File size: 6,027 Bytes
78ab311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# MIT License

# Copyright (c) 2022 Intelligent Systems Lab Org

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# File author: Zhenyu Li

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.cuda.amp as amp
import numpy as np


KEY_OUTPUT = 'metric_depth'


def extract_key(prediction, key):
    if isinstance(prediction, dict):
        return prediction[key]
    return prediction


# Main loss function used for ZoeDepth. Copy/paste from AdaBins repo (https://github.com/shariqfarooq123/AdaBins/blob/0952d91e9e762be310bb4cd055cbfe2448c0ce20/loss.py#L7)
class SILogLoss(nn.Module):
    """SILog loss (pixel-wise)"""
    def __init__(self, beta=0.15):
        super(SILogLoss, self).__init__()
        self.name = 'SILog'
        self.beta = beta

    def forward(self, input, target, mask=None):
        input = extract_key(input, KEY_OUTPUT)
        
        if mask is not None:
            input_filtered = input[mask]
            target_filtered = target[mask]

        with amp.autocast(enabled=False):  # amp causes NaNs in this loss function
            alpha = 1e-7
            g = torch.log(input_filtered + alpha) - torch.log(target_filtered + alpha)
            Dg = torch.var(g) + self.beta * torch.pow(torch.mean(g), 2)
            loss = 10 * torch.sqrt(Dg)

        if torch.isnan(loss):
            print("Nan SILog loss")
            print("input:", input.shape)
            print("target:", target.shape)
            print("G", torch.sum(torch.isnan(g)))
            print("Input min max", torch.min(input), torch.max(input))
            print("Target min max", torch.min(target), torch.max(target))
            print("Dg", torch.isnan(Dg))
            print("loss", torch.isnan(loss))

        return loss
    


import torch
import torch.nn.functional as F

def gaussian(mu, sigma, labels):
    return torch.exp(-0.5*(mu-labels)** 2/ sigma** 2)/sigma

def laplacian(mu, b, labels):
    # a = torch.abs(mu-labels)/b
    # print("1 isnan: {}".format(torch.isnan(a).any()))
    # print("1 isinf: {}".format(torch.isinf(a).any()))
    # a = torch.exp(-(torch.abs(mu-labels)/b))
    # print(a)

    # print("1 isnan: {}".format(torch.isnan(a).any()))
    # print("1 isinf: {}".format(torch.isinf(a).any()))
    return 0.5 * torch.exp(-(torch.abs(mu-labels)/b))/b

def distribution(mu, sigma, labels, dist="gaussian"):
    return gaussian(mu, sigma, labels) if dist=="gaussian" else \
           laplacian(mu, sigma, labels)

def bimodal_loss(mu0, mu1, sigma0, sigma1, w0, w1, labels, dist="gaussian"):
    # first_term = w0 * distribution(mu0, sigma0, labels, dist)
    # print(first_term)
    # print("f isnan: {}".format(torch.isnan(first_term).any()))
    # print("f isinf: {}".format(torch.isinf(first_term).any()))
    # second_term = w1 * distribution(mu1, sigma1, labels, dist)
    # print(second_term)
    # print("s isnan: {}".format(torch.isnan(second_term).any()))
    # print("s isinf: {}".format(torch.isinf(second_term).any()))

    loss = w0 * distribution(mu0, sigma0, labels, dist) + w1 * distribution(mu1, sigma1, labels, dist)
    # loss = torch.clamp(loss, min=1e-12)
    # print(loss)
    return - torch.log(loss)

def unimodal_loss(mu, sigma, labels):
    return torch.abs(mu - labels)/sigma + torch.log(sigma)

def smooth_l1_loss(preds, labels, reduce=None):
    return F.smooth_l1_loss(preds, labels, reduce=reduce)

def l1_loss(preds, labels, reduce=None):
    return F.l1_loss(preds, labels, reduce=reduce)


class DistributionLoss(nn.Module):
    def __init__(self, max_depth):
        super(DistributionLoss, self).__init__()
        self.name = 'DistributionLoss'
        self.max_depth = max_depth

    def forward(self, input, target, mask=None, dist='biLaplacian'):
        
        
        mu0 = input['mu0']
        mu1 = input['mu1']
        sigma0 = input['sigma0']
        sigma1 = input['sigma1']
        pi0 = input['pi0']
        pi1 = input['pi1']
        
        pred_mask = (pi0 / sigma0 > pi1 / sigma1).float()
        pred_depth = (mu0 * pred_mask + mu1 * (1. - pred_mask))
        pred_metric_depth = (1 - pred_depth) * self.max_depth


        if mask is not None:
            mu0 = mu0[mask]
            mu1 = mu1[mask]
            sigma0 = sigma0[mask]
            sigma1 = sigma1[mask]
            pi0 = pi0[mask]
            pi1 = pi1[mask]

            # real_input = real_depth[mask]
            
            real_input = mu0
            pred_metric_depth = pred_metric_depth[mask]
            record_target = target[mask]


        target_filtered = 1 - target[mask] / self.max_depth
        bi_loss = bimodal_loss(mu0, mu1, sigma0, sigma1, pi0, pi1, target_filtered, dist=dist).mean()
        # print(bi_loss)  

        alpha = 1e-7
        beta = 0.15
        g = torch.log(real_input + alpha) - torch.log(record_target + alpha)
        Dg = torch.var(g) + beta * torch.pow(torch.mean(g), 2)
        sig_loss = 10 * torch.sqrt(Dg)
        # print(sig_loss)
        
        return bi_loss, sig_loss