File size: 29,052 Bytes
78ab311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
# MIT License

# Copyright (c) 2022 Intelligent Systems Lab Org

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# File author: Zhenyu Li

# This file is partly inspired from ZoeDepth (https://github.com/isl-org/ZoeDepth/blob/main/zoedepth/data/data_mono.py); author: Shariq Farooq Bhat

import os
import numpy as np
import torch
from PIL import Image
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
import os.path as osp
import random
import torch.nn as nn
import cv2
import copy
from zoedepth.utils.misc import get_boundaries
from zoedepth.models.base_models.midas import Resize

class SampleDataPairs(object):
    
    def __init__(self,
                 num_sample_inout=50000,
                 sampling_strategy='random', # or 'dda'
                 dilation_factor=10,
                 crop_size=(2160, 3840),
                 ):

        self.num_sample_inout = num_sample_inout
        self.sampling_strategy = sampling_strategy
        self.dilation_factor = dilation_factor
        self.crop_height, self.crop_width = crop_size[0], crop_size[1]
        self.__init_grid()

    def __init_grid(self):
        nu = np.linspace(0, self.crop_width - 1, self.crop_width)
        nv = np.linspace(0, self.crop_height - 1, self.crop_height)
        u, v = np.meshgrid(nu, nv)

        self.u = u.flatten()
        self.v = v.flatten()

    def get_coords(self, gt):
        #  get subpixel coordinates
        u = self.u + np.random.random_sample(self.u.size)
        v = self.v + np.random.random_sample(self.v.size)

        # use nearest neighbor to get gt for each samples
        d = gt[np.clip(np.rint(v).astype(np.uint16), 0, self.crop_height-1),
               np.clip(np.rint(u).astype(np.uint16), 0, self.crop_width-1)]

        # remove invalid depth values
        u = u[np.nonzero(d)]
        v = v[np.nonzero(d)]
        d = d[np.nonzero(d)]

        return np.stack((u, v, d), axis=-1)


    def get_boundaries(self, disp, th=1., dilation=10):
        edges_y = np.logical_or(np.pad(np.abs(disp[1:, :] - disp[:-1, :]) > th, ((1, 0), (0, 0))),
                                np.pad(np.abs(disp[:-1, :] - disp[1:, :]) > th, ((0, 1), (0, 0))))
        edges_x = np.logical_or(np.pad(np.abs(disp[:, 1:] - disp[:, :-1]) > th, ((0, 0), (1, 0))),
                                np.pad(np.abs(disp[:, :-1] - disp[:,1:]) > th, ((0, 0), (0, 1))))
        edges = np.logical_or(edges_y,  edges_x).astype(np.float32)

        if dilation > 0:
            kernel = np.ones((dilation, dilation), np.uint8)
            edges = cv2.dilate(edges, kernel, iterations=1)

        return edges


    def __call__(self, results, disp_gt_copy):
        """Call function to load multiple types annotations.

        Args:
            results (dict): Result dict from :obj:`depth.CustomDataset`.

        Returns:
            dict: The dict contains loaded depth estimation annotations.
        """

        gt = results['depth']
        gt_squeeze = gt[:, :, 0]
        if self.sampling_strategy == "random":
            random_points = self.get_coords(gt_squeeze)
            idx = np.random.choice(random_points.shape[0], self.num_sample_inout)
            points = random_points[idx, :]

        elif self.sampling_strategy == "dda":
            disp_gt_squeeze = disp_gt_copy
            edges = self.get_boundaries(disp_gt_squeeze, dilation=self.dilation_factor)
            random_points = self.get_coords(gt_squeeze * (1. - edges))
            edge_points = self.get_coords(gt_squeeze * edges)

            # if edge points exist
            if edge_points.shape[0]>0 and random_points.shape[0]>0:
                # Check tot num of edge points
                cond = edges.sum()//2 -  self.num_sample_inout//2 < 0
                tot= (self.num_sample_inout - int(edges.sum())//2, int(edges.sum())//2) if cond else \
                     (self.num_sample_inout//2, self.num_sample_inout//2)

                idx = np.random.choice(random_points.shape[0], tot[0])
                idx_edges = np.random.choice(edge_points.shape[0], tot[1])
                points = np.concatenate([edge_points[idx_edges, :], random_points[idx, :]], 0)
            # use uniform sample otherwise
            else:
                random_points = self.get_coords(gt_squeeze)
                idx = np.random.choice(random_points.shape[0], self.num_sample_inout)
                points = random_points[idx, :]

        
        results['sample_points'] = points

        return results

def _is_pil_image(img):
    return isinstance(img, Image.Image)

def _is_numpy_image(img):
    return isinstance(img, np.ndarray) and (img.ndim in {2, 3})

class ToTensor(object):
    def __init__(self, mode, do_normalize=False, size=None, sec_stage=False):
        self.mode = mode
        # don't do normalization as default
        self.normalize = transforms.Normalize(
            mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) if do_normalize else nn.Identity()
        self.size = size
        if size is not None:
            # self.resize = transforms.Resize(size=size)
            net_h, net_w = size
            self.resize = Resize(net_w, net_h, keep_aspect_ratio=False, ensure_multiple_of=32, resize_method="minimal")
        else:
            self.resize = nn.Identity()
        self.sec_stage = sec_stage

    def __call__(self, sample):
        image, focal = sample['image'], sample['focal']
        crop_areas = sample.get('crop_area', None)

        if isinstance(image, list):
            # there must be crop_areas
            # only infer on eval sec_stage
            imgs_process = []
            crp_process = []
            for img, crp in zip(image, crop_areas):
                img = self.to_tensor(img)
                img = self.normalize(img)
                img = img.unsqueeze(dim=0)
                img = self.resize(img)
                img = img.squeeze(dim=0)
                imgs_process.append(img)

                crp = self.to_tensor(crp)
                crp = crp.unsqueeze(dim=0)
                crp = self.resize(crp)
                crp = crp.squeeze(dim=0)
                crp_process.append(crp)

            image = torch.cat(imgs_process, dim=0)
            crop_areas = torch.cat(crp_process, dim=0)

            img_temp = sample['img_temp']
            img_temp = self.to_tensor(img_temp)
            img_temp = self.normalize(img_temp)
            img_temp = img_temp.unsqueeze(dim=0)
            img_temp = self.resize(img_temp) #NOTE: hack
            img_temp = img_temp.squeeze(dim=0)
            image_raw = copy.deepcopy(img_temp)

            
        else:
            image = self.to_tensor(image)
            image = self.normalize(image)

            if crop_areas is not None:
                crop_areas = self.to_tensor(crop_areas)
                crop_areas = crop_areas.unsqueeze(dim=0)
                crop_areas = self.resize(crop_areas)
                crop_areas = crop_areas.squeeze(dim=0)

            if self.sec_stage:
                img_temp = sample['img_temp']
                img_temp = self.to_tensor(img_temp)
                img_temp = self.normalize(img_temp)

                img_temp = img_temp.unsqueeze(dim=0)
                img_temp = self.resize(img_temp)
                image_raw = img_temp.squeeze(dim=0)

                image = image.unsqueeze(dim=0)
                image = self.resize(image)
                image = image.squeeze(dim=0)

            else:
                # in the first stage, this hr info is reserved
                image_raw = copy.deepcopy(image)
                image = image.unsqueeze(dim=0)
                image = self.resize(image)
                image = image.squeeze(dim=0)

        if self.mode == 'test':
            return_dict =  {'image': image, 'focal': focal}
            if crop_areas is not None:
                return_dict['crop_area'] = crop_areas
            return return_dict
        

        depth = sample['depth']
        depth = self.to_tensor(depth)
        depth_gt_temp = sample['depth_gt_temp']
        depth_gt_raw = self.to_tensor(depth_gt_temp)
        
        if self.mode == 'train':
            return_dict = {**sample, 'image': image, 'depth': depth, 'focal': focal, 'image_raw': image_raw, 'depth_raw': depth_gt_raw}
            if crop_areas is not None:
                return_dict['crop_area'] = crop_areas
            return return_dict
        else:
            has_valid_depth = sample['has_valid_depth']
            # image = self.resize(image)
            return_dict = {**sample, 'image': image, 'depth': depth, 'focal': focal, 'image_raw': image_raw, 
                    'has_valid_depth': has_valid_depth, 'image_path': sample['image_path'], 'depth_path': sample['depth_path'],
                    'depth_raw': depth_gt_raw}
            if crop_areas is not None:
                return_dict['crop_area'] = crop_areas
            return return_dict

    def to_tensor(self, pic):
        if isinstance(pic, np.ndarray):
            img = torch.from_numpy(pic.transpose((2, 0, 1))) # img here
            return img


def preprocessing_transforms(mode, sec_stage=False, **kwargs):
    return transforms.Compose([
        ToTensor(mode=mode, sec_stage=sec_stage, **kwargs)
    ])

def remove_leading_slash(s):
    if s[0] == '/' or s[0] == '\\':
        return s[1:]
    return s

class U4KDataset(Dataset):
    def __init__(self, config, mode, data_root, split):
        self.mode = mode
        self.config = config
        self.data_root = data_root
        self.split = split

        img_size = self.config.get("img_size", None)
        img_size = img_size if self.config.get(
            "do_input_resize", False) else None
        self.sec_stage = self.config.get("sec_stage", False)
        self.transform = preprocessing_transforms(mode, size=img_size, sec_stage=self.sec_stage)

        self.data_infos = self.load_data_list()
        
        self.sampled_training = self.config.get("sampled_training", False)
        if self.sampled_training:
            self.data_sampler = SampleDataPairs(
                num_sample_inout=config.num_sample_inout,
                sampling_strategy=config.sampling_strategy, # or 'dda'
                dilation_factor=config.dilation_factor,
                crop_size=config.transform_sample_gt_size)
        
        self.random_crop = self.config.get("random_crop", False)
        self.crop_size = [540, 960] # 1/4
        self.overlap = self.config.get("overlap", False)

        self.consistency_training = self.config.get("consistency_training", False)
        self.overlap_length_h = self.config.get("overlap_length_h", int(256))
        self.overlap_length_w = self.config.get("overlap_length_w", int(384))
        print("current overlap_length_h and overlap_length_w are {} and {}".format(self.overlap_length_h, self.overlap_length_w))
        
        
    def load_data_list(self):
        """Load annotation from directory.
        Args:
            data_root (str): Data root for img_dir/ann_dir.
            split (str|None): Split txt file. If split is specified, only file
                with suffix in the splits will be loaded. Otherwise, all images
                in img_dir/ann_dir will be loaded. Default: None
        Returns:
            list[dict]: All image info of dataset.
        """
        data_root = self.data_root
        split = self.split
        
        self.invalid_depth_num = 0
        img_infos = []
        if split is not None:
            with open(split) as f:
                for line in f:
                    img_info_l = dict()
                    # img_info_r = dict()

                    img_l, img_r, depth_map_l, depth_map_r = line.strip().split(" ")

                    # HACK: a hack to replace the png with raw to accelerate training
                    img_l = img_l[:-3] + 'raw'
                    # img_r = img_r[:-3] + 'raw'

                    img_info_l['depth_map_path'] = osp.join(data_root, remove_leading_slash(depth_map_l))
                    # img_info_r['depth_map_path'] = osp.join(data_root, remove_leading_slash(depth_map_r))

                    img_info_l['img_path'] = osp.join(data_root, remove_leading_slash(img_l))
                    # img_info_r['filename'] = osp.join(data_root, remove_leading_slash(img_r))

                    img_info_l['depth_fields'] = []

                    filename = img_info_l['depth_map_path']
                    ext_name_l = filename.replace('Disp0', 'Extrinsics0')
                    ext_name_l = ext_name_l.replace('npy', 'txt')
                    ext_name_r = filename.replace('Disp0', 'Extrinsics1')
                    ext_name_r = ext_name_r.replace('npy', 'txt')
                    with open(ext_name_l, 'r') as f:
                        ext_l = f.readlines()
                    with open(ext_name_r, 'r') as f:
                        ext_r = f.readlines()
                    f = float(ext_l[0].split(' ')[0])
                    img_info_l['focal'] = f
                    base = abs(float(ext_l[1].split(' ')[3]) - float(ext_r[1].split(' ')[3]))
                    img_info_l['depth_factor'] = base * f

                    img_infos.append(img_info_l)
                    # img_infos.append(img_info_r)
        else:
            raise NotImplementedError 

        # github issue:: make sure the same order
        img_infos = sorted(img_infos, key=lambda x: x['img_path'])
        return img_infos
    
    
    def augment_image(self, image):
        # gamma augmentation
        gamma = random.uniform(0.9, 1.1)
        image_aug = image ** gamma

        # brightness augmentation
        if self.config.dataset == 'nyu':
            brightness = random.uniform(0.75, 1.25)
        else:
            brightness = random.uniform(0.9, 1.1)
        image_aug = image_aug * brightness

        # color augmentation
        colors = np.random.uniform(0.9, 1.1, size=3)
        white = np.ones((image.shape[0], image.shape[1]))
        color_image = np.stack([white * colors[i] for i in range(3)], axis=2)
        image_aug *= color_image
        image_aug = np.clip(image_aug, 0, 1)

        return image_aug
    
    def train_preprocess(self, image, depth_gt):
        if self.config.aug:
            # Random flipping
            do_flip = random.random()
            if do_flip > 0.5:
                image = (image[:, ::-1, :]).copy()
                depth_gt = (depth_gt[:, ::-1, :]).copy()

            # Random gamma, brightness, color augmentation
            do_augment = random.random()
            if do_augment > 0.5:
                image = self.augment_image(image)

        return image, depth_gt
    
    def get_crop_bbox(self, img):
        """Randomly get a crop bounding box."""
        margin_h = max(img.shape[0] - self.crop_size[0], 0)
        margin_w = max(img.shape[1] - self.crop_size[1], 0)
        offset_h = np.random.randint(0, margin_h + 1)
        offset_w = np.random.randint(0, margin_w + 1)
        crop_y1, crop_y2 = offset_h, offset_h + self.crop_size[0]
        crop_x1, crop_x2 = offset_w, offset_w + self.crop_size[1]

        return crop_y1, crop_y2, crop_x1, crop_x2

    def crop(self, img, crop_bbox, tmp=False):
        """Crop from ``img``"""
        
        crop_y1, crop_y2, crop_x1, crop_x2 = crop_bbox
        if tmp:
            templete = np.zeros((img.shape[0], img.shape[1], 1), dtype=np.float32)
            templete[crop_y1:crop_y2, crop_x1:crop_x2, :] = 1.0
            img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...]
            return img, templete
        
        else:
            img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...]
            return img
    
    def __getitem__(self, idx):

        img_file_path = self.data_infos[idx]['img_path']
        disp_path = self.data_infos[idx]['depth_map_path']
        depth_factor = self.data_infos[idx]['depth_factor']

        height=2160 
        width=3840
        image = np.fromfile(open(img_file_path, 'rb'), dtype=np.uint8).reshape(height, width, 3) / 255.0
        if self.config.get("use_rgb", False):
            image = image.astype(np.float32)[:, :, ::-1].copy()
        elif self.config.get("use_brg", False):
            image = image.astype(np.float32)[:, :, [0, 2, 1]].copy()
        elif self.config.get("use_gbr", False):
            image = image.astype(np.float32)[:, :, [1, 0, 2]].copy()
        elif self.config.get("use_rbg", False):
            image = image.astype(np.float32)[:, :, [2, 0, 1]].copy()
        elif self.config.get("use_grb", False):
            image = image.astype(np.float32)[:, :, [1, 2, 0]].copy()
        else:
            image = image.astype(np.float32)
            
        disp_gt = np.expand_dims(np.load(disp_path, mmap_mode='c'), -1)
        disp_gt = disp_gt.astype(np.float32)
        disp_gt_copy = disp_gt[:, :, 0].copy()
        
        depth_gt = depth_factor / disp_gt
        depth_gt[depth_gt > self.config.max_depth] = self.config.max_depth # for vis
        focal = self.data_infos[idx]['focal']

        
        bbox = None
        bboxs_res = None
        crop_areas = None
        bboxs_roi = None # hack for infer

        if self.mode == 'train':
            image, depth_gt = self.train_preprocess(image, depth_gt)
            img_temp = copy.deepcopy(image)
            depth_gt_temp = copy.deepcopy(depth_gt)
            
            if self.random_crop: # use in sec_stage
                if self.consistency_training:
                    crop_y1, crop_y2, crop_x1, crop_x2 = self.get_crop_bbox(image) # ensure the prob of crop is the same
                    while True:
                        # shift_x = random.randint(self.overlap_length//3, self.overlap_length)
                        # shift_y = random.randint(self.overlap_length//3, self.overlap_length)
                        shift_x = self.overlap_length_w
                        shift_y = self.overlap_length_h
                        if random.random() > 0.5:
                            shift_x = shift_x * -1
                        if random.random() > 0.5:
                            shift_y = shift_y * -1
                        crop_y1_shift, crop_y2_shift, crop_x1_shift, crop_x2_shift = crop_y1 + shift_y, crop_y2 + shift_y, crop_x1 + shift_x, crop_x2 + shift_x
                        if crop_y1_shift > 0 and crop_x1_shift > 0 and crop_y2_shift < image.shape[0] and crop_x2_shift < image.shape[1]:
                            break
                    bbox_ori = (crop_y1, crop_y2, crop_x1, crop_x2)
                    bbox_shift = (crop_y1_shift, crop_y2_shift, crop_x1_shift, crop_x2_shift)
                    image_ori, crop_area_ori = self.crop(image, bbox_ori, tmp=True)
                    image_shift, crop_area_shift = self.crop(image, bbox_shift, tmp=True)
                    depth_gt_ori = self.crop(depth_gt, bbox_ori)
                    depth_gt_shift = self.crop(depth_gt, bbox_shift)
                    disp_gt_copy_ori = self.crop(disp_gt_copy, bbox_ori)
                    disp_gt_copy_shift = self.crop(disp_gt_copy, bbox_shift)

                    bboxs_ori = torch.tensor([crop_x1 / width * 512, crop_y1 / height * 384, crop_x2 / width * 512, crop_y2 / height * 384])
                    bboxs_shift = torch.tensor([crop_x1_shift / width * 512, crop_y1_shift / height * 384, crop_x2_shift / width * 512, crop_y2_shift / height * 384])
                    bboxs_raw = torch.tensor([crop_x1, crop_y1, crop_x2, crop_y2]) 
                    bboxs_raw_shift = torch.tensor([crop_x1_shift, crop_y1_shift, crop_x2_shift, crop_y2_shift]) 


                else:
                    bbox = self.get_crop_bbox(image)
                    image, crop_area = self.crop(image, bbox, tmp=True)
                    depth_gt = self.crop(depth_gt, bbox)
                    disp_gt_copy = self.crop(disp_gt_copy, bbox)

                    crop_y1, crop_y2, crop_x1, crop_x2 = bbox
                    bboxs_res = torch.tensor([crop_x1 / width * 512, crop_y1 / height * 384, crop_x2 / width * 512, crop_y2 / height * 384]) # coord in 384, 512
                    bboxs_raw = torch.tensor([crop_x1, crop_y1, crop_x2, crop_y2]) 


            mask = np.logical_and(depth_gt > self.config.min_depth,
                                  depth_gt < self.config.max_depth).squeeze()[None, ...]
            mask_raw = np.logical_and(depth_gt_temp > self.config.min_depth, depth_gt_temp < self.config.max_depth).squeeze()[None, ...]
            sample = {'image': image, 'depth': depth_gt, 'focal': focal, 'mask': mask, 'image_raw': image.copy(), 'mask_raw': mask_raw, 'image_path': img_file_path}
            
            if self.random_crop:
                if self.consistency_training:
                    image = np.concatenate([image_ori, image_shift], axis=-1)
                    depth_gt = np.concatenate([depth_gt_ori, depth_gt_shift], axis=-1)
                    crop_area = np.concatenate([crop_area_ori, crop_area_shift], axis=-1)
                    bboxs_res = torch.cat([bboxs_ori, bboxs_shift], dim=-1)
                    bboxes_raw_res = torch.cat([bboxs_raw, bboxs_raw_shift], dim=-1)
                    mask = np.logical_and(depth_gt > self.config.min_depth,
                                          depth_gt < self.config.max_depth)

                    # hack the sample dict
                    sample['image'] = image
                    sample['depth'] = depth_gt
                    sample['crop_area'] = crop_area
                    sample['bbox'] = bboxs_res
                    sample['bbox_raw'] = bboxes_raw_res
                    sample['shift'] = torch.tensor([shift_y, shift_x]) # h direction, then w direction
                    sample['mask'] = mask
                        
                else:
                    if bboxs_res is not None:
                        sample['bbox'] = bboxs_res
                        sample['bbox_raw'] = bboxs_raw
                    sample['crop_area'] = crop_area

            if self.sampled_training:
                self.data_sampler(sample, disp_gt_copy)

                # update mask
                sample_points = sample['sample_points']
                sample_mask = np.logical_and(sample_points[:, -1] > self.config.min_depth,
                                             sample_points[:, -1] < self.config.max_depth).squeeze()[None, ...]
                sample['sample_mask'] = sample_mask

            
        else:
            # nothing needs to be changed for consistency training.

            img_temp = copy.deepcopy(image)
            depth_gt_temp = copy.deepcopy(depth_gt)
            
            if self.sec_stage:
                # x_start, y_start = [0, 540, 1080, 1620], [0, 960, 1920, 2880]
                x_start, y_start = [0 + 3 * self.overlap / 2, 540 + self.overlap / 2, 1080 - self.overlap / 2, 1620 - 3 * self.overlap / 2], \
                    [0 + 3 * self.overlap / 2, 960 + self.overlap / 2, 1920 - self.overlap / 2, 2880 - 3 * self.overlap / 2]
                img_crops = []
                bboxs_roi = []
                crop_areas = []
                bboxs_raw_list = []
                for x in x_start:
                    for y in y_start:
                        bbox = (int(x), int(x+540), int(y), int(y+960))
                        img_crop, crop_area = self.crop(image, bbox, tmp=True)
                        img_crops.append(img_crop)
                        crop_areas.append(crop_area)
                        crop_y1, crop_y2, crop_x1, crop_x2 = bbox
                        bbox_roi = torch.tensor([crop_x1 / width * 512, crop_y1 / height * 384, crop_x2 / width * 512, crop_y2 / height * 384])
                        bboxs_roi.append(bbox_roi)
                        bboxs_raw = torch.tensor([crop_x1, crop_y1, crop_x2, crop_y2]) 
                        bboxs_raw_list.append(bboxs_raw)

                image = img_crops
                bboxs_roi = torch.stack(bboxs_roi, dim=0)
                bboxs_raw = torch.stack(bboxs_raw_list, dim=0)

                # bbox = (820, 1360 ,1440, 2400) # a hack version for quick evaluation
                # image = self.crop(image, bbox)
                # depth_gt = self.crop(depth_gt, bbox)
                # disp_gt_copy = self.crop(disp_gt_copy, bbox)

            mask = np.logical_and(depth_gt > self.config.min_depth,
                                  depth_gt < self.config.max_depth).squeeze()[None, ...]
            
            disp_gt_edges = get_boundaries(disp_gt_copy, th=1, dilation=0)

            if self.mode == 'online_eval':
                sample = {'image': image, 'depth': depth_gt, 'focal': focal, 'has_valid_depth': True,
                          'image_path': img_file_path, 'depth_path': disp_path, 'depth_factor_path': depth_factor,
                          'mask': mask, 'image_raw': image.copy(), 'disp_gt_edges': disp_gt_edges, 'image_path': img_file_path}
                if bboxs_roi is not None:
                    sample['bbox'] = bboxs_roi
                    sample['bbox_raw'] = bboxs_raw
                if crop_areas is not None:
                    sample['crop_area'] = crop_areas
                

            else:
                sample = {'image': image, 'focal': focal, 'image_raw': image.copy(), 'disp_gt_edges': disp_gt_edges, 'image_path': img_file_path}
                if bboxs_roi is not None:
                    sample['bbox'] = bboxs_roi
                    sample['bbox_raw'] = bboxs_raw
                if crop_areas is not None:
                    sample['crop_area'] = crop_areas
                
        if self.transform:
            sample['img_temp'] = img_temp
            sample['depth_gt_temp'] = depth_gt_temp
            sample = self.transform(sample)

        sample['dataset'] = self.config.dataset
        return sample

    def __len__(self):
        return len(self.data_infos)


def get_u4k_loader(config, mode, transform):
    if mode == 'train':
        dataset = U4KDataset(config, mode, config.data_path, config.filenames_train)
        dataset[0]

        if config.distributed:
            train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
        else:
            train_sampler = None
        
        dataloader = DataLoader(dataset,
                                batch_size=config.batch_size,
                                shuffle=(train_sampler is None),
                                num_workers=config.workers,
                                pin_memory=True,
                                persistent_workers=True,
                                sampler=train_sampler)
    
    elif mode == 'train_save':
        dataset = U4KDataset(config, 'online_eval', config.data_path, config.filenames_train)

        if config.distributed:
            train_sampler = None
        else:
            train_sampler = None
        
        dataloader = DataLoader(dataset, 1,
                                shuffle=False,
                                num_workers=1,
                                pin_memory=False,
                                sampler=train_sampler)
            

    elif mode == 'online_eval':
        dataset = U4KDataset(config, mode, config.data_path, config.filenames_val)
        # dataset = U4KDataset(config, mode, config.data_path, config.filenames_train)


        if config.distributed:  # redundant. here only for readability and to be more explicit
            # Give whole test set to all processes (and report evaluation only on one) regardless
            eval_sampler = None
        else:
            eval_sampler = None

        dataloader = DataLoader(dataset, 1,
                                shuffle=False,
                                num_workers=1,
                                pin_memory=False,
                                sampler=eval_sampler)
        
    else:
        dataset = U4KDataset(config, mode, config.data_path, config.filenames_test)
        dataloader = DataLoader(dataset, 1, shuffle=False, num_workers=1)
        
    return dataloader