Spaces:
Runtime error
Runtime error
File size: 10,473 Bytes
78ab311 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Shariq Farooq Bhat, Zhenyu Li
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm.auto import tqdm
import torch.optim as optim
import torch.optim.lr_scheduler
from zoedepth.utils.align.loss import SILogLoss, gradl1_loss, edge_aware_smoothness_per_pixel
# from utils.misc import *
from .depth_alignment import apply_depth_smoothing, scale_shift_linear
import cv2
import numpy as np
def as_bchw_tensor(input_tensor, num, device=None):
if len(input_tensor.shape) == 2:
input_tensor = torch.tensor(input_tensor).unsqueeze(dim=0).unsqueeze(dim=0)
elif len(input_tensor.shape) == 3:
input_tensor = torch.tensor(input_tensor).unsqueeze(dim=0)
else:
input_tensor = input_tensor
if device is not None:
input_tensor = input_tensor.to(device)
return input_tensor
def get_mlp(in_channels, out_channels):
conv_config = dict(kernel_size=1, padding=0, stride=1)
net = nn.Sequential(
# nn.Conv2d(in_channels, 64, kernel_size=7, padding=3, stride=1),
# nn.GELU(),
nn.Conv2d(in_channels, 64, **conv_config),
nn.GELU(),
nn.Conv2d(64, 128, **conv_config),
nn.GELU(),
nn.Conv2d(128, out_channels, **conv_config),
)
# initialize last layer to predict zeroes
# net[-1].weight.data.zero_()
# net[-1].bias.data.zero_()
return net
def smoothness_loss(depth):
depth_dx = depth[:, :, :-1, :-1] - depth[:, :, :-1, 1:]
depth_dy = depth[:, :, :-1, :-1] - depth[:, :, 1:, :-1]
depth_dx = depth_dx.abs().mean()
depth_dy = depth_dy.abs().mean()
return depth_dx + depth_dy
def curvature_loss(depth):
depth_dx = depth[:, :, :-1, :-1] - depth[:, :, :-1, 1:]
depth_dy = depth[:, :, :-1, :-1] - depth[:, :, 1:, :-1]
depth_dxx = depth_dx[:, :, :, :-1] - depth_dx[:, :, :, 1:]
depth_dyy = depth_dy[:, :, :-1, :] - depth_dy[:, :, 1:, :]
depth_dxy = depth_dx[:, :, :-1, :-1] - depth_dx[:, :, 1:, 1:]
depth_dxx = depth_dxx.abs().mean()
depth_dyy = depth_dyy.abs().mean()
depth_dxy = depth_dxy.abs().mean()
return depth_dxx + depth_dyy + depth_dxy
def multi_scale_curvature_loss(depth, scales=[1, 2, 4]):
loss = 0
for s in scales:
loss += curvature_loss(F.interpolate(depth, scale_factor=1/s, mode='bilinear', align_corners=False))
return loss
def tv_loss(x):
"""Total variation loss."""
b, c, h, w = x.shape
dh = torch.abs(x[:, :, 1:, :] - x[:, :, :-1, :])
dw = torch.abs(x[:, :, :, 1:] - x[:, :, :, :-1])
return torch.sum(dh) + torch.sum(dw)
def scale_invariant_gradient_loss(pred, gt):
alpha = 1e-10
kernel_grad_x = torch.Tensor([[1, 0, -1], [2, 0, -2], [1, 0, -1]]).view((1, 1, 3, 3)).to(pred.device)
kernel_grad_y = torch.Tensor([[1, 2, 1], [0, 0, 0], [-1, -2, -1]]).view((1, 1, 3, 3)).to(pred.device)
g = torch.log(pred + alpha) - torch.log(gt + alpha)
g_x = F.conv2d(g, kernel_grad_x, padding=1)
g_y = F.conv2d(g, kernel_grad_y, padding=1)
# n, c, h, w = g.shape
# norm = 1/(h*w)
# Dg = norm * torch.sum(g**2) - (0.85/(norm**2)) * (torch.sum(g))**2
Dgx = torch.var(g_x) + 0.5 * torch.pow(torch.mean(g_x), 2)
Dgy = torch.var(g_y) + 0.5 * torch.pow(torch.mean(g_y), 2)
loss = 10 * torch.sqrt(Dgx) + 10 * torch.sqrt(Dgy)
return loss
def positionalencoding2d(d_model, height, width):
"""
:param d_model: dimension of the model
:param height: height of the positions
:param width: width of the positions
:return: d_model*height*width position matrix
"""
if d_model % 4 != 0:
raise ValueError("Cannot use sin/cos positional encoding with "
"odd dimension (got dim={:d})".format(d_model))
pe = torch.zeros(d_model, height, width)
# Each dimension use half of d_model
d_model = int(d_model / 2)
div_term = torch.exp(torch.arange(0., d_model, 2) *
-(np.log(10000.0) / d_model))
pos_w = torch.arange(0., width).unsqueeze(1)
pos_h = torch.arange(0., height).unsqueeze(1)
pe[0:d_model:2, :, :] = torch.sin(pos_w * div_term).transpose(0, 1).unsqueeze(1).repeat(1, height, 1)
pe[1:d_model:2, :, :] = torch.cos(pos_w * div_term).transpose(0, 1).unsqueeze(1).repeat(1, height, 1)
pe[d_model::2, :, :] = torch.sin(pos_h * div_term).transpose(0, 1).unsqueeze(2).repeat(1, 1, width)
pe[d_model + 1::2, :, :] = torch.cos(pos_h * div_term).transpose(0, 1).unsqueeze(2).repeat(1, 1, width)
return pe
def gaussian_rff(d_model, height, width, sigma=10):
assert d_model % 2 == 0
B = torch.randn((d_model//2, 2)) * sigma
x = torch.linspace(-1, 1, width)
y = torch.linspace(-1, 1, height)
x, y = torch.meshgrid(x, y)
xy = torch.stack([x, y], dim=-1).view(-1, 2)
xy = torch.matmul(B, xy.T).T
xy = 2 * np.pi * xy.view(height, width, d_model//2)
enc = torch.cat([torch.sin(xy), torch.cos(xy)], dim=-1)
return enc.permute(2, 0, 1)
def get_depth(pred, D):
a, b, c = torch.split(pred, 1, dim=1)
return 1e-7 + torch.relu(torch.exp(a) * D + (torch.sigmoid(c)-0.5)*torch.exp(b))
# return 1e-4 + torch.exp(a) * D + b
# return nn.Softplus()(a)
def train_mlp(image, mask, dr, dp, lr=3e-2, num_iters=3000, device='cuda:0', pos_dim=32, loss_config=dict(beta=0.99),
w_smooth=1, w_curvature=0.0, w_gl1=0.1, w_tv=0.1, w_shift_reg=0.1, **kwargs):
mlp = get_mlp(pos_dim+4, 3)
# mlp = get_mlp(4, 3)
mlp = mlp.to(device)
optimizer = optim.AdamW(mlp.parameters(), lr=lr)
scheduler = optim.lr_scheduler.OneCycleLR(optimizer, lr, epochs=num_iters, steps_per_epoch=1)
image = as_bchw_tensor(image, 3, device=device).detach()
h, w = image.shape[-2:]
pe = positionalencoding2d(pos_dim, h, w)
pe = as_bchw_tensor(pe, pos_dim, device=device)
D = as_bchw_tensor(dp, 1, device=device).detach()
# pe = as_bchw_tensor(gaussian_rff(pos_dim, h, w, sigma=5), pos_dim, device=device)
X = torch.cat([image, D, pe], dim=1) # bchw
# X = torch.cat([image, D], dim=1) # bchw
Y = as_bchw_tensor(dr, 1, device=device).detach()
mask = as_bchw_tensor(mask, 1, device=device).detach()
pbar = tqdm(range(num_iters), desc=f"Training")
# beta_min, beta_max = 0.
si_log = SILogLoss(**loss_config)
for i in pbar:
optimizer.zero_grad()
# pred = dr.max().item() * torch.sigmoid(mlp(X))
pred = mlp(X)
a, b, c = torch.split(pred, 1, dim=1)
pred = get_depth(pred, D.detach())
loss_si = si_log(pred[mask], Y[mask])
loss = loss_si + w_curvature * multi_scale_curvature_loss(pred) + w_gl1 * gradl1_loss(pred, D.detach()) + w_smooth * edge_aware_smoothness_per_pixel(image, pred)
# loss_tv = w_tv * (tv_loss(a) + tv_loss(b) + tv_loss(c))
# loss_gl1 = w_gl1 * gradl1_loss(pred, D.detach())
# loss_gl1 = w_gl1 * scale_invariant_gradient_loss(pred, D.detach())
# loss_shift_reg = w_shift_reg * torch.mean(b**2)
# loss = loss_si + loss_gl1
# loss = F.mse_loss(pred[mask], Y[mask])
loss.backward()
optimizer.step()
scheduler.step()
pbar.set_postfix(loss=loss.item(), si=loss_si.item())
return mlp
def predict_aligned(mlp, image, dp, pos_dim=32, **kwargs):
device = next(mlp.parameters()).device
image = as_bchw_tensor(image, 3, device=device)
h, w = image.shape[-2:]
pe = positionalencoding2d(pos_dim, h, w)
pe = as_bchw_tensor(pe, pos_dim, device=device)
D = as_bchw_tensor(dp, 1, device=device)
# pe = as_bchw_tensor(gaussian_rff(pos_dim, h, w, sigma=5), pos_dim, device=device)
X = torch.cat([image, D, pe], dim=1) # bchw
# X = torch.cat([image, D], dim=1) # bchw
pred = mlp(X)
pred = get_depth(pred, D)
return pred.detach()
def align_by_mlp(image, mask, dr, dp, **kwargs):
mlp = train_mlp(image, mask, dr, dp, **kwargs)
pred = predict_aligned(mlp, image, dp, **kwargs)
return pred
from abc import ABC, abstractmethod
# Abstract class for depth alignment. All depth alignment methods should inherit from this class.
# The abstract class defines the interface for depth alignment.
class DepthAligner(ABC):
def __init__(self):
super().__init__()
@abstractmethod
def align(self, depth_src, depth_target, valid_mask, *args, **kwargs):
"""
Aligns the depth_src to the depth_target such that the aligned depth_src is as close as possible to the depth_target.
"""
raise NotImplementedError
class MLPAligner(DepthAligner):
def __init__(self):
super().__init__()
def align(self, depth_src, depth_target, valid_mask, image, **kwargs):
depth_src = as_bchw_tensor(depth_src, 1)
depth_target = as_bchw_tensor(depth_target, 1)
valid_mask = as_bchw_tensor(valid_mask, 1)
depth_target = scale_shift_linear(depth_target, depth_src, valid_mask)
aligned = align_by_mlp(image, valid_mask, depth_target, depth_src, **kwargs)
depth_numpy = aligned.squeeze().float().cpu().numpy()
blur_bilateral = cv2.bilateralFilter(depth_numpy, 5, 140, 140)
blur_gaussian = cv2.GaussianBlur(blur_bilateral, (5, 5), 0)
blur_gaussian = torch.from_numpy(blur_gaussian).to(aligned)
return blur_gaussian.unsqueeze(0) |