File size: 10,473 Bytes
78ab311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# MIT License

# Copyright (c) 2022 Intelligent Systems Lab Org

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# File author: Shariq Farooq Bhat, Zhenyu Li

import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm.auto import tqdm
import torch.optim as optim
import torch.optim.lr_scheduler
from zoedepth.utils.align.loss import SILogLoss, gradl1_loss, edge_aware_smoothness_per_pixel
# from utils.misc import *
from .depth_alignment import apply_depth_smoothing, scale_shift_linear
import cv2
import numpy as np

def as_bchw_tensor(input_tensor, num, device=None):
    if len(input_tensor.shape) == 2:
        input_tensor = torch.tensor(input_tensor).unsqueeze(dim=0).unsqueeze(dim=0)
    elif len(input_tensor.shape) == 3:
        input_tensor = torch.tensor(input_tensor).unsqueeze(dim=0)
    else:
        input_tensor = input_tensor
    if device is not None:
        input_tensor = input_tensor.to(device)
    return input_tensor


def get_mlp(in_channels, out_channels):
    conv_config = dict(kernel_size=1, padding=0, stride=1)
    net =  nn.Sequential(
        # nn.Conv2d(in_channels, 64, kernel_size=7, padding=3, stride=1),
        # nn.GELU(),
        nn.Conv2d(in_channels, 64, **conv_config),
        nn.GELU(),
        nn.Conv2d(64, 128, **conv_config),
        nn.GELU(),
        nn.Conv2d(128, out_channels, **conv_config),
    )

    # initialize last layer to predict zeroes
    # net[-1].weight.data.zero_()
    # net[-1].bias.data.zero_()
    return net

def smoothness_loss(depth):
    depth_dx = depth[:, :, :-1, :-1] - depth[:, :, :-1, 1:]
    depth_dy = depth[:, :, :-1, :-1] - depth[:, :, 1:, :-1]
    depth_dx = depth_dx.abs().mean()
    depth_dy = depth_dy.abs().mean()
    return depth_dx + depth_dy

def curvature_loss(depth):
    depth_dx = depth[:, :, :-1, :-1] - depth[:, :, :-1, 1:]
    depth_dy = depth[:, :, :-1, :-1] - depth[:, :, 1:, :-1]
    depth_dxx = depth_dx[:, :, :, :-1] - depth_dx[:, :, :, 1:]
    depth_dyy = depth_dy[:, :, :-1, :] - depth_dy[:, :, 1:, :]
    depth_dxy = depth_dx[:, :, :-1, :-1] - depth_dx[:, :, 1:, 1:]
    depth_dxx = depth_dxx.abs().mean()
    depth_dyy = depth_dyy.abs().mean()
    depth_dxy = depth_dxy.abs().mean()
    return depth_dxx + depth_dyy + depth_dxy

def multi_scale_curvature_loss(depth, scales=[1, 2, 4]):
    loss = 0
    for s in scales:
        loss += curvature_loss(F.interpolate(depth, scale_factor=1/s, mode='bilinear', align_corners=False))
    return loss


def tv_loss(x):
    """Total variation loss."""
    b, c, h, w = x.shape
    dh = torch.abs(x[:, :, 1:, :] - x[:, :, :-1, :])
    dw = torch.abs(x[:, :, :, 1:] - x[:, :, :, :-1])
    return torch.sum(dh) + torch.sum(dw)

def scale_invariant_gradient_loss(pred, gt):
    alpha = 1e-10
    kernel_grad_x = torch.Tensor([[1, 0, -1], [2, 0, -2], [1, 0, -1]]).view((1, 1, 3, 3)).to(pred.device)
    kernel_grad_y = torch.Tensor([[1, 2, 1], [0, 0, 0], [-1, -2, -1]]).view((1, 1, 3, 3)).to(pred.device)

    g = torch.log(pred + alpha) - torch.log(gt + alpha)
    g_x = F.conv2d(g, kernel_grad_x, padding=1)
    g_y = F.conv2d(g, kernel_grad_y, padding=1)
    # n, c, h, w = g.shape
    # norm = 1/(h*w)
    # Dg = norm * torch.sum(g**2) - (0.85/(norm**2)) * (torch.sum(g))**2

    Dgx = torch.var(g_x) + 0.5 * torch.pow(torch.mean(g_x), 2)
    Dgy = torch.var(g_y) + 0.5 * torch.pow(torch.mean(g_y), 2)


    loss = 10 * torch.sqrt(Dgx) + 10 * torch.sqrt(Dgy)
    return loss


def positionalencoding2d(d_model, height, width):
    """
    :param d_model: dimension of the model
    :param height: height of the positions
    :param width: width of the positions
    :return: d_model*height*width position matrix
    """
    if d_model % 4 != 0:
        raise ValueError("Cannot use sin/cos positional encoding with "
                         "odd dimension (got dim={:d})".format(d_model))
    pe = torch.zeros(d_model, height, width)
    # Each dimension use half of d_model
    d_model = int(d_model / 2)
    div_term = torch.exp(torch.arange(0., d_model, 2) *
                         -(np.log(10000.0) / d_model))
    pos_w = torch.arange(0., width).unsqueeze(1)
    pos_h = torch.arange(0., height).unsqueeze(1)
    pe[0:d_model:2, :, :] = torch.sin(pos_w * div_term).transpose(0, 1).unsqueeze(1).repeat(1, height, 1)
    pe[1:d_model:2, :, :] = torch.cos(pos_w * div_term).transpose(0, 1).unsqueeze(1).repeat(1, height, 1)
    pe[d_model::2, :, :] = torch.sin(pos_h * div_term).transpose(0, 1).unsqueeze(2).repeat(1, 1, width)
    pe[d_model + 1::2, :, :] = torch.cos(pos_h * div_term).transpose(0, 1).unsqueeze(2).repeat(1, 1, width)

    return pe

def gaussian_rff(d_model, height, width, sigma=10):
    assert d_model % 2 == 0
    B = torch.randn((d_model//2, 2)) * sigma
    
    x = torch.linspace(-1, 1, width)
    y = torch.linspace(-1, 1, height)

    x, y = torch.meshgrid(x, y)
    xy = torch.stack([x, y], dim=-1).view(-1, 2)

    xy = torch.matmul(B, xy.T).T
    xy = 2 * np.pi * xy.view(height, width, d_model//2)
    enc = torch.cat([torch.sin(xy), torch.cos(xy)], dim=-1)
    return enc.permute(2, 0, 1)


def get_depth(pred, D):
    a, b, c = torch.split(pred, 1, dim=1)
    return 1e-7 + torch.relu(torch.exp(a) * D + (torch.sigmoid(c)-0.5)*torch.exp(b))
    # return 1e-4 + torch.exp(a) * D + b
    # return nn.Softplus()(a)


def train_mlp(image, mask, dr, dp, lr=3e-2, num_iters=3000, device='cuda:0', pos_dim=32, loss_config=dict(beta=0.99),
               w_smooth=1, w_curvature=0.0, w_gl1=0.1, w_tv=0.1, w_shift_reg=0.1, **kwargs):

    mlp = get_mlp(pos_dim+4, 3)
    # mlp = get_mlp(4, 3)
    mlp = mlp.to(device)

    optimizer = optim.AdamW(mlp.parameters(), lr=lr)
    scheduler = optim.lr_scheduler.OneCycleLR(optimizer, lr, epochs=num_iters, steps_per_epoch=1)

    image = as_bchw_tensor(image, 3, device=device).detach()
    h, w = image.shape[-2:]
    pe = positionalencoding2d(pos_dim, h, w)
    pe = as_bchw_tensor(pe, pos_dim, device=device)
    D = as_bchw_tensor(dp, 1, device=device).detach()
    # pe = as_bchw_tensor(gaussian_rff(pos_dim, h, w, sigma=5), pos_dim, device=device)
    X = torch.cat([image, D, pe], dim=1)  # bchw
    # X = torch.cat([image, D], dim=1)  # bchw
    
    Y = as_bchw_tensor(dr, 1, device=device).detach()
    mask = as_bchw_tensor(mask, 1, device=device).detach()
    pbar = tqdm(range(num_iters), desc=f"Training")
    # beta_min, beta_max = 0.
    si_log = SILogLoss(**loss_config)

    for i in pbar:
        optimizer.zero_grad()
        # pred = dr.max().item() * torch.sigmoid(mlp(X))
        pred = mlp(X)
        a, b, c = torch.split(pred, 1, dim=1)
        pred = get_depth(pred, D.detach())
        loss_si = si_log(pred[mask], Y[mask])
        loss = loss_si + w_curvature * multi_scale_curvature_loss(pred) + w_gl1 * gradl1_loss(pred, D.detach()) + w_smooth * edge_aware_smoothness_per_pixel(image, pred)
        # loss_tv = w_tv * (tv_loss(a) + tv_loss(b) + tv_loss(c))
        # loss_gl1 = w_gl1 * gradl1_loss(pred, D.detach())
        # loss_gl1 = w_gl1 * scale_invariant_gradient_loss(pred, D.detach())
        # loss_shift_reg = w_shift_reg * torch.mean(b**2)
        # loss = loss_si + loss_gl1
        # loss = F.mse_loss(pred[mask], Y[mask])
        loss.backward()
        optimizer.step()
        scheduler.step()
        pbar.set_postfix(loss=loss.item(), si=loss_si.item())

    return mlp

def predict_aligned(mlp, image, dp, pos_dim=32, **kwargs):
    device = next(mlp.parameters()).device
    image = as_bchw_tensor(image, 3, device=device)
    h, w = image.shape[-2:]
    pe = positionalencoding2d(pos_dim, h, w)
    pe = as_bchw_tensor(pe, pos_dim, device=device)
    D = as_bchw_tensor(dp, 1, device=device)
    # pe = as_bchw_tensor(gaussian_rff(pos_dim, h, w, sigma=5), pos_dim, device=device)

    X = torch.cat([image, D, pe], dim=1)  # bchw
    # X = torch.cat([image, D], dim=1)  # bchw
    pred = mlp(X)
    pred = get_depth(pred, D)
    return pred.detach()

def align_by_mlp(image, mask, dr, dp, **kwargs):
    mlp = train_mlp(image, mask, dr, dp, **kwargs)
    pred = predict_aligned(mlp, image, dp, **kwargs)
    return pred

from abc import ABC, abstractmethod


# Abstract class for depth alignment. All depth alignment methods should inherit from this class.
# The abstract class defines the interface for depth alignment.
class DepthAligner(ABC):
    def __init__(self):
        super().__init__()

    @abstractmethod
    def align(self, depth_src, depth_target, valid_mask, *args, **kwargs):
        """
        Aligns the depth_src to the depth_target such that the aligned depth_src is as close as possible to the depth_target.
        """
        raise NotImplementedError
    
class MLPAligner(DepthAligner):
    def __init__(self):
        super().__init__()

    def align(self, depth_src, depth_target, valid_mask, image, **kwargs):
        depth_src = as_bchw_tensor(depth_src, 1)
        depth_target = as_bchw_tensor(depth_target, 1)
        valid_mask = as_bchw_tensor(valid_mask, 1)
        depth_target = scale_shift_linear(depth_target, depth_src, valid_mask)
        aligned = align_by_mlp(image, valid_mask, depth_target, depth_src, **kwargs)

        depth_numpy = aligned.squeeze().float().cpu().numpy()
        blur_bilateral = cv2.bilateralFilter(depth_numpy, 5, 140, 140)
        blur_gaussian = cv2.GaussianBlur(blur_bilateral, (5, 5), 0)
        blur_gaussian = torch.from_numpy(blur_gaussian).to(aligned)
        return blur_gaussian.unsqueeze(0)