_id='mode', value='R'),
                patch_number = gr.Slider(1, 1024, label="Please decide the number of random patches (Only useful in mode=R)", step=1, value=256)
                resolution = gr.Textbox(label="PatchFusion proccessing resolution (Default 4K. Use 'x' to split height and width.)", elem_id='mode', value='2160x3840')
                patch_size = gr.Textbox(label="Patch size (Default 1/4 of image resolution. Use 'x' to split height and width.)", elem_id='mode', value='540x960')

                num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
                image_resolution = gr.Slider(label="ControlNet image resolution", minimum=256, maximum=2048, value=1024, step=64)
                strength = gr.Slider(label="Control strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
                guess_mode = gr.Checkbox(label='Guess Mode', value=False)
                # detect_resolution = gr.Slider(label="Depth Resolution", minimum=128, maximum=1024, value=384, step=1)
                ddim_steps = gr.Slider(label="steps", minimum=1, maximum=100, value=20, step=1)
                scale = gr.Slider(label="guidance scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
                seed = gr.Slider(label="seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
                eta = gr.Number(label="eta (DDIM)", value=0.0)
                a_prompt = gr.Textbox(label="Added prompt", value='best quality, extremely detailed')
                n_prompt = gr.Textbox(label="Negative prompt", value='worst quality, low quality, lose details')
        with gr.Column():
            # result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
            result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery")
    ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, mode[0], patch_number, resolution, patch_size]
    run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
    examples = gr.Examples(examples=["examples/example_2.jpeg", "examples/example_4.jpeg", "examples/example_5.jpeg"], inputs=[input_image])


if __name__ == '__main__':
    demo.queue().launch(share=True)