Spaces:
Runtime error
Runtime error
File size: 36,512 Bytes
78ab311 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 |
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Shariq Farooq Bhat
# This file is partly inspired from BTS (https://github.com/cleinc/bts/blob/master/pytorch/bts_dataloader.py); author: Jin Han Lee
# This file may include modifications from author Zhenyu Li
import itertools
import os
import random
import numpy as np
import cv2
import torch
import torch.nn as nn
import torch.utils.data.distributed
from zoedepth.utils.easydict import EasyDict as edict
from PIL import Image, ImageOps
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from zoedepth.utils.config import change_dataset
from .ddad import get_ddad_loader
from .diml_indoor_test import get_diml_indoor_loader
from .diml_outdoor_test import get_diml_outdoor_loader
from .diode import get_diode_loader
from .hypersim import get_hypersim_loader
from .ibims import get_ibims_loader
from .sun_rgbd_loader import get_sunrgbd_loader
from .vkitti import get_vkitti_loader
from .vkitti2 import get_vkitti2_loader
from .u4k import get_u4k_loader
from .middleburry import get_mid_loader
from .gta import get_gta_loader
from .preprocess import CropParams, get_white_border, get_black_border
import copy
from zoedepth.utils.misc import get_boundaries
from zoedepth.models.base_models.midas import Resize
def _is_pil_image(img):
return isinstance(img, Image.Image)
def _is_numpy_image(img):
return isinstance(img, np.ndarray) and (img.ndim in {2, 3})
# def preprocessing_transforms(mode, **kwargs):
# return transforms.Compose([
# ToTensor(mode=mode, **kwargs)
# ])
def preprocessing_transforms(mode, sec_stage=False, **kwargs):
return transforms.Compose([
ToTensor(mode=mode, sec_stage=sec_stage, **kwargs)
])
class DepthDataLoader(object):
def __init__(self, config, mode, device='cpu', transform=None, **kwargs):
"""
Data loader for depth datasets
Args:
config (dict): Config dictionary. Refer to utils/config.py
mode (str): "train" or "online_eval"
device (str, optional): Device to load the data on. Defaults to 'cpu'.
transform (torchvision.transforms, optional): Transform to apply to the data. Defaults to None.
"""
self.config = config
if config.dataset == 'ibims':
self.data = get_ibims_loader(config, batch_size=1, num_workers=1)
return
if config.dataset == 'sunrgbd':
self.data = get_sunrgbd_loader(
data_dir_root=config.sunrgbd_root, batch_size=1, num_workers=1)
return
if config.dataset == 'diml_indoor':
self.data = get_diml_indoor_loader(
data_dir_root=config.diml_indoor_root, batch_size=1, num_workers=1)
return
if config.dataset == 'diml_outdoor':
self.data = get_diml_outdoor_loader(
data_dir_root=config.diml_outdoor_root, batch_size=1, num_workers=1)
return
if "diode" in config.dataset:
self.data = get_diode_loader(
config[config.dataset+"_root"], batch_size=1, num_workers=1)
return
if config.dataset == 'hypersim_test':
self.data = get_hypersim_loader(
config.hypersim_test_root, batch_size=1, num_workers=1)
return
if config.dataset == 'vkitti':
self.data = get_vkitti_loader(
config.vkitti_root, batch_size=1, num_workers=1)
return
if config.dataset == 'vkitti2':
self.data = get_vkitti2_loader(
config.vkitti2_root, batch_size=1, num_workers=1)
return
if config.dataset == 'ddad':
self.data = get_ddad_loader(config.ddad_root, resize_shape=(
352, 1216), batch_size=1, num_workers=1)
return
# under construction
if config.dataset == 'u4k':
self.data = get_u4k_loader(config, mode, transform)
return
if config.dataset == 'mid':
self.data = get_mid_loader(config, mode, transform)
return
if config.dataset == 'gta':
self.data = get_gta_loader(config, mode, transform)
return
img_size = self.config.get("img_size", None)
img_size = img_size if self.config.get(
"do_input_resize", False) else None
if transform is None:
# transform = preprocessing_transforms(mode, size=img_size)
transform = preprocessing_transforms(mode, size=img_size, sec_stage=config.get("sec_stage", False))
if mode == 'train':
Dataset = DataLoadPreprocess
self.training_samples = Dataset(
config, mode, transform=transform, device=device)
if config.distributed:
self.train_sampler = torch.utils.data.distributed.DistributedSampler(
self.training_samples)
else:
self.train_sampler = None
self.data = DataLoader(self.training_samples,
batch_size=config.batch_size,
shuffle=(self.train_sampler is None),
num_workers=config.workers,
pin_memory=True,
persistent_workers=True,
# prefetch_factor=2,
sampler=self.train_sampler)
elif mode == 'online_eval':
self.testing_samples = DataLoadPreprocess(
config, mode, transform=transform)
if config.distributed: # redundant. here only for readability and to be more explicit
# Give whole test set to all processes (and report evaluation only on one) regardless
self.eval_sampler = None
else:
self.eval_sampler = None
self.data = DataLoader(self.testing_samples, 1,
shuffle=False,
num_workers=1,
pin_memory=False,
sampler=self.eval_sampler)
elif mode == 'test':
self.testing_samples = DataLoadPreprocess(
config, mode, transform=transform)
self.data = DataLoader(self.testing_samples,
1, shuffle=False, num_workers=1)
else:
print(
'mode should be one of \'train, test, online_eval\'. Got {}'.format(mode))
def repetitive_roundrobin(*iterables):
"""
cycles through iterables but sample wise
first yield first sample from first iterable then first sample from second iterable and so on
then second sample from first iterable then second sample from second iterable and so on
If one iterable is shorter than the others, it is repeated until all iterables are exhausted
repetitive_roundrobin('ABC', 'D', 'EF') --> A D E B D F C D E
"""
# Repetitive roundrobin
iterables_ = [iter(it) for it in iterables]
exhausted = [False] * len(iterables)
while not all(exhausted):
for i, it in enumerate(iterables_):
try:
yield next(it)
except StopIteration:
exhausted[i] = True
iterables_[i] = itertools.cycle(iterables[i])
# First elements may get repeated if one iterable is shorter than the others
yield next(iterables_[i])
class RepetitiveRoundRobinDataLoader(object):
def __init__(self, *dataloaders):
self.dataloaders = dataloaders
def __iter__(self):
return repetitive_roundrobin(*self.dataloaders)
def __len__(self):
# First samples get repeated, thats why the plus one
return len(self.dataloaders) * (max(len(dl) for dl in self.dataloaders) + 1)
class MixedNYUKITTI(object):
def __init__(self, config, mode, device='cpu', **kwargs):
config = edict(config)
config.workers = config.workers // 2
self.config = config
nyu_conf = change_dataset(edict(config), 'nyu')
kitti_conf = change_dataset(edict(config), 'kitti')
# make nyu default for testing
self.config = config = nyu_conf
img_size = self.config.get("img_size", None)
img_size = img_size if self.config.get(
"do_input_resize", False) else None
if mode == 'train':
nyu_loader = DepthDataLoader(
nyu_conf, mode, device=device, transform=preprocessing_transforms(mode, size=img_size)).data
kitti_loader = DepthDataLoader(
kitti_conf, mode, device=device, transform=preprocessing_transforms(mode, size=img_size)).data
# It has been changed to repetitive roundrobin
self.data = RepetitiveRoundRobinDataLoader(
nyu_loader, kitti_loader)
else:
self.data = DepthDataLoader(nyu_conf, mode, device=device).data
def remove_leading_slash(s):
if s[0] == '/' or s[0] == '\\':
return s[1:]
return s
class CachedReader:
def __init__(self, shared_dict=None):
if shared_dict:
self._cache = shared_dict
else:
self._cache = {}
def open(self, fpath):
im = self._cache.get(fpath, None)
if im is None:
im = self._cache[fpath] = Image.open(fpath)
return im
class ImReader:
def __init__(self):
pass
# @cache
def open(self, fpath):
return Image.open(fpath)
class DataLoadPreprocess(Dataset):
def __init__(self, config, mode, transform=None, is_for_online_eval=False, **kwargs):
self.config = config
if mode == 'online_eval':
with open(config.filenames_file_eval, 'r') as f:
self.filenames = f.readlines()
else:
with open(config.filenames_file, 'r') as f:
self.filenames = f.readlines()
self.sec_stage = self.config.get("sec_stage", False)
# self.crop_size = [120, 160] # 1/4
self.crop_size = [120*2, 160*2] # 1/4
self.overlap = self.config.get("overlap", False)
self.consistency_training = self.config.get("consistency_training", False)
self.overlap_length_h = self.config.get("overlap_length_h", int(60))
self.overlap_length_w = self.config.get("overlap_length_w", int(80))
print("current overlap_length_h and overlap_length_w are {} and {}".format(self.overlap_length_h, self.overlap_length_w))
self.mode = mode
self.transform = transform
self.to_tensor = ToTensor(mode)
self.is_for_online_eval = is_for_online_eval
if config.use_shared_dict:
self.reader = CachedReader(config.shared_dict)
else:
self.reader = ImReader()
def postprocess(self, sample):
return sample
def get_crop_bbox(self, img):
"""Randomly get a crop bounding box."""
margin_h = max(img.shape[0] - self.crop_size[0], 0)
margin_w = max(img.shape[1] - self.crop_size[1], 0)
offset_h = np.random.randint(0, margin_h + 1)
offset_w = np.random.randint(0, margin_w + 1)
crop_y1, crop_y2 = offset_h, offset_h + self.crop_size[0]
crop_x1, crop_x2 = offset_w, offset_w + self.crop_size[1]
return crop_y1, crop_y2, crop_x1, crop_x2
def crop(self, img, crop_bbox, tmp=False):
"""Crop from ``img``"""
crop_y1, crop_y2, crop_x1, crop_x2 = crop_bbox
if tmp:
templete = np.zeros((img.shape[0], img.shape[1], 1), dtype=np.float32)
templete[crop_y1:crop_y2, crop_x1:crop_x2, :] = 1.0
img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...]
return img, templete
else:
img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...]
return img
def __getitem__(self, idx):
sample_path = self.filenames[idx]
focal = float(sample_path.split()[2])
sample = {}
height=480
width=640
if self.mode == 'train':
if self.config.dataset == 'kitti' and self.config.use_right and random.random() > 0.5:
image_path = os.path.join(
self.config.data_path, remove_leading_slash(sample_path.split()[3]))
depth_path = os.path.join(
self.config.gt_path, remove_leading_slash(sample_path.split()[4]))
else:
image_path = os.path.join(
self.config.data_path, remove_leading_slash(sample_path.split()[0]))
depth_path = os.path.join(
self.config.gt_path, remove_leading_slash(sample_path.split()[1]))
image = self.reader.open(image_path)
depth_gt = self.reader.open(depth_path)
w, h = image.size
if self.config.do_kb_crop:
height = image.height
width = image.width
top_margin = int(height - 352)
left_margin = int((width - 1216) / 2)
depth_gt = depth_gt.crop(
(left_margin, top_margin, left_margin + 1216, top_margin + 352))
image = image.crop(
(left_margin, top_margin, left_margin + 1216, top_margin + 352))
# Avoid blank boundaries due to pixel registration?
# Train images have white border. Test images have black border.
if self.config.dataset == 'nyu' and self.config.avoid_boundary:
# print("Avoiding Blank Boundaries!")
# We just crop and pad again with reflect padding to original size
# original_size = image.size
crop_params = get_white_border(np.array(image, dtype=np.uint8))
image = image.crop((crop_params.left, crop_params.top, crop_params.right, crop_params.bottom))
depth_gt = depth_gt.crop((crop_params.left, crop_params.top, crop_params.right, crop_params.bottom))
# Use reflect padding to fill the blank
image = np.array(image)
image = np.pad(image, ((crop_params.top, h - crop_params.bottom), (crop_params.left, w - crop_params.right), (0, 0)), mode='reflect')
image = Image.fromarray(image)
depth_gt = np.array(depth_gt)
depth_gt = np.pad(depth_gt, ((crop_params.top, h - crop_params.bottom), (crop_params.left, w - crop_params.right)), 'constant', constant_values=0)
depth_gt = Image.fromarray(depth_gt)
if self.config.do_random_rotate and (self.config.aug):
# NOTE: YES!
random_angle = (random.random() - 0.5) * 2 * self.config.degree
image = self.rotate_image(image, random_angle)
depth_gt = self.rotate_image(
depth_gt, random_angle, flag=Image.NEAREST)
image = np.asarray(image, dtype=np.float32) / 255.0
depth_gt = np.asarray(depth_gt, dtype=np.float32)
depth_gt = np.expand_dims(depth_gt, axis=2)
disp_gt_copy = depth_gt[:, :, 0].copy()
if self.config.dataset == 'nyu':
depth_gt = depth_gt / 1000.0
else:
depth_gt = depth_gt / 256.0
# if self.config.aug and (self.config.random_crop):
# image, depth_gt = self.random_crop(
# image, depth_gt, self.config.input_height, self.config.input_width)
image, depth_gt = self.train_preprocess(image, depth_gt)
img_temp = copy.deepcopy(image)
depth_gt_temp = copy.deepcopy(depth_gt)
if self.random_crop: # use in sec_stage
if self.consistency_training:
crop_y1, crop_y2, crop_x1, crop_x2 = self.get_crop_bbox(image) # ensure the prob of crop is the same
while True:
# shift_x = random.randint(self.overlap_length//3, self.overlap_length)
# shift_y = random.randint(self.overlap_length//3, self.overlap_length)
shift_x = self.overlap_length_w
shift_y = self.overlap_length_h
if random.random() > 0.5:
shift_x = shift_x * -1
if random.random() > 0.5:
shift_y = shift_y * -1
crop_y1_shift, crop_y2_shift, crop_x1_shift, crop_x2_shift = crop_y1 + shift_y, crop_y2 + shift_y, crop_x1 + shift_x, crop_x2 + shift_x
if crop_y1_shift > 0 and crop_x1_shift > 0 and crop_y2_shift < image.shape[0] and crop_x2_shift < image.shape[1]:
break
bbox_ori = (crop_y1, crop_y2, crop_x1, crop_x2)
bbox_shift = (crop_y1_shift, crop_y2_shift, crop_x1_shift, crop_x2_shift)
image_ori, crop_area_ori = self.crop(image, bbox_ori, tmp=True)
image_shift, crop_area_shift = self.crop(image, bbox_shift, tmp=True)
depth_gt_ori = self.crop(depth_gt, bbox_ori)
depth_gt_shift = self.crop(depth_gt, bbox_shift)
disp_gt_copy_ori = self.crop(disp_gt_copy, bbox_ori)
disp_gt_copy_shift = self.crop(disp_gt_copy, bbox_shift)
bboxs_ori = torch.tensor([crop_x1 / width * 160 * 2, crop_y1 / height * 120 * 2, crop_x2 / width * 160 * 2, crop_y2 / height * 120 * 2])
bboxs_shift = torch.tensor([crop_x1_shift / width * 160 * 2, crop_y1_shift / height * 120 * 2, crop_x2_shift / width * 160 * 2, crop_y2_shift / height * 120 * 2])
bboxs_raw = torch.tensor([crop_x1, crop_y1, crop_x2, crop_y2])
bboxs_raw_shift = torch.tensor([crop_x1_shift, crop_y1_shift, crop_x2_shift, crop_y2_shift])
else:
bbox = self.get_crop_bbox(image)
image, crop_area = self.crop(image, bbox, tmp=True)
depth_gt = self.crop(depth_gt, bbox)
disp_gt_copy = self.crop(disp_gt_copy, bbox)
crop_y1, crop_y2, crop_x1, crop_x2 = bbox
bboxs_res = torch.tensor([crop_x1 / width * 160 * 2, crop_y1 / height * 120 * 2, crop_x2 / width * 160 * 2, crop_y2 / height * 120 * 2]) # coord in 384, 512
bboxs_raw = torch.tensor([crop_x1, crop_y1, crop_x2, crop_y2])
mask = np.logical_and(depth_gt > self.config.min_depth,
depth_gt < self.config.max_depth).squeeze()[None, ...]
mask_raw = np.logical_and(depth_gt_temp > self.config.min_depth, depth_gt_temp < self.config.max_depth).squeeze()[None, ...]
sample = {'image': image, 'depth': depth_gt, 'focal': focal, 'mask': mask, 'image_raw': image.copy(), 'mask_raw': mask_raw}
if self.random_crop:
if self.consistency_training:
image = np.concatenate([image_ori, image_shift], axis=-1)
depth_gt = np.concatenate([depth_gt_ori, depth_gt_shift], axis=-1)
crop_area = np.concatenate([crop_area_ori, crop_area_shift], axis=-1)
bboxs_res = torch.cat([bboxs_ori, bboxs_shift], dim=-1)
bboxes_raw_res = torch.cat([bboxs_raw, bboxs_raw_shift], dim=-1)
mask = np.logical_and(depth_gt > self.config.min_depth,
depth_gt < self.config.max_depth)
# hack the sample dict
sample['image'] = image
sample['depth'] = depth_gt
sample['crop_area'] = crop_area
sample['bbox'] = bboxs_res
sample['bbox_raw'] = bboxes_raw_res
sample['shift'] = torch.tensor([shift_y, shift_x]) # h direction, then w direction
sample['mask'] = mask
else:
if bboxs_res is not None:
sample['bbox'] = bboxs_res
sample['bbox_raw'] = bboxs_raw
sample['crop_area'] = crop_area
if self.config.aug and self.config.random_translate:
image, depth_gt = self.random_translate(image, depth_gt, self.config.max_translation)
else:
if self.mode == 'online_eval':
data_path = self.config.data_path_eval
else:
data_path = self.config.data_path
image_path = os.path.join(
data_path, remove_leading_slash(sample_path.split()[0]))
image = np.asarray(self.reader.open(image_path),
dtype=np.float32) / 255.0
if self.mode == 'online_eval':
gt_path = self.config.gt_path_eval
depth_path = os.path.join(
gt_path, remove_leading_slash(sample_path.split()[1]))
has_valid_depth = False
try:
depth_gt = self.reader.open(depth_path)
has_valid_depth = True
except IOError:
depth_gt = False
# print('Missing gt for {}'.format(image_path))
if has_valid_depth:
depth_gt = np.asarray(depth_gt, dtype=np.float32)
depth_gt = np.expand_dims(depth_gt, axis=2)
disp_gt_copy = depth_gt[:, :, 0].copy()
if self.config.dataset == 'nyu':
depth_gt = depth_gt / 1000.0
else:
depth_gt = depth_gt / 256.0
mask = np.logical_and(
depth_gt >= self.config.min_depth, depth_gt <= self.config.max_depth).squeeze()[None, ...]
else:
mask = False
if self.config.do_kb_crop:
height = image.shape[0]
width = image.shape[1]
top_margin = int(height - 352)
left_margin = int((width - 1216) / 2)
image = image[top_margin:top_margin + 352,
left_margin:left_margin + 1216, :]
if self.mode == 'online_eval' and has_valid_depth:
depth_gt = depth_gt[top_margin:top_margin +
352, left_margin:left_margin + 1216, :]
# NOTE: start insert something new for sec_stage training
if self.sec_stage:
img_temp = copy.deepcopy(image)
depth_gt_temp = copy.deepcopy(depth_gt)
x_start, y_start = [0, 240], [0, 320]
# x_start, y_start = [0 + 3 * self.overlap / 2, 120 + self.overlap / 2, 240 - self.overlap / 2, 360 - 3 * self.overlap / 2], \
# [0 + 3 * self.overlap / 2, 160 + self.overlap / 2, 320 - self.overlap / 2, 480 - 3 * self.overlap / 2]
img_crops = []
bboxs_roi = []
crop_areas = []
bboxs_raw_list = []
for x in x_start:
for y in y_start:
bbox = (int(x), int(x+240), int(y), int(y+320))
img_crop, crop_area = self.crop(image, bbox, tmp=True)
img_crops.append(img_crop)
crop_areas.append(crop_area)
crop_y1, crop_y2, crop_x1, crop_x2 = bbox
bbox_roi = torch.tensor([crop_x1 / width * 160 * 2, crop_y1 / height * 120 * 2, crop_x2 / width * 160 * 2, crop_y2 / height * 120 * 2])
bboxs_roi.append(bbox_roi)
bboxs_raw = torch.tensor([crop_x1, crop_y1, crop_x2, crop_y2])
bboxs_raw_list.append(bboxs_raw)
image = img_crops
bboxs_roi = torch.stack(bboxs_roi, dim=0)
bboxs_raw = torch.stack(bboxs_raw_list, dim=0)
disp_gt_edges = get_boundaries(disp_gt_copy, th=1, dilation=0)
if self.mode == 'online_eval':
sample = {'image': image, 'depth': depth_gt, 'focal': focal, 'has_valid_depth': has_valid_depth,
'image_path': sample_path.split()[0], 'depth_path': sample_path.split()[1],
'mask': mask, 'image_raw': image.copy(), 'disp_gt_edges': disp_gt_edges}
if bboxs_roi is not None:
sample['bbox'] = bboxs_roi
sample['bbox_raw'] = bboxs_raw
if crop_areas is not None:
sample['crop_area'] = crop_areas
else:
sample = {'image': image, 'focal': focal}
if (self.mode == 'train') or ('has_valid_depth' in sample and sample['has_valid_depth']):
mask = np.logical_and(depth_gt > self.config.min_depth,
depth_gt < self.config.max_depth).squeeze()[None, ...]
sample['mask'] = mask
if self.transform:
# sample = self.transform(sample)
sample['img_temp'] = img_temp
sample['depth_gt_temp'] = depth_gt_temp
sample = self.transform(sample)
sample = self.postprocess(sample)
sample['dataset'] = self.config.dataset
sample = {**sample, 'image_path': sample_path.split()[0], 'depth_path': sample_path.split()[1]}
return sample
def rotate_image(self, image, angle, flag=Image.BILINEAR):
result = image.rotate(angle, resample=flag)
return result
def random_crop(self, img, depth, height, width):
assert img.shape[0] >= height
assert img.shape[1] >= width
assert img.shape[0] == depth.shape[0]
assert img.shape[1] == depth.shape[1]
x = random.randint(0, img.shape[1] - width)
y = random.randint(0, img.shape[0] - height)
img = img[y:y + height, x:x + width, :]
depth = depth[y:y + height, x:x + width, :]
return img, depth
def random_translate(self, img, depth, max_t=20):
assert img.shape[0] == depth.shape[0]
assert img.shape[1] == depth.shape[1]
p = self.config.translate_prob
do_translate = random.random()
if do_translate > p:
return img, depth
x = random.randint(-max_t, max_t)
y = random.randint(-max_t, max_t)
M = np.float32([[1, 0, x], [0, 1, y]])
# print(img.shape, depth.shape)
img = cv2.warpAffine(img, M, (img.shape[1], img.shape[0]))
depth = cv2.warpAffine(depth, M, (depth.shape[1], depth.shape[0]))
depth = depth.squeeze()[..., None] # add channel dim back. Affine warp removes it
# print("after", img.shape, depth.shape)
return img, depth
def train_preprocess(self, image, depth_gt):
if self.config.aug:
# Random flipping
do_flip = random.random()
if do_flip > 0.5:
image = (image[:, ::-1, :]).copy()
depth_gt = (depth_gt[:, ::-1, :]).copy()
# Random gamma, brightness, color augmentation
do_augment = random.random()
if do_augment > 0.5:
image = self.augment_image(image)
return image, depth_gt
def augment_image(self, image):
# gamma augmentation
gamma = random.uniform(0.9, 1.1)
image_aug = image ** gamma
# brightness augmentation
if self.config.dataset == 'nyu':
brightness = random.uniform(0.75, 1.25)
else:
brightness = random.uniform(0.9, 1.1)
image_aug = image_aug * brightness
# color augmentation
colors = np.random.uniform(0.9, 1.1, size=3)
white = np.ones((image.shape[0], image.shape[1]))
color_image = np.stack([white * colors[i] for i in range(3)], axis=2)
image_aug *= color_image
image_aug = np.clip(image_aug, 0, 1)
return image_aug
def __len__(self):
return len(self.filenames)
# class ToTensor(object):
# def __init__(self, mode, do_normalize=False, size=None):
# self.mode = mode
# self.normalize = transforms.Normalize(
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) if do_normalize else nn.Identity()
# self.size = size
# if size is not None:
# self.resize = transforms.Resize(size=size)
# else:
# self.resize = nn.Identity()
# def __call__(self, sample):
# image, focal = sample['image'], sample['focal']
# image = self.to_tensor(image)
# image = self.normalize(image)
# image = self.resize(image)
# if self.mode == 'test':
# return {'image': image, 'focal': focal}
# depth = sample['depth']
# if self.mode == 'train':
# depth = self.to_tensor(depth)
# return {**sample, 'image': image, 'depth': depth, 'focal': focal}
# else:
# has_valid_depth = sample['has_valid_depth']
# image = self.resize(image)
# return {**sample, 'image': image, 'depth': depth, 'focal': focal, 'has_valid_depth': has_valid_depth,
# 'image_path': sample['image_path'], 'depth_path': sample['depth_path']}
# def to_tensor(self, pic):
# if not (_is_pil_image(pic) or _is_numpy_image(pic)):
# raise TypeError(
# 'pic should be PIL Image or ndarray. Got {}'.format(type(pic)))
# if isinstance(pic, np.ndarray):
# img = torch.from_numpy(pic.transpose((2, 0, 1)))
# return img
# # handle PIL Image
# if pic.mode == 'I':
# img = torch.from_numpy(np.array(pic, np.int32, copy=False))
# elif pic.mode == 'I;16':
# img = torch.from_numpy(np.array(pic, np.int16, copy=False))
# else:
# img = torch.ByteTensor(
# torch.ByteStorage.from_buffer(pic.tobytes()))
# # PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
# if pic.mode == 'YCbCr':
# nchannel = 3
# elif pic.mode == 'I;16':
# nchannel = 1
# else:
# nchannel = len(pic.mode)
# img = img.view(pic.size[1], pic.size[0], nchannel)
# img = img.transpose(0, 1).transpose(0, 2).contiguous()
# if isinstance(img, torch.ByteTensor):
# return img.float()
# else:
# return img
class ToTensor(object):
def __init__(self, mode, do_normalize=False, size=None, sec_stage=False):
self.mode = mode
# don't do normalization as default
self.normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) if do_normalize else nn.Identity()
self.size = size
if size is not None:
# self.resize = transforms.Resize(size=size)
net_h, net_w = size
self.resize = Resize(net_w, net_h, keep_aspect_ratio=False, ensure_multiple_of=32, resize_method="minimal")
else:
self.resize = nn.Identity()
self.sec_stage = sec_stage
def __call__(self, sample):
image, focal = sample['image'], sample['focal']
crop_areas = sample.get('crop_area', None)
if isinstance(image, list):
# there must be crop_areas
# only infer on eval sec_stage
imgs_process = []
crp_process = []
for img, crp in zip(image, crop_areas):
img = self.to_tensor(img)
img = self.normalize(img)
img = img.unsqueeze(dim=0)
img = self.resize(img)
img = img.squeeze(dim=0)
imgs_process.append(img)
crp = self.to_tensor(crp)
crp = crp.unsqueeze(dim=0)
crp = self.resize(crp)
crp = crp.squeeze(dim=0)
crp_process.append(crp)
image = torch.cat(imgs_process, dim=0)
crop_areas = torch.cat(crp_process, dim=0)
img_temp = sample['img_temp']
img_temp = self.to_tensor(img_temp)
img_temp = self.normalize(img_temp)
img_temp = img_temp.unsqueeze(dim=0)
img_temp = self.resize(img_temp) #NOTE: hack
img_temp = img_temp.squeeze(dim=0)
image_raw = copy.deepcopy(img_temp)
else:
image = self.to_tensor(image)
image = self.normalize(image)
if crop_areas is not None:
crop_areas = self.to_tensor(crop_areas)
crop_areas = crop_areas.unsqueeze(dim=0)
crop_areas = self.resize(crop_areas)
crop_areas = crop_areas.squeeze(dim=0)
if self.sec_stage:
img_temp = sample['img_temp']
img_temp = self.to_tensor(img_temp)
img_temp = self.normalize(img_temp)
img_temp = img_temp.unsqueeze(dim=0)
img_temp = self.resize(img_temp)
image_raw = img_temp.squeeze(dim=0)
image = image.unsqueeze(dim=0)
image = self.resize(image)
image = image.squeeze(dim=0)
else:
# in the first stage, this hr info is reserved
image_raw = copy.deepcopy(image)
image = image.unsqueeze(dim=0)
image = self.resize(image)
image = image.squeeze(dim=0)
if self.mode == 'test':
return_dict = {'image': image, 'focal': focal}
if crop_areas is not None:
return_dict['crop_area'] = crop_areas
return return_dict
depth = sample['depth']
depth = self.to_tensor(depth)
depth_gt_temp = sample['depth_gt_temp']
depth_gt_raw = self.to_tensor(depth_gt_temp)
if self.mode == 'train':
return_dict = {**sample, 'image': image, 'depth': depth, 'focal': focal, 'image_raw': image_raw, 'depth_raw': depth_gt_raw}
if crop_areas is not None:
return_dict['crop_area'] = crop_areas
return return_dict
else:
has_valid_depth = sample['has_valid_depth']
# image = self.resize(image)
return_dict = {**sample, 'image': image, 'depth': depth, 'focal': focal, 'image_raw': image_raw,
'has_valid_depth': has_valid_depth, 'image_path': sample['image_path'], 'depth_path': sample['depth_path'],
'depth_raw': depth_gt_raw}
if crop_areas is not None:
return_dict['crop_area'] = crop_areas
return return_dict
def to_tensor(self, pic):
if isinstance(pic, np.ndarray):
img = torch.from_numpy(pic.transpose((2, 0, 1))) # img here
return img
|