Spaces:
Runtime error
Runtime error
File size: 15,909 Bytes
78ab311 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Zhenyu Li
# This file is partly inspired from ZoeDepth (https://github.com/isl-org/ZoeDepth/blob/main/zoedepth/data/data_mono.py); author: Shariq Farooq Bhat
import os
import numpy as np
import torch
from PIL import Image
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
import os.path as osp
import random
import torch.nn as nn
import cv2
import copy
from zoedepth.utils.misc import get_boundaries
from zoedepth.models.base_models.midas import Resize
from .u4k import U4KDataset, remove_leading_slash
import re
import numpy as np
import sys
import matplotlib.pyplot as plt
def readPFM(file):
file = open(file, 'rb')
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().rstrip()
if (sys.version[0]) == '3':
header = header.decode('utf-8')
if header == 'PF':
color = True
elif header == 'Pf':
color = False
else:
raise Exception('Not a PFM file.')
if (sys.version[0]) == '3':
dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode('utf-8'))
else:
dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline())
if dim_match:
width, height = map(int, dim_match.groups())
else:
raise Exception('Malformed PFM header.')
if (sys.version[0]) == '3':
scale = float(file.readline().rstrip().decode('utf-8'))
else:
scale = float(file.readline().rstrip())
if scale < 0: # little-endian
endian = '<'
scale = -scale
else:
endian = '>' # big-endian
data = np.fromfile(file, endian + 'f')
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flipud(data)
return data, scale
class MiddleBurry(U4KDataset):
def load_data_list(self):
"""Load annotation from directory.
Args:
data_root (str): Data root for img_dir/ann_dir.
split (str|None): Split txt file. If split is specified, only file
with suffix in the splits will be loaded. Otherwise, all images
in img_dir/ann_dir will be loaded. Default: None
Returns:
list[dict]: All image info of dataset.
"""
data_root = self.data_root
split = self.split
self.invalid_depth_num = 0
img_infos = []
if split is not None:
with open(split) as f:
for line in f:
img_info_l = dict()
img_l, depth_map_l = line.strip().split(" ")
img_info_l['depth_map_path'] = osp.join(data_root, remove_leading_slash(depth_map_l))
img_info_l['img_path'] = osp.join(data_root, remove_leading_slash(img_l))
img_info_l['depth_fields'] = []
filename = img_info_l['depth_map_path']
ext_name_l = filename.replace('disp0.pfm', 'calib.txt')
with open(ext_name_l, 'r') as f:
ext_l = f.readlines()
cam_info = ext_l[0].strip()
cam_info_f = float(cam_info.split(' ')[0].split('[')[1])
base = float(ext_l[3].strip().split('=')[1])
doffs = float(ext_l[2].strip().split('=')[1])
f = cam_info_f
img_info_l['focal'] = f
base = base
img_info_l['depth_factor'] = base * f
img_info_l['doffs'] = doffs
img_infos.append(img_info_l)
else:
raise NotImplementedError
# github issue:: make sure the same order
img_infos = sorted(img_infos, key=lambda x: x['img_path'])
if self.mode == 'train':
img_infos = img_infos * 100
return img_infos
def __getitem__(self, idx):
img_file_path = self.data_infos[idx]['img_path']
disp_path = self.data_infos[idx]['depth_map_path']
depth_factor = self.data_infos[idx]['depth_factor']
height=2160
width=3840
height = 1840
width = 2300
image = Image.open(img_file_path).convert("RGB")
image = np.asarray(image, dtype=np.uint8) / 255.0
image = image.astype(np.float32)
disp_gt, scale = readPFM(disp_path)
disp_gt = disp_gt.astype(np.float32)
h, w, _ = image.shape
h_start = int(h / 2 - height / 2)
h_end = h_start + height
w_start = int(w / 2 - width / 2)
w_end = w_start + width
image = image[h_start:h_end, w_start:w_end, :]
disp_gt = disp_gt[h_start:h_end, w_start:w_end]
disp_gt_copy = disp_gt.copy()
disp_gt = disp_gt[..., np.newaxis]
invalid_mask = disp_gt == np.inf
depth_gt = depth_factor / (disp_gt + self.data_infos[idx]['doffs'])
depth_gt = depth_gt / 1000
depth_gt[invalid_mask] = 0 # set to a invalid number
disp_gt_copy[invalid_mask[:, :, 0]] = 0
focal = self.data_infos[idx]['focal']
bbox = None
bboxs_res = None
crop_areas = None
bboxs_roi = None # hack for infer
if self.mode == 'train':
image, depth_gt = self.train_preprocess(image, depth_gt)
img_temp = copy.deepcopy(image)
depth_gt_temp = copy.deepcopy(depth_gt)
if self.random_crop: # use in sec_stage
if self.consistency_training:
crop_y1, crop_y2, crop_x1, crop_x2 = self.get_crop_bbox(image) # ensure the prob of crop is the same
while True:
# shift_x = random.randint(self.overlap_length//3, self.overlap_length)
# shift_y = random.randint(self.overlap_length//3, self.overlap_length)
shift_x = self.overlap_length_w
shift_y = self.overlap_length_h
if random.random() > 0.5:
shift_x = shift_x * -1
if random.random() > 0.5:
shift_y = shift_y * -1
crop_y1_shift, crop_y2_shift, crop_x1_shift, crop_x2_shift = crop_y1 + shift_y, crop_y2 + shift_y, crop_x1 + shift_x, crop_x2 + shift_x
if crop_y1_shift > 0 and crop_x1_shift > 0 and crop_y2_shift < image.shape[0] and crop_x2_shift < image.shape[1]:
break
bbox_ori = (crop_y1, crop_y2, crop_x1, crop_x2)
bbox_shift = (crop_y1_shift, crop_y2_shift, crop_x1_shift, crop_x2_shift)
image_ori, crop_area_ori = self.crop(image, bbox_ori, tmp=True)
image_shift, crop_area_shift = self.crop(image, bbox_shift, tmp=True)
depth_gt_ori = self.crop(depth_gt, bbox_ori)
depth_gt_shift = self.crop(depth_gt, bbox_shift)
disp_gt_copy_ori = self.crop(disp_gt_copy, bbox_ori)
disp_gt_copy_shift = self.crop(disp_gt_copy, bbox_shift)
bboxs_ori = torch.tensor([crop_x1 / width * 512, crop_y1 / height * 384, crop_x2 / width * 512, crop_y2 / height * 384])
bboxs_shift = torch.tensor([crop_x1_shift / width * 512, crop_y1_shift / height * 384, crop_x2_shift / width * 512, crop_y2_shift / height * 384])
else:
bbox = self.get_crop_bbox(image)
image, crop_area = self.crop(image, bbox, tmp=True)
depth_gt = self.crop(depth_gt, bbox)
disp_gt_copy = self.crop(disp_gt_copy, bbox)
crop_y1, crop_y2, crop_x1, crop_x2 = bbox
bboxs_res = torch.tensor([crop_x1 / width * 512, crop_y1 / height * 384, crop_x2 / width * 512, crop_y2 / height * 384]) # coord in 384, 512
mask = np.logical_and(depth_gt > self.config.min_depth,
depth_gt < self.config.max_depth).squeeze()[None, ...]
mask_raw = np.logical_and(depth_gt_temp > self.config.min_depth, depth_gt_temp < self.config.max_depth).squeeze()[None, ...]
sample = {'image': image, 'depth': depth_gt, 'focal': focal, 'mask': mask, 'image_raw': image.copy(), 'mask_raw': mask_raw}
if self.random_crop:
if self.consistency_training:
image = np.concatenate([image_ori, image_shift], axis=-1)
depth_gt = np.concatenate([depth_gt_ori, depth_gt_shift], axis=-1)
crop_area = np.concatenate([crop_area_ori, crop_area_shift], axis=-1)
bboxs_res = torch.cat([bboxs_ori, bboxs_shift], dim=-1)
mask = np.logical_and(depth_gt > self.config.min_depth,
depth_gt < self.config.max_depth)
# hack the sample dict
sample['image'] = image
sample['depth'] = depth_gt
sample['crop_area'] = crop_area
sample['bbox'] = bboxs_res
sample['shift'] = torch.tensor([shift_y, shift_x]) # h direction, then w direction
sample['mask'] = mask
else:
if bboxs_res is not None:
sample['bbox'] = bboxs_res
sample['crop_area'] = crop_area
if self.sampled_training:
self.data_sampler(sample, disp_gt_copy)
# update mask
sample_points = sample['sample_points']
sample_mask = np.logical_and(sample_points[:, -1] > self.config.min_depth,
sample_points[:, -1] < self.config.max_depth).squeeze()[None, ...]
sample['sample_mask'] = sample_mask
else:
# nothing needs to be changed for consistency training.
img_temp = copy.deepcopy(image)
depth_gt_temp = copy.deepcopy(depth_gt)
if self.sec_stage:
# x_start, y_start = [0, 540, 1080, 1620], [0, 960, 1920, 2880]
x_start, y_start = [0 + 3 * self.overlap / 2, 540 + self.overlap / 2, 1080 - self.overlap / 2, 1620 - 3 * self.overlap / 2], \
[0 + 3 * self.overlap / 2, 960 + self.overlap / 2, 1920 - self.overlap / 2, 2880 - 3 * self.overlap / 2]
img_crops = []
bboxs_roi = []
crop_areas = []
for x in x_start:
for y in y_start:
bbox = (int(x), int(x+540), int(y), int(y+960))
img_crop, crop_area = self.crop(image, bbox, tmp=True)
img_crops.append(img_crop)
crop_areas.append(crop_area)
crop_y1, crop_y2, crop_x1, crop_x2 = bbox
bbox_roi = torch.tensor([crop_x1 / width * 512, crop_y1 / height * 384, crop_x2 / width * 512, crop_y2 / height * 384])
bboxs_roi.append(bbox_roi)
image = img_crops
bboxs_roi = torch.stack(bboxs_roi, dim=0)
# bbox = (820, 1360 ,1440, 2400) # a hack version for quick evaluation
# image = self.crop(image, bbox)
# depth_gt = self.crop(depth_gt, bbox)
# disp_gt_copy = self.crop(disp_gt_copy, bbox)
mask = np.logical_and(depth_gt > self.config.min_depth,
depth_gt < self.config.max_depth).squeeze()[None, ...]
disp_gt_edges = get_boundaries(disp_gt_copy, th=1, dilation=0)
if self.mode == 'online_eval':
sample = {'image': image, 'depth': depth_gt, 'focal': focal, 'has_valid_depth': True,
'image_path': img_file_path, 'depth_path': disp_path, 'depth_factor_path': depth_factor,
'mask': mask, 'image_raw': image.copy(), 'disp_gt_edges': disp_gt_edges}
if bboxs_roi is not None:
sample['bbox'] = bboxs_roi
if crop_areas is not None:
sample['crop_area'] = crop_areas
else:
sample = {'image': image, 'focal': focal, 'image_raw': image.copy(), 'disp_gt_edges': disp_gt_edges, 'image_path': img_file_path}
if bboxs_roi is not None:
sample['bbox'] = bboxs_roi
if crop_areas is not None:
sample['crop_area'] = crop_areas
if self.transform:
sample['img_temp'] = img_temp
sample['depth_gt_temp'] = depth_gt_temp
sample = self.transform(sample)
sample['dataset'] = self.config.dataset
return sample
def __len__(self):
return len(self.data_infos)
def get_mid_loader(config, mode, transform):
if mode == 'train':
log = 0
dataset = MiddleBurry(config, mode, config.data_path, config.filenames_train)
if config.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
else:
train_sampler = None
dataloader = DataLoader(dataset,
batch_size=config.batch_size,
shuffle=(train_sampler is None),
num_workers=config.workers,
pin_memory=True,
persistent_workers=True,
sampler=train_sampler)
elif mode == 'online_eval':
dataset = MiddleBurry(config, mode, config.data_path, config.filenames_val)
# dataset = U4KDataset(config, mode, config.data_path, config.filenames_train)
if config.distributed: # redundant. here only for readability and to be more explicit
# Give whole test set to all processes (and report evaluation only on one) regardless
eval_sampler = None
else:
eval_sampler = None
dataloader = DataLoader(dataset, 1,
shuffle=False,
num_workers=1,
pin_memory=False,
sampler=eval_sampler)
else:
dataset = MiddleBurry(config, mode, config.data_path, config.filenames_test)
dataloader = DataLoader(dataset, 1, shuffle=False, num_workers=1)
return dataloader
|