Spaces:
Runtime error
Runtime error
File size: 29,052 Bytes
78ab311 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 |
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Zhenyu Li
# This file is partly inspired from ZoeDepth (https://github.com/isl-org/ZoeDepth/blob/main/zoedepth/data/data_mono.py); author: Shariq Farooq Bhat
import os
import numpy as np
import torch
from PIL import Image
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
import os.path as osp
import random
import torch.nn as nn
import cv2
import copy
from zoedepth.utils.misc import get_boundaries
from zoedepth.models.base_models.midas import Resize
class SampleDataPairs(object):
def __init__(self,
num_sample_inout=50000,
sampling_strategy='random', # or 'dda'
dilation_factor=10,
crop_size=(2160, 3840),
):
self.num_sample_inout = num_sample_inout
self.sampling_strategy = sampling_strategy
self.dilation_factor = dilation_factor
self.crop_height, self.crop_width = crop_size[0], crop_size[1]
self.__init_grid()
def __init_grid(self):
nu = np.linspace(0, self.crop_width - 1, self.crop_width)
nv = np.linspace(0, self.crop_height - 1, self.crop_height)
u, v = np.meshgrid(nu, nv)
self.u = u.flatten()
self.v = v.flatten()
def get_coords(self, gt):
# get subpixel coordinates
u = self.u + np.random.random_sample(self.u.size)
v = self.v + np.random.random_sample(self.v.size)
# use nearest neighbor to get gt for each samples
d = gt[np.clip(np.rint(v).astype(np.uint16), 0, self.crop_height-1),
np.clip(np.rint(u).astype(np.uint16), 0, self.crop_width-1)]
# remove invalid depth values
u = u[np.nonzero(d)]
v = v[np.nonzero(d)]
d = d[np.nonzero(d)]
return np.stack((u, v, d), axis=-1)
def get_boundaries(self, disp, th=1., dilation=10):
edges_y = np.logical_or(np.pad(np.abs(disp[1:, :] - disp[:-1, :]) > th, ((1, 0), (0, 0))),
np.pad(np.abs(disp[:-1, :] - disp[1:, :]) > th, ((0, 1), (0, 0))))
edges_x = np.logical_or(np.pad(np.abs(disp[:, 1:] - disp[:, :-1]) > th, ((0, 0), (1, 0))),
np.pad(np.abs(disp[:, :-1] - disp[:,1:]) > th, ((0, 0), (0, 1))))
edges = np.logical_or(edges_y, edges_x).astype(np.float32)
if dilation > 0:
kernel = np.ones((dilation, dilation), np.uint8)
edges = cv2.dilate(edges, kernel, iterations=1)
return edges
def __call__(self, results, disp_gt_copy):
"""Call function to load multiple types annotations.
Args:
results (dict): Result dict from :obj:`depth.CustomDataset`.
Returns:
dict: The dict contains loaded depth estimation annotations.
"""
gt = results['depth']
gt_squeeze = gt[:, :, 0]
if self.sampling_strategy == "random":
random_points = self.get_coords(gt_squeeze)
idx = np.random.choice(random_points.shape[0], self.num_sample_inout)
points = random_points[idx, :]
elif self.sampling_strategy == "dda":
disp_gt_squeeze = disp_gt_copy
edges = self.get_boundaries(disp_gt_squeeze, dilation=self.dilation_factor)
random_points = self.get_coords(gt_squeeze * (1. - edges))
edge_points = self.get_coords(gt_squeeze * edges)
# if edge points exist
if edge_points.shape[0]>0 and random_points.shape[0]>0:
# Check tot num of edge points
cond = edges.sum()//2 - self.num_sample_inout//2 < 0
tot= (self.num_sample_inout - int(edges.sum())//2, int(edges.sum())//2) if cond else \
(self.num_sample_inout//2, self.num_sample_inout//2)
idx = np.random.choice(random_points.shape[0], tot[0])
idx_edges = np.random.choice(edge_points.shape[0], tot[1])
points = np.concatenate([edge_points[idx_edges, :], random_points[idx, :]], 0)
# use uniform sample otherwise
else:
random_points = self.get_coords(gt_squeeze)
idx = np.random.choice(random_points.shape[0], self.num_sample_inout)
points = random_points[idx, :]
results['sample_points'] = points
return results
def _is_pil_image(img):
return isinstance(img, Image.Image)
def _is_numpy_image(img):
return isinstance(img, np.ndarray) and (img.ndim in {2, 3})
class ToTensor(object):
def __init__(self, mode, do_normalize=False, size=None, sec_stage=False):
self.mode = mode
# don't do normalization as default
self.normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) if do_normalize else nn.Identity()
self.size = size
if size is not None:
# self.resize = transforms.Resize(size=size)
net_h, net_w = size
self.resize = Resize(net_w, net_h, keep_aspect_ratio=False, ensure_multiple_of=32, resize_method="minimal")
else:
self.resize = nn.Identity()
self.sec_stage = sec_stage
def __call__(self, sample):
image, focal = sample['image'], sample['focal']
crop_areas = sample.get('crop_area', None)
if isinstance(image, list):
# there must be crop_areas
# only infer on eval sec_stage
imgs_process = []
crp_process = []
for img, crp in zip(image, crop_areas):
img = self.to_tensor(img)
img = self.normalize(img)
img = img.unsqueeze(dim=0)
img = self.resize(img)
img = img.squeeze(dim=0)
imgs_process.append(img)
crp = self.to_tensor(crp)
crp = crp.unsqueeze(dim=0)
crp = self.resize(crp)
crp = crp.squeeze(dim=0)
crp_process.append(crp)
image = torch.cat(imgs_process, dim=0)
crop_areas = torch.cat(crp_process, dim=0)
img_temp = sample['img_temp']
img_temp = self.to_tensor(img_temp)
img_temp = self.normalize(img_temp)
img_temp = img_temp.unsqueeze(dim=0)
img_temp = self.resize(img_temp) #NOTE: hack
img_temp = img_temp.squeeze(dim=0)
image_raw = copy.deepcopy(img_temp)
else:
image = self.to_tensor(image)
image = self.normalize(image)
if crop_areas is not None:
crop_areas = self.to_tensor(crop_areas)
crop_areas = crop_areas.unsqueeze(dim=0)
crop_areas = self.resize(crop_areas)
crop_areas = crop_areas.squeeze(dim=0)
if self.sec_stage:
img_temp = sample['img_temp']
img_temp = self.to_tensor(img_temp)
img_temp = self.normalize(img_temp)
img_temp = img_temp.unsqueeze(dim=0)
img_temp = self.resize(img_temp)
image_raw = img_temp.squeeze(dim=0)
image = image.unsqueeze(dim=0)
image = self.resize(image)
image = image.squeeze(dim=0)
else:
# in the first stage, this hr info is reserved
image_raw = copy.deepcopy(image)
image = image.unsqueeze(dim=0)
image = self.resize(image)
image = image.squeeze(dim=0)
if self.mode == 'test':
return_dict = {'image': image, 'focal': focal}
if crop_areas is not None:
return_dict['crop_area'] = crop_areas
return return_dict
depth = sample['depth']
depth = self.to_tensor(depth)
depth_gt_temp = sample['depth_gt_temp']
depth_gt_raw = self.to_tensor(depth_gt_temp)
if self.mode == 'train':
return_dict = {**sample, 'image': image, 'depth': depth, 'focal': focal, 'image_raw': image_raw, 'depth_raw': depth_gt_raw}
if crop_areas is not None:
return_dict['crop_area'] = crop_areas
return return_dict
else:
has_valid_depth = sample['has_valid_depth']
# image = self.resize(image)
return_dict = {**sample, 'image': image, 'depth': depth, 'focal': focal, 'image_raw': image_raw,
'has_valid_depth': has_valid_depth, 'image_path': sample['image_path'], 'depth_path': sample['depth_path'],
'depth_raw': depth_gt_raw}
if crop_areas is not None:
return_dict['crop_area'] = crop_areas
return return_dict
def to_tensor(self, pic):
if isinstance(pic, np.ndarray):
img = torch.from_numpy(pic.transpose((2, 0, 1))) # img here
return img
def preprocessing_transforms(mode, sec_stage=False, **kwargs):
return transforms.Compose([
ToTensor(mode=mode, sec_stage=sec_stage, **kwargs)
])
def remove_leading_slash(s):
if s[0] == '/' or s[0] == '\\':
return s[1:]
return s
class U4KDataset(Dataset):
def __init__(self, config, mode, data_root, split):
self.mode = mode
self.config = config
self.data_root = data_root
self.split = split
img_size = self.config.get("img_size", None)
img_size = img_size if self.config.get(
"do_input_resize", False) else None
self.sec_stage = self.config.get("sec_stage", False)
self.transform = preprocessing_transforms(mode, size=img_size, sec_stage=self.sec_stage)
self.data_infos = self.load_data_list()
self.sampled_training = self.config.get("sampled_training", False)
if self.sampled_training:
self.data_sampler = SampleDataPairs(
num_sample_inout=config.num_sample_inout,
sampling_strategy=config.sampling_strategy, # or 'dda'
dilation_factor=config.dilation_factor,
crop_size=config.transform_sample_gt_size)
self.random_crop = self.config.get("random_crop", False)
self.crop_size = [540, 960] # 1/4
self.overlap = self.config.get("overlap", False)
self.consistency_training = self.config.get("consistency_training", False)
self.overlap_length_h = self.config.get("overlap_length_h", int(256))
self.overlap_length_w = self.config.get("overlap_length_w", int(384))
print("current overlap_length_h and overlap_length_w are {} and {}".format(self.overlap_length_h, self.overlap_length_w))
def load_data_list(self):
"""Load annotation from directory.
Args:
data_root (str): Data root for img_dir/ann_dir.
split (str|None): Split txt file. If split is specified, only file
with suffix in the splits will be loaded. Otherwise, all images
in img_dir/ann_dir will be loaded. Default: None
Returns:
list[dict]: All image info of dataset.
"""
data_root = self.data_root
split = self.split
self.invalid_depth_num = 0
img_infos = []
if split is not None:
with open(split) as f:
for line in f:
img_info_l = dict()
# img_info_r = dict()
img_l, img_r, depth_map_l, depth_map_r = line.strip().split(" ")
# HACK: a hack to replace the png with raw to accelerate training
img_l = img_l[:-3] + 'raw'
# img_r = img_r[:-3] + 'raw'
img_info_l['depth_map_path'] = osp.join(data_root, remove_leading_slash(depth_map_l))
# img_info_r['depth_map_path'] = osp.join(data_root, remove_leading_slash(depth_map_r))
img_info_l['img_path'] = osp.join(data_root, remove_leading_slash(img_l))
# img_info_r['filename'] = osp.join(data_root, remove_leading_slash(img_r))
img_info_l['depth_fields'] = []
filename = img_info_l['depth_map_path']
ext_name_l = filename.replace('Disp0', 'Extrinsics0')
ext_name_l = ext_name_l.replace('npy', 'txt')
ext_name_r = filename.replace('Disp0', 'Extrinsics1')
ext_name_r = ext_name_r.replace('npy', 'txt')
with open(ext_name_l, 'r') as f:
ext_l = f.readlines()
with open(ext_name_r, 'r') as f:
ext_r = f.readlines()
f = float(ext_l[0].split(' ')[0])
img_info_l['focal'] = f
base = abs(float(ext_l[1].split(' ')[3]) - float(ext_r[1].split(' ')[3]))
img_info_l['depth_factor'] = base * f
img_infos.append(img_info_l)
# img_infos.append(img_info_r)
else:
raise NotImplementedError
# github issue:: make sure the same order
img_infos = sorted(img_infos, key=lambda x: x['img_path'])
return img_infos
def augment_image(self, image):
# gamma augmentation
gamma = random.uniform(0.9, 1.1)
image_aug = image ** gamma
# brightness augmentation
if self.config.dataset == 'nyu':
brightness = random.uniform(0.75, 1.25)
else:
brightness = random.uniform(0.9, 1.1)
image_aug = image_aug * brightness
# color augmentation
colors = np.random.uniform(0.9, 1.1, size=3)
white = np.ones((image.shape[0], image.shape[1]))
color_image = np.stack([white * colors[i] for i in range(3)], axis=2)
image_aug *= color_image
image_aug = np.clip(image_aug, 0, 1)
return image_aug
def train_preprocess(self, image, depth_gt):
if self.config.aug:
# Random flipping
do_flip = random.random()
if do_flip > 0.5:
image = (image[:, ::-1, :]).copy()
depth_gt = (depth_gt[:, ::-1, :]).copy()
# Random gamma, brightness, color augmentation
do_augment = random.random()
if do_augment > 0.5:
image = self.augment_image(image)
return image, depth_gt
def get_crop_bbox(self, img):
"""Randomly get a crop bounding box."""
margin_h = max(img.shape[0] - self.crop_size[0], 0)
margin_w = max(img.shape[1] - self.crop_size[1], 0)
offset_h = np.random.randint(0, margin_h + 1)
offset_w = np.random.randint(0, margin_w + 1)
crop_y1, crop_y2 = offset_h, offset_h + self.crop_size[0]
crop_x1, crop_x2 = offset_w, offset_w + self.crop_size[1]
return crop_y1, crop_y2, crop_x1, crop_x2
def crop(self, img, crop_bbox, tmp=False):
"""Crop from ``img``"""
crop_y1, crop_y2, crop_x1, crop_x2 = crop_bbox
if tmp:
templete = np.zeros((img.shape[0], img.shape[1], 1), dtype=np.float32)
templete[crop_y1:crop_y2, crop_x1:crop_x2, :] = 1.0
img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...]
return img, templete
else:
img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...]
return img
def __getitem__(self, idx):
img_file_path = self.data_infos[idx]['img_path']
disp_path = self.data_infos[idx]['depth_map_path']
depth_factor = self.data_infos[idx]['depth_factor']
height=2160
width=3840
image = np.fromfile(open(img_file_path, 'rb'), dtype=np.uint8).reshape(height, width, 3) / 255.0
if self.config.get("use_rgb", False):
image = image.astype(np.float32)[:, :, ::-1].copy()
elif self.config.get("use_brg", False):
image = image.astype(np.float32)[:, :, [0, 2, 1]].copy()
elif self.config.get("use_gbr", False):
image = image.astype(np.float32)[:, :, [1, 0, 2]].copy()
elif self.config.get("use_rbg", False):
image = image.astype(np.float32)[:, :, [2, 0, 1]].copy()
elif self.config.get("use_grb", False):
image = image.astype(np.float32)[:, :, [1, 2, 0]].copy()
else:
image = image.astype(np.float32)
disp_gt = np.expand_dims(np.load(disp_path, mmap_mode='c'), -1)
disp_gt = disp_gt.astype(np.float32)
disp_gt_copy = disp_gt[:, :, 0].copy()
depth_gt = depth_factor / disp_gt
depth_gt[depth_gt > self.config.max_depth] = self.config.max_depth # for vis
focal = self.data_infos[idx]['focal']
bbox = None
bboxs_res = None
crop_areas = None
bboxs_roi = None # hack for infer
if self.mode == 'train':
image, depth_gt = self.train_preprocess(image, depth_gt)
img_temp = copy.deepcopy(image)
depth_gt_temp = copy.deepcopy(depth_gt)
if self.random_crop: # use in sec_stage
if self.consistency_training:
crop_y1, crop_y2, crop_x1, crop_x2 = self.get_crop_bbox(image) # ensure the prob of crop is the same
while True:
# shift_x = random.randint(self.overlap_length//3, self.overlap_length)
# shift_y = random.randint(self.overlap_length//3, self.overlap_length)
shift_x = self.overlap_length_w
shift_y = self.overlap_length_h
if random.random() > 0.5:
shift_x = shift_x * -1
if random.random() > 0.5:
shift_y = shift_y * -1
crop_y1_shift, crop_y2_shift, crop_x1_shift, crop_x2_shift = crop_y1 + shift_y, crop_y2 + shift_y, crop_x1 + shift_x, crop_x2 + shift_x
if crop_y1_shift > 0 and crop_x1_shift > 0 and crop_y2_shift < image.shape[0] and crop_x2_shift < image.shape[1]:
break
bbox_ori = (crop_y1, crop_y2, crop_x1, crop_x2)
bbox_shift = (crop_y1_shift, crop_y2_shift, crop_x1_shift, crop_x2_shift)
image_ori, crop_area_ori = self.crop(image, bbox_ori, tmp=True)
image_shift, crop_area_shift = self.crop(image, bbox_shift, tmp=True)
depth_gt_ori = self.crop(depth_gt, bbox_ori)
depth_gt_shift = self.crop(depth_gt, bbox_shift)
disp_gt_copy_ori = self.crop(disp_gt_copy, bbox_ori)
disp_gt_copy_shift = self.crop(disp_gt_copy, bbox_shift)
bboxs_ori = torch.tensor([crop_x1 / width * 512, crop_y1 / height * 384, crop_x2 / width * 512, crop_y2 / height * 384])
bboxs_shift = torch.tensor([crop_x1_shift / width * 512, crop_y1_shift / height * 384, crop_x2_shift / width * 512, crop_y2_shift / height * 384])
bboxs_raw = torch.tensor([crop_x1, crop_y1, crop_x2, crop_y2])
bboxs_raw_shift = torch.tensor([crop_x1_shift, crop_y1_shift, crop_x2_shift, crop_y2_shift])
else:
bbox = self.get_crop_bbox(image)
image, crop_area = self.crop(image, bbox, tmp=True)
depth_gt = self.crop(depth_gt, bbox)
disp_gt_copy = self.crop(disp_gt_copy, bbox)
crop_y1, crop_y2, crop_x1, crop_x2 = bbox
bboxs_res = torch.tensor([crop_x1 / width * 512, crop_y1 / height * 384, crop_x2 / width * 512, crop_y2 / height * 384]) # coord in 384, 512
bboxs_raw = torch.tensor([crop_x1, crop_y1, crop_x2, crop_y2])
mask = np.logical_and(depth_gt > self.config.min_depth,
depth_gt < self.config.max_depth).squeeze()[None, ...]
mask_raw = np.logical_and(depth_gt_temp > self.config.min_depth, depth_gt_temp < self.config.max_depth).squeeze()[None, ...]
sample = {'image': image, 'depth': depth_gt, 'focal': focal, 'mask': mask, 'image_raw': image.copy(), 'mask_raw': mask_raw, 'image_path': img_file_path}
if self.random_crop:
if self.consistency_training:
image = np.concatenate([image_ori, image_shift], axis=-1)
depth_gt = np.concatenate([depth_gt_ori, depth_gt_shift], axis=-1)
crop_area = np.concatenate([crop_area_ori, crop_area_shift], axis=-1)
bboxs_res = torch.cat([bboxs_ori, bboxs_shift], dim=-1)
bboxes_raw_res = torch.cat([bboxs_raw, bboxs_raw_shift], dim=-1)
mask = np.logical_and(depth_gt > self.config.min_depth,
depth_gt < self.config.max_depth)
# hack the sample dict
sample['image'] = image
sample['depth'] = depth_gt
sample['crop_area'] = crop_area
sample['bbox'] = bboxs_res
sample['bbox_raw'] = bboxes_raw_res
sample['shift'] = torch.tensor([shift_y, shift_x]) # h direction, then w direction
sample['mask'] = mask
else:
if bboxs_res is not None:
sample['bbox'] = bboxs_res
sample['bbox_raw'] = bboxs_raw
sample['crop_area'] = crop_area
if self.sampled_training:
self.data_sampler(sample, disp_gt_copy)
# update mask
sample_points = sample['sample_points']
sample_mask = np.logical_and(sample_points[:, -1] > self.config.min_depth,
sample_points[:, -1] < self.config.max_depth).squeeze()[None, ...]
sample['sample_mask'] = sample_mask
else:
# nothing needs to be changed for consistency training.
img_temp = copy.deepcopy(image)
depth_gt_temp = copy.deepcopy(depth_gt)
if self.sec_stage:
# x_start, y_start = [0, 540, 1080, 1620], [0, 960, 1920, 2880]
x_start, y_start = [0 + 3 * self.overlap / 2, 540 + self.overlap / 2, 1080 - self.overlap / 2, 1620 - 3 * self.overlap / 2], \
[0 + 3 * self.overlap / 2, 960 + self.overlap / 2, 1920 - self.overlap / 2, 2880 - 3 * self.overlap / 2]
img_crops = []
bboxs_roi = []
crop_areas = []
bboxs_raw_list = []
for x in x_start:
for y in y_start:
bbox = (int(x), int(x+540), int(y), int(y+960))
img_crop, crop_area = self.crop(image, bbox, tmp=True)
img_crops.append(img_crop)
crop_areas.append(crop_area)
crop_y1, crop_y2, crop_x1, crop_x2 = bbox
bbox_roi = torch.tensor([crop_x1 / width * 512, crop_y1 / height * 384, crop_x2 / width * 512, crop_y2 / height * 384])
bboxs_roi.append(bbox_roi)
bboxs_raw = torch.tensor([crop_x1, crop_y1, crop_x2, crop_y2])
bboxs_raw_list.append(bboxs_raw)
image = img_crops
bboxs_roi = torch.stack(bboxs_roi, dim=0)
bboxs_raw = torch.stack(bboxs_raw_list, dim=0)
# bbox = (820, 1360 ,1440, 2400) # a hack version for quick evaluation
# image = self.crop(image, bbox)
# depth_gt = self.crop(depth_gt, bbox)
# disp_gt_copy = self.crop(disp_gt_copy, bbox)
mask = np.logical_and(depth_gt > self.config.min_depth,
depth_gt < self.config.max_depth).squeeze()[None, ...]
disp_gt_edges = get_boundaries(disp_gt_copy, th=1, dilation=0)
if self.mode == 'online_eval':
sample = {'image': image, 'depth': depth_gt, 'focal': focal, 'has_valid_depth': True,
'image_path': img_file_path, 'depth_path': disp_path, 'depth_factor_path': depth_factor,
'mask': mask, 'image_raw': image.copy(), 'disp_gt_edges': disp_gt_edges, 'image_path': img_file_path}
if bboxs_roi is not None:
sample['bbox'] = bboxs_roi
sample['bbox_raw'] = bboxs_raw
if crop_areas is not None:
sample['crop_area'] = crop_areas
else:
sample = {'image': image, 'focal': focal, 'image_raw': image.copy(), 'disp_gt_edges': disp_gt_edges, 'image_path': img_file_path}
if bboxs_roi is not None:
sample['bbox'] = bboxs_roi
sample['bbox_raw'] = bboxs_raw
if crop_areas is not None:
sample['crop_area'] = crop_areas
if self.transform:
sample['img_temp'] = img_temp
sample['depth_gt_temp'] = depth_gt_temp
sample = self.transform(sample)
sample['dataset'] = self.config.dataset
return sample
def __len__(self):
return len(self.data_infos)
def get_u4k_loader(config, mode, transform):
if mode == 'train':
dataset = U4KDataset(config, mode, config.data_path, config.filenames_train)
dataset[0]
if config.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
else:
train_sampler = None
dataloader = DataLoader(dataset,
batch_size=config.batch_size,
shuffle=(train_sampler is None),
num_workers=config.workers,
pin_memory=True,
persistent_workers=True,
sampler=train_sampler)
elif mode == 'train_save':
dataset = U4KDataset(config, 'online_eval', config.data_path, config.filenames_train)
if config.distributed:
train_sampler = None
else:
train_sampler = None
dataloader = DataLoader(dataset, 1,
shuffle=False,
num_workers=1,
pin_memory=False,
sampler=train_sampler)
elif mode == 'online_eval':
dataset = U4KDataset(config, mode, config.data_path, config.filenames_val)
# dataset = U4KDataset(config, mode, config.data_path, config.filenames_train)
if config.distributed: # redundant. here only for readability and to be more explicit
# Give whole test set to all processes (and report evaluation only on one) regardless
eval_sampler = None
else:
eval_sampler = None
dataloader = DataLoader(dataset, 1,
shuffle=False,
num_workers=1,
pin_memory=False,
sampler=eval_sampler)
else:
dataset = U4KDataset(config, mode, config.data_path, config.filenames_test)
dataloader = DataLoader(dataset, 1, shuffle=False, num_workers=1)
return dataloader |