Spaces:
Runtime error
Runtime error
File size: 6,587 Bytes
78ab311 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Shariq Farooq Bhat, Zhenyu Li
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
def gaussian(window_size, sigma):
gauss = torch.Tensor([np.exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
return gauss/gauss.sum()
def create_window(window_size, channel=1):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = _2D_window.expand(channel, 1, window_size, window_size).contiguous()
return window
def ssim(img1, img2, val_range, window_size=11, window=None, size_average=True, full=False):
img1 = nn.functional.interpolate(img1, (256, 256), mode='bilinear', align_corners=True)
img2 = nn.functional.interpolate(img2, (256, 256), mode='bilinear', align_corners=True)
# h, w = 256, 256
L = val_range
padd = 0
(_, channel, height, width) = img1.size()
if window is None:
real_size = min(window_size, height, width)
window = create_window(real_size, channel=channel).to(img1.device)
mu1 = F.conv2d(img1, window, padding=padd, groups=channel)
mu2 = F.conv2d(img2, window, padding=padd, groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(img1 * img1, window, padding=padd, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(img2 * img2, window, padding=padd, groups=channel) - mu2_sq
sigma12 = F.conv2d(img1 * img2, window, padding=padd, groups=channel) - mu1_mu2
C1 = (0.01 * L) ** 2
C2 = (0.03 * L) ** 2
v1 = 2.0 * sigma12 + C2
v2 = sigma1_sq + sigma2_sq + C2
cs = torch.mean(v1 / v2) # contrast sensitivity
ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2)
if size_average:
ret = ssim_map.mean()
else:
ret = ssim_map.mean(1).mean(1).mean(1)
if full:
return ret, cs
return ret
class SSIMLoss(nn.Module):
def __init__(self, min_depth=1e-3, max_depth=10):
super(SSIMLoss, self).__init__()
self.name = 'SSIM'
self.min_depth = min_depth
self.max_depth = max_depth
def forward(self, input, target):
loss = torch.clamp((1 - ssim(input, target, val_range=self.max_depth/self.min_depth)) * 0.5, 0, 1)
return loss
# Main loss function used for ZoeDepth. Copy/paste from AdaBins repo (https://github.com/shariqfarooq123/AdaBins/blob/0952d91e9e762be310bb4cd055cbfe2448c0ce20/loss.py#L7)
class SILogLoss(nn.Module):
"""SILog loss (pixel-wise)"""
def __init__(self, beta=0.15):
super().__init__()
self.name = 'SILog'
self.beta = beta
def forward(self, input, target):
alpha = 1e-10
g = torch.log(input + alpha) - torch.log(target + alpha)
# n, c, h, w = g.shape
# norm = 1/(h*w)
# Dg = norm * torch.sum(g**2) - (0.85/(norm**2)) * (torch.sum(g))**2
Dg = torch.var(g) + self.beta * torch.pow(torch.mean(g), 2)
loss = 10 * torch.sqrt(Dg)
return loss
def gradient_y(img):
gy = torch.cat( [F.conv2d(img[:, i, :, :].unsqueeze(0), torch.Tensor([[1, 2, 1], [0, 0, 0], [-1, -2, -1]]).view((1, 1, 3, 3)).to(img.device), padding=1) for i in range(img.shape[1])], 1)
return gy
def gradient_x(img):
gx = torch.cat( [F.conv2d(img[:, i, :, :].unsqueeze(0), torch.Tensor([[1, 0, -1], [2, 0, -2], [1, 0, -1]]).view((1, 1, 3, 3)).to(img.device), padding=1) for i in range(img.shape[1])], 1)
return gx
def laplacian(img):
lap = torch.cat( [F.conv2d(img[:, i, :, :].unsqueeze(0), torch.Tensor([[0, 1, 0], [1, -4, 1], [0, 1, 0]]).view((1, 1, 3, 3)).to(img.device), padding=1) for i in range(img.shape[1])], 1)
return lap
def laplacian_matching_loss(img1, img2, mask=None):
return torch.mean(torch.abs(laplacian(img1)[mask] - laplacian(img2)[mask]))
class GradL1Loss(nn.Module):
def __init__(self):
super(GradL1Loss, self).__init__()
self.name = 'GradL1'
def forward(self, input, target, mask=None):
grad_gt_x = gradient_x(target)
grad_gt_y = gradient_y(target)
grad_pred_x = gradient_x(input)
grad_pred_y = gradient_y(input)
loss = torch.mean(torch.abs(grad_pred_x[mask] - grad_gt_x[mask])) + torch.mean(torch.abs(grad_pred_y[mask] - grad_gt_y[mask]))
return loss
# Edge aware smoothness loss implementation is adapted from: https://github.com/anuragranj/cc
def edge_aware_smoothness_per_pixel(img, pred):
""" A measure of how closely the gradients of a predicted disparity/depth map match the
gradients of the RGB image.
Args:
img (c x 3 x h x w tensor): RGB image
pred (c x h x w tensor): predicted depth/disparity
Returns:
c x 1 tensor: measure of gradient matching (smoothness loss)
"""
pred_gradients_x = gradient_x(pred)
pred_gradients_y = gradient_y(pred)
image_gradients_x = gradient_x(img)
image_gradients_y = gradient_y(img)
weights_x = torch.exp(-torch.mean(torch.abs(image_gradients_x), 1, keepdim=True))
weights_y = torch.exp(-torch.mean(torch.abs(image_gradients_y), 1, keepdim=True))
smoothness_x = torch.abs(pred_gradients_x) * weights_x
smoothness_y = torch.abs(pred_gradients_y) * weights_y
return torch.mean(smoothness_x) + torch.mean(smoothness_y)
ssim_loss = SSIMLoss()
gradl1_loss = GradL1Loss() |