Spaces:
Runtime error
Runtime error
File size: 17,172 Bytes
78ab311 e773e71 51946d3 78ab311 72075ba 78ab311 51946d3 78ab311 254d800 78ab311 51946d3 72075ba 78ab311 72075ba 78ab311 72075ba 78ab311 3555a61 78ab311 365aa43 78ab311 51946d3 e773e71 254d800 e773e71 3555a61 4ac0a25 3555a61 78ab311 72075ba 78ab311 2c2bb01 78ab311 72075ba 78ab311 72075ba 78ab311 51946d3 78ab311 9d27c6d 4ac0a25 9d27c6d 3555a61 4ac0a25 9d27c6d 51946d3 9d27c6d 78ab311 3555a61 72075ba 3555a61 72075ba 4ac0a25 72075ba 78ab311 3555a61 51946d3 72075ba 379bdb1 3555a61 379bdb1 72075ba 78ab311 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Zhenyu Li
import gc
import copy
from ControlNet.share import *
import einops
import torch
import random
import ControlNet.config as config
from pytorch_lightning import seed_everything
from ControlNet.cldm.model import create_model, load_state_dict
from ControlNet.cldm.ddim_hacked import DDIMSampler
import gradio as gr
import torch
import numpy as np
from zoedepth.utils.arg_utils import parse_unknown
import argparse
from zoedepth.models.builder import build_model
from zoedepth.utils.config import get_config_user
import gradio as gr
from ui_prediction import predict_depth
import torch.nn.functional as F
from huggingface_hub import hf_hub_download
import matplotlib
from PIL import Image
import tempfile
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
def depth_load_state_dict(model, state_dict):
"""Load state_dict into model, handling DataParallel and DistributedDataParallel. Also checks for "model" key in state_dict.
DataParallel prefixes state_dict keys with 'module.' when saving.
If the model is not a DataParallel model but the state_dict is, then prefixes are removed.
If the model is a DataParallel model but the state_dict is not, then prefixes are added.
"""
state_dict = state_dict.get('model', state_dict)
# if model is a DataParallel model, then state_dict keys are prefixed with 'module.'
do_prefix = isinstance(
model, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel))
state = {}
for k, v in state_dict.items():
if k.startswith('module.') and not do_prefix:
k = k[7:]
if not k.startswith('module.') and do_prefix:
k = 'module.' + k
state[k] = v
model.load_state_dict(state, strict=True)
print("Loaded successfully")
return model
def load_wts(model, checkpoint_path):
ckpt = torch.load(checkpoint_path, map_location='cpu')
return depth_load_state_dict(model, ckpt)
def load_ckpt(model, checkpoint):
model = load_wts(model, checkpoint)
print("Loaded weights from {0}".format(checkpoint))
return model
pf_ckp = hf_hub_download(repo_id="zhyever/PatchFusion", filename="patchfusion_u4k.pt")
parser = argparse.ArgumentParser()
parser.add_argument("--ckp_path", type=str, default=pf_ckp)
parser.add_argument("-m", "--model", type=str, default="zoedepth_custom")
parser.add_argument("--model_cfg_path", type=str, default="./zoedepth/models/zoedepth_custom/configs/config_zoedepth_patchfusion.json")
args, unknown_args = parser.parse_known_args()
overwrite_kwargs = parse_unknown(unknown_args)
overwrite_kwargs['model_cfg_path'] = args.model_cfg_path
overwrite_kwargs["model"] = args.model
config_depth = get_config_user(args.model, **overwrite_kwargs)
config_depth["pretrained_resource"] = ''
depth_model = build_model(config_depth)
depth_model = load_ckpt(depth_model, args.ckp_path)
depth_model.eval()
controlnet_ckp = hf_hub_download(repo_id="zhyever/PatchFusion", filename="control_sd15_depth.pth")
model = create_model('./ControlNet/models/cldm_v15.yaml')
model.load_state_dict(load_state_dict(controlnet_ckp, location=DEVICE), strict=False)
model = model.to(DEVICE)
ddim_sampler = DDIMSampler(model)
def colorize(value, cmap='magma_r', vmin=None, vmax=None):
percentile = 0.03
vmin = np.percentile(value, percentile)
vmax = np.percentile(value, 100 - percentile)
if vmin != vmax:
value = (value - vmin) / (vmax - vmin) # vmin..vmax
else:
value = value * 0.
cmapper = matplotlib.cm.get_cmap(cmap)
value = cmapper(value, bytes=True) # ((1)xhxwx4)
value = value[:, :, :3] # bgr -> rgb
# rgb_value = value[..., ::-1]
rgb_value = value
rgb_value = np.transpose(rgb_value, (2, 0, 1))
rgb_value = rgb_value[np.newaxis, ...]
return rgb_value
def colorize_depth_maps(depth_map, min_depth=0, max_depth=0, cmap='Spectral_r', valid_mask=None):
"""
Colorize depth maps.
"""
percentile = 0.03
min_depth = np.percentile(depth_map, percentile)
max_depth = np.percentile(depth_map, 100 - percentile)
assert len(depth_map.shape) >= 2, "Invalid dimension"
if isinstance(depth_map, torch.Tensor):
depth = depth_map.detach().clone().squeeze().numpy()
elif isinstance(depth_map, np.ndarray):
depth = depth_map.copy().squeeze()
# reshape to [ (B,) H, W ]
if depth.ndim < 3:
depth = depth[np.newaxis, :, :]
# colorize
cm = matplotlib.colormaps[cmap]
depth = ((depth - min_depth) / (max_depth - min_depth)).clip(0, 1)
img_colored_np = cm(depth, bytes=False)[:,:,:,0:3] # value from 0 to 1
img_colored_np = np.rollaxis(img_colored_np, 3, 1)
if valid_mask is not None:
if isinstance(depth_map, torch.Tensor):
valid_mask = valid_mask.detach().numpy()
valid_mask = valid_mask.squeeze() # [H, W] or [B, H, W]
if valid_mask.ndim < 3:
valid_mask = valid_mask[np.newaxis, np.newaxis, :, :]
else:
valid_mask = valid_mask[:, np.newaxis, :, :]
valid_mask = np.repeat(valid_mask, 3, axis=1)
img_colored_np[~valid_mask] = 0
if isinstance(depth_map, torch.Tensor):
img_colored = torch.from_numpy(img_colored_np).float()
elif isinstance(depth_map, np.ndarray):
img_colored = img_colored_np
return img_colored
def hack_process(path_input, path_depth=None, path_gen=None):
if path_depth is not None and path_gen is not None:
return path_input, path_depth, path_gen
def rescale(A, lbound=-1, ubound=1):
"""
Rescale an array to [lbound, ubound].
Parameters:
- A: Input data as numpy array
- lbound: Lower bound of the scale, default is 0.
- ubound: Upper bound of the scale, default is 1.
Returns:
- Rescaled array
"""
A_min = np.min(A)
A_max = np.max(A)
return (ubound - lbound) * (A - A_min) / (A_max - A_min) + lbound
def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, mode, patch_number, resolution, patch_size, color_map):
with torch.no_grad():
w, h = input_image.size
depth_model.to(DEVICE)
detected_map = predict_depth(depth_model, input_image, mode, patch_number, resolution, patch_size, device=DEVICE)
detected_map_save = copy.deepcopy(detected_map)
tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
detected_map_save = Image.fromarray((detected_map_save*256).astype('uint16'))
detected_map_save.save(tmp.name)
depth_model.cpu() # free some mem
gc.collect()
torch.cuda.empty_cache()
if color_map == 'magma':
colored_depth = colorize(detected_map)
elif color_map == 'gray':
colored_depth = colorize(detected_map, cmap='gray_r')
else:
colored_depth = colorize_depth_maps(detected_map) * 255
detected_map = F.interpolate(torch.from_numpy(detected_map).unsqueeze(dim=0).unsqueeze(dim=0), (image_resolution, image_resolution), mode='bicubic', align_corners=True).squeeze().numpy()
H, W = detected_map.shape
detected_map_temp = ((1 - detected_map / (np.max(detected_map + 1e-3))) * 255)
detected_map = detected_map_temp.astype("uint8")
detected_map_temp = detected_map_temp[:, :, None]
detected_map_temp = np.concatenate([detected_map_temp, detected_map_temp, detected_map_temp], axis=2)
detected_map = detected_map[:, :, None]
detected_map = np.concatenate([detected_map, detected_map, detected_map], axis=2)
control = torch.from_numpy(detected_map.copy()).float().to(DEVICE) / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
shape = (4, H // 8, W // 8)
if config.save_memory:
model.low_vram_shift(is_diffusing=True)
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
x_samples = model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255)
results = [x_samples[i] for i in range(num_samples)]
return_list = [colored_depth] + results
update_return_list = []
for idx, r in enumerate(return_list):
if idx == 0:
t_r = torch.from_numpy(r)
else:
t_r = torch.from_numpy(r).unsqueeze(dim=0).permute(0, 3, 1, 2)
# t_r = F.interpolate(t_r, (h, w), mode='bicubic', align_corners=True).squeeze().permute(1, 2, 0).numpy().astype(np.uint8)
t_r = t_r.squeeze().permute(1, 2, 0).numpy().astype(np.uint8)
update_return_list.append(t_r)
update_return_list.append(tmp.name)
return update_return_list
title = "# PatchFusion"
description = """Official demo for **PatchFusion: An End-to-End Tile-Based Framework for High-Resolution Monocular Metric Depth Estimation**.
PatchFusion is a deep learning model for high-resolution metric depth estimation from a single image.
Please refer to our [project webpage](https://zhyever.github.io/patchfusion), [paper](https://arxiv.org/abs/2312.02284) or [github](https://github.com/zhyever/PatchFusion) for more details.
**Running PatchFusion depth estimation pipeline needs about 12GB memory on 4K images.**
# Advanced tips
The overall pipeline: image --> (PatchFusion) --> depth --> (controlnet) --> generated image.
As for the PatchFusion, it works on default 4k (2160x3840) resolution. All input images will be resized to 4k before passing through PatchFusion as default. It means if you have a higher resolution image, you might want to increase the processing resolution in the advanced option (You would also change the patch size to 1/4 image resolution). Because of the tiling strategy, our PatchFusion would not use more memory or time for even higher resolution inputs if properly setting parameters.
The output depth map is resized to the original image resolution. Download for better visualization quality. 16-Bit Raw Depth = (pred_depth * 256).to(uint16).
We provide three color maps to render depth map, which are magma (more common in supervised depth estimation), spectral (better looking), and gray (thanks for the suggestion from petermg ). Please choose from the advanced option.
For ControlNet, it works on default 896x896 resolution. Again, all input images will be resized to 896x896 before passing through ControlNet as default. You might be not happy because the 4K->896x896 downsampling, but limited by the GPU resource, this demo could only achieve this. This is the memory bottleneck. The output is not resized back to the image resolution for fast inference (Well... It's still so slow now... :D).
"""
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
gr.Markdown("## Control Stable Diffusion with Depth Maps")
with gr.Row():
with gr.Accordion("Advanced options", open=False):
# mode = gr.Radio(["P49", "R"], label="Tiling mode", info="We recommand using P49 for fast evaluation and R with 1024 patches for best visualization results, respectively", elem_id='mode', value='R')
mode = gr.Radio(["P49", "R"], label="Tiling mode", info="We recommand using P49 for fast evaluation and R with 1024 patches for best visualization results, respectively", elem_id='mode', value='P49')
patch_number = gr.Slider(1, 1024, label="Please decide the number of random patches (Only useful in mode=R)", step=1, value=256)
resolution = gr.Textbox(label="(PatchFusion) Proccessing resolution (Default 4K. Use 'x' to split height and width.)", elem_id='mode', value='2160x3840')
patch_size = gr.Textbox(label="(PatchFusion) Patch size (Default 1/4 of image resolution. Use 'x' to split height and width.)", elem_id='mode', value='540x960')
color_map = gr.Radio(["magma", "spectral", "gray"], label="Colormap used to render depth map", elem_id='mode', value='magma')
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
image_resolution = gr.Slider(label="ControlNet image resolution (higher resolution will lead to OOM)", minimum=256, maximum=1024, value=896, step=64)
strength = gr.Slider(label="Control strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
# detect_resolution = gr.Slider(label="Depth Resolution", minimum=128, maximum=1024, value=384, step=1)
ddim_steps = gr.Slider(label="steps", minimum=1, maximum=100, value=20, step=1)
scale = gr.Slider(label="guidance scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = gr.Slider(label="seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
eta = gr.Number(label="eta (DDIM)", value=0.0)
a_prompt = gr.Textbox(label="Added prompt", value='best quality, extremely detailed')
n_prompt = gr.Textbox(label="Negative prompt", value='worst quality, low quality, lose details')
with gr.Row():
with gr.Column():
# input_image = gr.Image(source='upload', type="pil")
input_image = gr.Image(label="Input Image", type='pil')
prompt = gr.Textbox(label="Prompt (input your description)", value='A cozy cottage in an oil painting, with rich textures and vibrant green foliage')
run_button = gr.Button("Run")
generated_image = gr.Image(label="Generated Map", elem_id='img-display-output')
with gr.Row():
depth_image = gr.Image(label="Depth Map", elem_id='img-display-output')
with gr.Row():
raw_file = gr.File(label="16-Bit Raw Depth, Multiplier:256")
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, mode, patch_number, resolution, patch_size, color_map]
run_button.click(fn=process, inputs=ips, outputs=[depth_image, generated_image, raw_file])
examples = gr.Examples(
inputs=[input_image, depth_image, generated_image],
outputs=[input_image, depth_image, generated_image],
examples=[
[
"examples/example_4.jpeg",
"examples/2_depth.png",
"examples/2_gen.png",
],
[
"examples/example_6.png",
"examples/4_depth.png",
"examples/4_gen.png",
],
[
"examples/example_1.jpeg",
"examples/1_depth.png",
"examples/1_gen.png",
],],
cache_examples=True,
fn=hack_process)
if __name__ == '__main__':
demo.queue().launch(share=True) |