Spaces:
Runtime error
Runtime error
File size: 13,964 Bytes
abbda4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Zhenyu Li
import gradio as gr
from PIL import Image
import tempfile
import torch
import numpy as np
from zoedepth.utils.arg_utils import parse_unknown
import argparse
from zoedepth.models.builder import build_model
from zoedepth.utils.config import get_config_user
import matplotlib
import cv2
from infer_user import regular_tile_param, random_tile_param
from zoedepth.models.base_models.midas import Resize
from torchvision.transforms import Compose
from PIL import Image
from torchvision import transforms
import torch.nn.functional as F
from zoedepth.models.base_models.midas import Resize
from torchvision.transforms import Compose
import gradio as gr
import numpy as np
import trimesh
from zoedepth.utils.geometry import depth_to_points, create_triangles
from functools import partial
import tempfile
def depth_edges_mask(depth, occ_filter_thr):
"""Returns a mask of edges in the depth map.
Args:
depth: 2D numpy array of shape (H, W) with dtype float32.
Returns:
mask: 2D numpy array of shape (H, W) with dtype bool.
"""
# Compute the x and y gradients of the depth map.
depth_dx, depth_dy = np.gradient(depth)
# Compute the gradient magnitude.
depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2)
# Compute the edge mask.
# mask = depth_grad > 0.05 # default in zoedepth
mask = depth_grad > occ_filter_thr # preserve more edges (?)
return mask
def load_state_dict(model, state_dict):
"""Load state_dict into model, handling DataParallel and DistributedDataParallel. Also checks for "model" key in state_dict.
DataParallel prefixes state_dict keys with 'module.' when saving.
If the model is not a DataParallel model but the state_dict is, then prefixes are removed.
If the model is a DataParallel model but the state_dict is not, then prefixes are added.
"""
state_dict = state_dict.get('model', state_dict)
# if model is a DataParallel model, then state_dict keys are prefixed with 'module.'
do_prefix = isinstance(
model, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel))
state = {}
for k, v in state_dict.items():
if k.startswith('module.') and not do_prefix:
k = k[7:]
if not k.startswith('module.') and do_prefix:
k = 'module.' + k
state[k] = v
model.load_state_dict(state, strict=True)
print("Loaded successfully")
return model
def load_wts(model, checkpoint_path):
ckpt = torch.load(checkpoint_path, map_location='cpu')
return load_state_dict(model, ckpt)
def load_ckpt(model, checkpoint):
model = load_wts(model, checkpoint)
print("Loaded weights from {0}".format(checkpoint))
return model
def colorize(value, cmap='magma_r', vmin=None, vmax=None):
# normalize
vmin = value.min() if vmin is None else vmin
# vmax = value.max() if vmax is None else vmax
vmax = np.percentile(value, 95) if vmax is None else vmax
if vmin != vmax:
value = (value - vmin) / (vmax - vmin) # vmin..vmax
else:
value = value * 0.
cmapper = matplotlib.cm.get_cmap(cmap)
value = cmapper(value, bytes=True) # ((1)xhxwx4)
value = value[:, :, :3] # bgr -> rgb
# rgb_value = value[..., ::-1]
rgb_value = value
return rgb_value
def predict_depth(model, image, mode, pn, reso, ps, device=None):
pil_image = image
if device is not None:
image = transforms.ToTensor()(pil_image).unsqueeze(0).to(device)
else:
image = transforms.ToTensor()(pil_image).unsqueeze(0).cuda()
image_height, image_width = image.shape[-2], image.shape[-1]
if reso != '':
image_resolution = (int(reso.split('x')[0]), int(reso.split('x')[1]))
else:
image_resolution = (2160, 3840)
image_hr = F.interpolate(image, image_resolution, mode='bicubic', align_corners=True)
preprocess = Compose([Resize(512, 384, keep_aspect_ratio=False, ensure_multiple_of=32, resize_method="minimal")])
image_lr = preprocess(image)
if ps != '':
patch_size = (int(ps.split('x')[0]), int(ps.split('x')[1]))
else:
patch_size = (int(image_resolution[0] // 4), int(image_resolution[1] // 4))
avg_depth_map = regular_tile_param(
model,
image_hr,
offset_x=0,
offset_y=0,
img_lr=image_lr,
crop_size=patch_size,
img_resolution=image_resolution,
transform=preprocess,
blr_mask=True)
if mode== 'P16':
pass
elif mode== 'P49':
regular_tile_param(
model,
image_hr,
offset_x=patch_size[1]//2,
offset_y=0,
img_lr=image_lr,
iter_pred=avg_depth_map.average_map,
boundary=0,
update=True,
avg_depth_map=avg_depth_map,
crop_size=patch_size,
img_resolution=image_resolution,
transform=preprocess,
blr_mask=True)
regular_tile_param(
model,
image_hr,
offset_x=0,
offset_y=patch_size[0]//2,
img_lr=image_lr,
iter_pred=avg_depth_map.average_map,
boundary=0,
update=True,
avg_depth_map=avg_depth_map,
crop_size=patch_size,
img_resolution=image_resolution,
transform=preprocess,
blr_mask=True)
regular_tile_param(
model,
image_hr,
offset_x=patch_size[1]//2,
offset_y=patch_size[0]//2,
img_lr=image_lr,
iter_pred=avg_depth_map.average_map,
boundary=0,
update=True,
avg_depth_map=avg_depth_map,
crop_size=patch_size,
img_resolution=image_resolution,
transform=preprocess,
blr_mask=True)
elif mode == 'R':
regular_tile_param(
model,
image_hr,
offset_x=patch_size[1]//2,
offset_y=0,
img_lr=image_lr,
iter_pred=avg_depth_map.average_map,
boundary=0,
update=True,
avg_depth_map=avg_depth_map,
crop_size=patch_size,
img_resolution=image_resolution,
transform=preprocess,
blr_mask=True)
regular_tile_param(
model,
image_hr,
offset_x=0,
offset_y=patch_size[0]//2,
img_lr=image_lr,
iter_pred=avg_depth_map.average_map,
boundary=0,
update=True,
avg_depth_map=avg_depth_map,
crop_size=patch_size,
img_resolution=image_resolution,
transform=preprocess,
blr_mask=True)
regular_tile_param(
model,
image_hr,
offset_x=patch_size[1]//2,
offset_y=patch_size[0]//2,
img_lr=image_lr,
iter_pred=avg_depth_map.average_map,
boundary=0,
update=True,
avg_depth_map=avg_depth_map,
crop_size=patch_size,
img_resolution=image_resolution,
transform=preprocess,
blr_mask=True)
for i in range(int(pn)):
random_tile_param(
model,
image_hr,
img_lr=image_lr,
iter_pred=avg_depth_map.average_map,
boundary=0,
update=True,
avg_depth_map=avg_depth_map,
crop_size=patch_size,
img_resolution=image_resolution,
transform=preprocess,
blr_mask=True)
depth = avg_depth_map.average_map.detach().cpu()
depth = F.interpolate(depth.unsqueeze(dim=0).unsqueeze(dim=0), (image_height, image_width), mode='bicubic', align_corners=True).squeeze().numpy()
return depth
def create_demo(model):
gr.Markdown("## Depth Prediction Demo")
with gr.Accordion("Advanced options", open=False):
mode = gr.Radio(["P49", "R"], label="Tiling mode", info="We recommand using P49 for fast evaluation and R with 1024 patches for best visualization results, respectively", elem_id='mode', value='R'),
patch_number = gr.Slider(1, 1024, label="Please decide the number of random patches (Only useful in mode=R)", step=1, value=256)
resolution = gr.Textbox(label="Proccessing resolution (Default 4K. Use 'x' to split height and width.)", elem_id='mode', value='2160x3840')
patch_size = gr.Textbox(label="Patch size (Default 1/4 of image resolution. Use 'x' to split height and width.)", elem_id='mode', value='540x960')
with gr.Row():
input_image = gr.Image(label="Input Image", type='pil', elem_id='img-display-input')
depth_image = gr.Image(label="Depth Map", elem_id='img-display-output')
raw_file = gr.File(label="16-bit raw depth, multiplier:256")
submit = gr.Button("Submit")
def on_submit(image, mode, pn, reso, ps):
depth = predict_depth(model, image, mode, pn, reso, ps)
colored_depth = colorize(depth, cmap='gray_r')
tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
raw_depth = Image.fromarray((depth*256).astype('uint16'))
raw_depth.save(tmp.name)
return [colored_depth, tmp.name]
submit.click(on_submit, inputs=[input_image, mode[0], patch_number, resolution, patch_size], outputs=[depth_image, raw_file])
examples = gr.Examples(examples=["examples/example_1.jpeg", "examples/example_2.jpeg", "examples/example_3.jpeg"], inputs=[input_image])
def get_mesh(model, image, mode, pn, reso, ps, keep_edges, occ_filter_thr, fov):
depth = predict_depth(model, image, mode, pn, reso, ps)
image.thumbnail((1024,1024)) # limit the size of the input image
depth = F.interpolate(torch.from_numpy(depth).unsqueeze(dim=0).unsqueeze(dim=0), (image.height, image.width), mode='bicubic', align_corners=True).squeeze().numpy()
pts3d = depth_to_points(depth[None], fov=float(fov))
pts3d = pts3d.reshape(-1, 3)
# Create a trimesh mesh from the points
# Each pixel is connected to its 4 neighbors
# colors are the RGB values of the image
verts = pts3d.reshape(-1, 3)
image = np.array(image)
if keep_edges:
triangles = create_triangles(image.shape[0], image.shape[1])
else:
triangles = create_triangles(image.shape[0], image.shape[1], mask=~depth_edges_mask(depth, occ_filter_thr=float(occ_filter_thr)))
colors = image.reshape(-1, 3)
mesh = trimesh.Trimesh(vertices=verts, faces=triangles, vertex_colors=colors)
# Save as glb
glb_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False)
glb_path = glb_file.name
mesh.export(glb_path)
return glb_path
def create_demo_3d(model):
gr.Markdown("### Image to 3D Mesh")
gr.Markdown("Convert a single 2D image to a 3D mesh")
with gr.Accordion("Advanced options", open=False):
mode = gr.Radio(["P49", "R"], label="Tiling mode", info="We recommand using P49 for fast evaluation and R with 1024 patches for best visualization results, respectively", elem_id='mode', value='R'),
patch_number = gr.Slider(1, 1024, label="Please decide the number of random patches (Only useful in mode=R)", step=1, value=256)
resolution = gr.Textbox(label="Proccessing resolution (Default 4K. Use 'x' to split height and width)", value='2160x3840')
patch_size = gr.Textbox(label="Patch size (Default 1/4 of image resolution. Use 'x' to split height and width)", value='540x960')
checkbox = gr.Checkbox(label="Keep occlusion edges", value=False)
# occ_filter_thr = gr.Textbox(label="Occlusion filter threshold", info="Larger value will reserve more edges (Only useful when NOT keeping occlusion edges)", value='0.5')
# fov = gr.Textbox(label="FOV for inv-projection", value='55')
occ_filter_thr = gr.Slider(0.01, 5, label="Occlusion edge filter threshold", info="Larger value will reserve more occlusion edges (Only useful when NOT keeping occlusion edges)", step=0.01, value=0.2)
fov = gr.Slider(5, 180, label="FOV for inv-projection", step=1, value=55)
with gr.Row():
input_image = gr.Image(label="Input Image", type='pil')
result = gr.Model3D(label="3d mesh reconstruction", clear_color=[1.0, 1.0, 1.0, 1.0])
submit = gr.Button("Submit")
submit.click(partial(get_mesh, model), inputs=[input_image, mode[0], patch_number, resolution, patch_size, checkbox, occ_filter_thr, fov], outputs=[result])
examples = gr.Examples(examples=["examples/example_1.jpeg", "examples/example_4.jpeg", "examples/example_3.jpeg"], inputs=[input_image])
|