File size: 14,672 Bytes
78ab311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# MIT License

# Copyright (c) 2022 Intelligent Systems Lab Org

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# File author: Shariq Farooq Bhat, Zhenyu Li

import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from tqdm.auto import tqdm
from torchvision.transforms import ToTensor, ToPILImage
from typing import List, Tuple
from PIL import Image
# from models.monodepth.zoedepth import ZoeDepthLora
# from zoedepth.utils.align.loss import SILogLoss, gradl1_loss, edge_aware_smoothness_per_pixel, ssim_loss
from .loss import *
import cv2
from zoedepth.trainers.loss import *
# from utils.misc import *



@torch.no_grad()
def scale_shift_linear(rendered_depth, predicted_depth, mask, fuse=True, return_params=False):
    """
    Optimize a scale and shift parameter in the least squares sense, such that rendered_depth and predicted_depth match.
    Formally, solves the following objective:

    min     || (d * a + b) - d_hat ||
    a, b

    where d = 1 / predicted_depth, d_hat = 1 / rendered_depth

    :param rendered_depth: torch.Tensor (H, W)
    :param predicted_depth:  torch.Tensor (H, W)
    :param mask: torch.Tensor (H, W) - 1: valid points of rendered_depth, 0: invalid points of rendered_depth (ignore)
    :param fuse: whether to fuse shifted/scaled predicted_depth with the rendered_depth

    :return: scale/shift corrected depth
    """
    if mask.sum() == 0:
        return predicted_depth

    # rendered_disparity = 1 / rendered_depth[mask].unsqueeze(-1)
    # predicted_disparity = 1 / predicted_depth[mask].unsqueeze(-1)

    rendered_disparity = rendered_depth[mask].unsqueeze(-1)
    predicted_disparity = predicted_depth[mask].unsqueeze(-1)

    X = torch.cat([predicted_disparity, torch.ones_like(predicted_disparity)], dim=1)
    XTX_inv = (X.T @ X).inverse()
    XTY = X.T @ rendered_disparity
    AB = XTX_inv @ XTY

    if return_params:
        return AB

    fixed_disparity = (predicted_depth) * AB[0] + AB[1]
    fixed_depth = fixed_disparity

    if fuse:
        fused_depth = torch.where(mask, rendered_depth, fixed_depth)
        return fused_depth
    else:
        return fixed_depth
    

def np_scale_shift_linear(rendered_depth: np.ndarray, predicted_depth: np.ndarray, mask: np.ndarray, fuse: bool=True):
    """
    Optimize a scale and shift parameter in the least squares sense, such that rendered_depth and predicted_depth match.
    Formally, solves the following objective:

    min     || (d * a + b) - d_hat ||
    a, b

    where d = predicted_depth, d_hat = rendered_depth

    :param rendered_depth: np.ndarray (H, W)
    :param predicted_depth:  np.ndarray (H, W)
    :param mask: np.ndarray (H, W) - 1: valid points of rendered_depth, 0: invalid points of rendered_depth (ignore)
    :param fuse: whether to fuse shifted/scaled predicted_depth with the rendered_depth

    :return: scale/shift corrected depth
    """
    if mask.sum() == 0:
        return predicted_depth

    # rendered_disparity = 1 / rendered_depth[mask].reshape(-1, 1)
    # predicted_disparity = 1 / predicted_depth[mask].reshape(-1, 1)

    rendered_disparity = rendered_depth[mask].reshape(-1, 1)
    predicted_disparity = predicted_depth[mask].reshape(-1, 1)

    X = np.concatenate([predicted_disparity, np.ones_like(predicted_disparity)], axis=1)
    XTX_inv = np.linalg.inv(X.T @ X)
    XTY = X.T @ rendered_disparity
    AB = XTX_inv @ XTY

    fixed_disparity = (predicted_depth) * AB[0] + AB[1]
    fixed_depth = fixed_disparity

    if fuse:
        fused_depth = np.where(mask, rendered_depth, fixed_depth)
        return fused_depth
    else:
        return fixed_depth


@torch.no_grad()
def apply_depth_smoothing(depth, mask):

    def dilate(x, k=3):
        x = as_bchw_tensor(x.float(), 1)
        x = torch.nn.functional.conv2d(x.float(),
            torch.ones(1, 1, k, k).to(x.device),
            padding="same"
        )
        return x.squeeze() > 0

    def sobel(x):
        flipped_sobel_x = torch.tensor([
            [-1, 0, 1],
            [-2, 0, 2],
            [-1, 0, 1]
        ], dtype=torch.float32).to(x.device)
        flipped_sobel_x = torch.stack([flipped_sobel_x, flipped_sobel_x.t()]).unsqueeze(1)

        x_pad = torch.nn.functional.pad(x.float(), (1, 1, 1, 1), mode="replicate")

        x = torch.nn.functional.conv2d(
            x_pad,
            flipped_sobel_x,
            padding="valid"
        )
        dx, dy = x.unbind(dim=-3)
        # return torch.sqrt(dx**2 + dy**2).squeeze()
        # new content is created mostly in x direction, sharp edges in y direction are wanted (e.g. table --> wall)
        return dx

    depth = as_bchw_tensor(depth, 1)
    mask = as_bchw_tensor(mask, 1).float()

    edges = sobel(mask)
    dilated_edges = dilate(edges, k=21)

    depth_numpy = depth.squeeze().float().cpu().numpy()
    blur_bilateral = cv2.bilateralFilter(depth_numpy, 5, 140, 140)
    blur_gaussian = cv2.GaussianBlur(blur_bilateral, (5, 5), 0)
    blur_gaussian = torch.from_numpy(blur_gaussian).to(depth)
    # print("blur_gaussian", blur_gaussian.shape)
    # plt.imshow(blur_gaussian.cpu().squeeze().numpy())
    # plt.title("depth smoothed whole")
    # plt.show()
    depth_smooth = torch.where(dilated_edges, blur_gaussian, depth)
    return depth_smooth

def get_dilated_only_mask(mask: torch.Tensor, k=7):
    x = as_bchw_tensor(mask.float(), 1)
    x = torch.nn.functional.conv2d(x, torch.ones(1, 1, k, k).to(mask.device),padding="same")
    dilated = x.squeeze() > 0
    dilated_only = dilated ^ mask 
    return dilated_only

def get_boundary_mask(mask: torch.Tensor, k=7):
    return get_dilated_only_mask(mask, k=k) | get_dilated_only_mask(~mask, k=k)


@torch.no_grad()
def ss_align_and_blur(rendered_depth: torch.Tensor, predicted_depth: torch.Tensor, mask: torch.Tensor, fuse: bool=True):
    aligned = scale_shift_linear(rendered_depth, predicted_depth, mask, fuse=fuse)
    aligned = apply_depth_smoothing(aligned, mask)
    return aligned


def np_ss_align_and_blur(rendered_depth: np.ndarray, predicted_depth: np.ndarray, mask: np.ndarray, fuse: bool=True):
    aligned = np_scale_shift_linear(rendered_depth, predicted_depth, mask, fuse=fuse)
    aligned = apply_depth_smoothing(aligned, mask).cpu().numpy()
    return aligned



def stitch(depth_src: torch.Tensor, depth_target: torch.Tensor, mask_src: torch.Tensor, smoothen=True, device='cuda:0'):
    depth_src = as_bchw_tensor(depth_src, 1, device=device)
    depth_target = as_bchw_tensor(depth_target, 1, device=device)
    mask_src = as_bchw_tensor(mask_src, 1, device=device)

    stitched = depth_src * mask_src.float() + depth_target * (~mask_src).float()
    # plt.imshow(stitched.cpu().squeeze().numpy())
    # plt.title("stitched before smoothing")
    # plt.show()
    # apply smoothing
    if smoothen:
        stitched = apply_depth_smoothing(stitched, mask_src).squeeze().float()
    return stitched









def smoothness_loss(depth, mask=None):
    depth_grad_x = torch.abs(depth[:, :, :, :-1] - depth[:, :, :, 1:])
    depth_grad_y = torch.abs(depth[:, :, :-1, :] - depth[:, :, 1:, :])
    if mask is not None:
        return torch.mean(depth_grad_x[mask[:, :, :, :-1]]) + torch.mean(depth_grad_y[mask[:, :, :-1, :]])
    return torch.mean(depth_grad_x) + torch.mean(depth_grad_y)

import torch.optim as optim
from torch.optim import lr_scheduler
def finetune_on_sample(model, image_pil, target_depth, mask=None, 
                       iters=10, lr=0.1, beta=0.5, w_boundary_grad=1, w_grad=0.1, gamma=0.99):
    model.train()
    model_device = next(model.parameters()).device
    x = as_bchw_tensor(image_pil, 3, device=model_device)
    target_depth = as_bchw_tensor(target_depth, 1, device=model_device)
    if mask is None:
        mask = target_depth > 0
    elif (not isinstance(mask, torch.Tensor)) or mask.shape != target_depth.shape:
        mask = as_bchw_tensor(mask, 1, device=model_device).to(torch.bool)
        
    
    history = []
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    # scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=gamma)
    scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=lr, steps_per_epoch=iters, epochs=1)
    # main_loss = nn.L1Loss()
    main_loss = SILogLoss(beta=beta)

    orig_y = model.infer(x, with_flip_aug=False).detach()

    # scale, shift = scale_shift_linear(target_depth, orig_y, mask, return_params=True)

    gl1 = gradl1_loss
    pbar = tqdm(range(iters), desc="Finetuning on sample")
    for i in pbar:
        optimizer.zero_grad()
        y = model.infer(x, with_flip_aug=False)
        # y = y * scale + shift
        stitched = y * (~mask).float() + (target_depth * (mask).float()).detach()
        # loss = F.mse_loss(y[mask], target_depth[mask])
        loss_si = main_loss(y[mask], target_depth[mask])
        # loss = loss_si \
        #     + wgrad * ( gl1(y, stitched) \
        #                + 2*gl1(y, orig_y) ) \
        #         + wboundary_smoothness * smoothness_loss(y, mask=get_boundary_mask(mask))
        loss_grad = gl1(y, orig_y)

        bmask = get_boundary_mask(mask)
        loss_boundary_grad = laplacian_matching_loss(stitched, orig_y, bmask)
        loss = loss_si + w_boundary_grad * loss_boundary_grad + w_grad * loss_grad

        # check if loss is nan
        if torch.isnan(loss):
            print("Loss is nan, breaking")
            break
        loss.backward()

        optimizer.step()
        scheduler.step()
        # history.append(loss.item())

        pbar.set_postfix(loss=loss.item(), si=loss_si.item())
    model.eval()
    return model, history

# def align_by_finetuning_lora(model: ZoeDepthLora, image, target_depth, mask=None, iters=10, lr=0.1, gamma=0.99, **kwargs):
#     # model.reset_lora()
#     model.set_only_lora_trainable()
#     model, history = finetune_on_sample(model, image, target_depth, mask=mask, iters=iters, lr=lr, gamma=gamma)
#     aligned_depth = model.infer(as_bchw_tensor(image, 3, device=next(model.parameters()).device))
#     return dict(model=model, history=history, aligned_depth=aligned_depth)






import torch.nn as nn
import torch.nn.functional as F
# from utils.misc import as_bchw_tensor

def as_bchw_tensor(input_tensor, num, device):
    input_tensor = torch.tensor(input_tensor).unsqueeze(dim=0).unsqueeze(dim=0).cuda()
    return input_tensor

def optimize_depth_deformation(rendered_depth, pred_depth, mask, h=10, w=10, iters=100, init_lr=0.1, gamma=0.996,
                                init_deformation=None,
                                device='cuda:0'):
    rendered_depth = as_bchw_tensor(rendered_depth, 1, device=device)
    pred_depth = as_bchw_tensor(pred_depth, 1, device=device)
    mask = as_bchw_tensor(mask, 1, device=device).to(torch.bool)
    # initialize a grid of scalar values (with zeros) that will be optimized
    # to deform the depth map
    if init_deformation is None:
        deformation = torch.zeros((1,1,h,w), requires_grad=True, device=device)
    else:
        deformation = init_deformation
        deformation.requires_grad = True
        assert deformation.shape == (1,1,h,w)

    optimizer = torch.optim.Adam([deformation], lr=init_lr)
    # exponential LR schedule
    scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=gamma)
    # optimize the deformation
    history = []
    grad_loss = GradL1Loss()
    for i in tqdm(range(iters)):
        scalar_deformation = torch.exp(deformation)
        scalar_deformation = F.interpolate(scalar_deformation, size=pred_depth.shape[-2:], mode='bilinear', align_corners=True)
        adjusted_depth = pred_depth * scalar_deformation
        loss = F.mse_loss(adjusted_depth[mask], rendered_depth[mask], reduction='none')
        loss_g = grad_loss(adjusted_depth, rendered_depth, mask)
        loss = loss.mean() + 0.1*loss_g
        # loss = loss.mean()
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        scheduler.step()
        if i % 10 == 0:
            history.append(loss.item())
    
    scalar_deformation = torch.exp(deformation)
    scalar_deformation = F.interpolate(scalar_deformation, size=pred_depth.shape[-2:], mode='bilinear', align_corners=True)
    adjusted_depth = pred_depth * scalar_deformation
    # return dict(aligned_depth=adjusted_depth.detach().cpu().numpy().squeeze(), 
    #             history=history, 
    #             deformation=deformation)
    return adjusted_depth.detach().cpu().squeeze()

def stage_wise_optimization(rendered_depth, pred_depth, mask,
                            stages=[(4,4), (8,8), (16,16), (32,32)], 
                            iters=100, init_lr=0.1, gamma=0.996, device='cuda:1'):
    
    h_init, w_init = stages[0]
    init_deformation = torch.zeros((1,1,h_init,w_init), device=device)
    result = optimize_depth_deformation(rendered_depth, pred_depth, mask, h=h_init, w=w_init, iters=iters, init_lr=init_lr, gamma=gamma, init_deformation=init_deformation, device=device)
    init_deformation = result['deformation']
    history_stages = [result['history']]
    for h, w in stages[1:]:
        init_deformation = F.interpolate(init_deformation, size=(h,w), mode='bilinear', align_corners=True).detach()
        result = optimize_depth_deformation(rendered_depth, pred_depth, mask, h=h, w=w, iters=iters, init_lr=init_lr, gamma=gamma, init_deformation=init_deformation, device=device)
        init_deformation = result['deformation']
        history_stages.append(result['history'])
        init_lr *= gamma**2
    
    return dict(aligned_depth=result['aligned_depth'], history_stages=history_stages)