Zhenyu Li
update
78ab311
raw
history blame
14.9 kB
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Zhenyu Li
# This file is partly inspired from ZoeDepth (https://github.com/isl-org/ZoeDepth/blob/main/zoedepth/data/data_mono.py); author: Shariq Farooq Bhat
import os
import numpy as np
import torch
from PIL import Image
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
import os.path as osp
import random
import torch.nn as nn
import cv2
import copy
from zoedepth.utils.misc import get_boundaries
from zoedepth.models.base_models.midas import Resize
from .u4k import U4KDataset, remove_leading_slash
import re
import numpy as np
import sys
import matplotlib.pyplot as plt
import imageio
class GTA(U4KDataset):
def __init__(self, config, mode, data_root, split):
super().__init__(config, mode, data_root, split)
self.crop_size = [270, 480] # 1/4
def load_data_list(self):
# os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1"
"""Load annotation from directory.
Args:
data_root (str): Data root for img_dir/ann_dir.
split (str|None): Split txt file. If split is specified, only file
with suffix in the splits will be loaded. Otherwise, all images
in img_dir/ann_dir will be loaded. Default: None
Returns:
list[dict]: All image info of dataset.
"""
data_root = self.data_root
split = self.split
self.invalid_depth_num = 0
img_infos = []
if split is not None:
with open(split) as f:
for line in f:
img_info_l = dict()
img_l, depth_map_l = line.strip().split(" ")
img_info_l['depth_map_path'] = osp.join(data_root, remove_leading_slash(depth_map_l))
img_info_l['img_path'] = osp.join(data_root, remove_leading_slash(img_l))
img_info_l['depth_fields'] = []
img_infos.append(img_info_l)
else:
raise NotImplementedError
# github issue:: make sure the same order
img_infos = sorted(img_infos, key=lambda x: x['img_path'])
return img_infos
def __getitem__(self, idx):
img_file_path = self.data_infos[idx]['img_path']
disp_path = self.data_infos[idx]['depth_map_path']
height=1080
width=1920
image = Image.open(img_file_path).convert("RGB")
image = np.asarray(image, dtype=np.uint8) / 255.0
image = image.astype(np.float32)
# disp_gt, scale = readPFM(disp_path)
# ref_depth_full = cv2.imread(disp_path, cv2.IMREAD_UNCHANGED)
ref_depth_full = imageio.imread(disp_path)
ref_depth_full = np.array(ref_depth_full).astype(np.float32) / 256
# invalid_mask_full = np.logical_or(ref_depth_full < self.config.min_depth, ref_depth_full > self.config.max_depth)
# ref_depth_full[invalid_mask_full] = 0
# ref_depth_full[ref_depth_full < self.config.min_depth] = self.config.min_depth
# ref_depth_full[ref_depth_full > self.config.max_depth] = self.config.max_depth
depth_gt = ref_depth_full
disp_gt_copy = depth_gt
depth_gt = depth_gt[..., np.newaxis]
depth_gt[depth_gt > self.config.max_depth] = self.config.max_depth # for vis
# disp_gt_edges = get_boundaries(disp_gt_copy, th=1/20, dilation=0)
bbox = None
bboxs_res = None
crop_areas = None
bboxs_roi = None # hack for infer
if self.mode == 'train':
image, depth_gt = self.train_preprocess(image, depth_gt)
img_temp = copy.deepcopy(image)
depth_gt_temp = copy.deepcopy(depth_gt)
if self.random_crop: # use in sec_stage
if self.consistency_training:
crop_y1, crop_y2, crop_x1, crop_x2 = self.get_crop_bbox(image) # ensure the prob of crop is the same
while True:
# shift_x = random.randint(self.overlap_length//3, self.overlap_length)
# shift_y = random.randint(self.overlap_length//3, self.overlap_length)
shift_x = self.overlap_length_w
shift_y = self.overlap_length_h
if random.random() > 0.5:
shift_x = shift_x * -1
if random.random() > 0.5:
shift_y = shift_y * -1
crop_y1_shift, crop_y2_shift, crop_x1_shift, crop_x2_shift = crop_y1 + shift_y, crop_y2 + shift_y, crop_x1 + shift_x, crop_x2 + shift_x
if crop_y1_shift > 0 and crop_x1_shift > 0 and crop_y2_shift < image.shape[0] and crop_x2_shift < image.shape[1]:
break
bbox_ori = (crop_y1, crop_y2, crop_x1, crop_x2)
bbox_shift = (crop_y1_shift, crop_y2_shift, crop_x1_shift, crop_x2_shift)
image_ori, crop_area_ori = self.crop(image, bbox_ori, tmp=True)
image_shift, crop_area_shift = self.crop(image, bbox_shift, tmp=True)
depth_gt_ori = self.crop(depth_gt, bbox_ori)
depth_gt_shift = self.crop(depth_gt, bbox_shift)
disp_gt_copy_ori = self.crop(disp_gt_copy, bbox_ori)
disp_gt_copy_shift = self.crop(disp_gt_copy, bbox_shift)
bboxs_ori = torch.tensor([crop_x1 / width * 512, crop_y1 / height * 384, crop_x2 / width * 512, crop_y2 / height * 384])
bboxs_shift = torch.tensor([crop_x1_shift / width * 512, crop_y1_shift / height * 384, crop_x2_shift / width * 512, crop_y2_shift / height * 384])
bboxs_raw = torch.tensor([crop_x1, crop_y1, crop_x2, crop_y2])
bboxs_raw_shift = torch.tensor([crop_x1_shift, crop_y1_shift, crop_x2_shift, crop_y2_shift])
else:
bbox = self.get_crop_bbox(image)
image, crop_area = self.crop(image, bbox, tmp=True)
depth_gt = self.crop(depth_gt, bbox)
disp_gt_copy = self.crop(disp_gt_copy, bbox)
crop_y1, crop_y2, crop_x1, crop_x2 = bbox
bboxs_res = torch.tensor([crop_x1 / width * 512, crop_y1 / height * 384, crop_x2 / width * 512, crop_y2 / height * 384]) # coord in 384, 512
bboxs_raw = torch.tensor([crop_x1, crop_y1, crop_x2, crop_y2])
mask = np.logical_and(depth_gt > self.config.min_depth,
depth_gt < self.config.max_depth).squeeze()[None, ...]
mask_raw = np.logical_and(depth_gt_temp > self.config.min_depth, depth_gt_temp < self.config.max_depth).squeeze()[None, ...]
sample = {'image': image, 'depth': depth_gt, 'focal': 0, 'mask': mask, 'image_raw': image.copy(), 'mask_raw': mask_raw}
if self.random_crop:
if self.consistency_training:
image = np.concatenate([image_ori, image_shift], axis=-1)
depth_gt = np.concatenate([depth_gt_ori, depth_gt_shift], axis=-1)
crop_area = np.concatenate([crop_area_ori, crop_area_shift], axis=-1)
bboxs_res = torch.cat([bboxs_ori, bboxs_shift], dim=-1)
bboxes_raw_res = torch.cat([bboxs_raw, bboxs_raw_shift], dim=-1)
mask = np.logical_and(depth_gt > self.config.min_depth,
depth_gt < self.config.max_depth)
# hack the sample dict
sample['image'] = image
sample['depth'] = depth_gt
sample['crop_area'] = crop_area
sample['bbox'] = bboxs_res
sample['bbox_raw'] = bboxes_raw_res
sample['shift'] = torch.tensor([shift_y, shift_x]) # h direction, then w direction
sample['mask'] = mask
else:
if bboxs_res is not None:
sample['bbox'] = bboxs_res
sample['bbox_raw'] = bboxs_raw
sample['crop_area'] = crop_area
if self.sampled_training:
self.data_sampler(sample, disp_gt_copy)
# update mask
sample_points = sample['sample_points']
sample_mask = np.logical_and(sample_points[:, -1] > self.config.min_depth,
sample_points[:, -1] < self.config.max_depth).squeeze()[None, ...]
sample['sample_mask'] = sample_mask
else:
# nothing needs to be changed for consistency training.
img_temp = copy.deepcopy(image)
depth_gt_temp = copy.deepcopy(depth_gt)
if self.sec_stage:
# x_start, y_start = [0, 540, 1080, 1620], [0, 960, 1920, 2880]
x_start, y_start = [0 + 3 * self.overlap / 2, 270 + self.overlap / 2, 540 - self.overlap / 2, 810 - 3 * self.overlap / 2], \
[0 + 3 * self.overlap / 2, 480 + self.overlap / 2, 960 - self.overlap / 2, 1440 - 3 * self.overlap / 2]
img_crops = []
bboxs_roi = []
crop_areas = []
bboxs_raw_list = []
for x in x_start:
for y in y_start:
bbox = (int(x), int(x+270), int(y), int(y+480))
img_crop, crop_area = self.crop(image, bbox, tmp=True)
img_crops.append(img_crop)
crop_areas.append(crop_area)
crop_y1, crop_y2, crop_x1, crop_x2 = bbox
bbox_roi = torch.tensor([crop_x1 / width * 512, crop_y1 / height * 384, crop_x2 / width * 512, crop_y2 / height * 384])
bboxs_roi.append(bbox_roi)
bboxs_raw = torch.tensor([crop_x1, crop_y1, crop_x2, crop_y2])
bboxs_raw_list.append(bboxs_raw)
image = img_crops
bboxs_roi = torch.stack(bboxs_roi, dim=0)
bboxs_raw = torch.stack(bboxs_raw_list, dim=0)
# bbox = (820, 1360 ,1440, 2400) # a hack version for quick evaluation
# image = self.crop(image, bbox)
# depth_gt = self.crop(depth_gt, bbox)
# disp_gt_copy = self.crop(disp_gt_copy, bbox)
mask = np.logical_and(depth_gt > self.config.min_depth,
depth_gt < self.config.max_depth).squeeze()[None, ...]
disp_gt_edges = get_boundaries(disp_gt_copy, th=1, dilation=0)
if self.mode == 'online_eval':
sample = {'image': image, 'depth': depth_gt, 'focal': 0, 'has_valid_depth': True,
'image_path': img_file_path, 'depth_path': disp_path, 'depth_factor_path': 0,
'mask': mask, 'image_raw': image.copy(), 'disp_gt_edges': disp_gt_edges}
if bboxs_roi is not None:
sample['bbox'] = bboxs_roi
sample['bbox_raw'] = bboxs_raw
if crop_areas is not None:
sample['crop_area'] = crop_areas
else:
sample = {'image': image, 'focal': 0, 'image_raw': image.copy(), 'disp_gt_edges': disp_gt_edges, 'image_path': img_file_path}
if bboxs_roi is not None:
sample['bbox'] = bboxs_roi
sample['bbox_raw'] = bboxs_raw
if crop_areas is not None:
sample['crop_area'] = crop_areas
if self.transform:
sample['img_temp'] = img_temp
sample['depth_gt_temp'] = depth_gt_temp
sample = self.transform(sample)
sample['dataset'] = self.config.dataset
return sample
def __len__(self):
return len(self.data_infos)
def get_gta_loader(config, mode, transform):
if mode == 'train':
log = 0
dataset = GTA(config, mode, config.data_path, config.filenames_train)
dataset[0]
if config.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
else:
train_sampler = None
dataloader = DataLoader(dataset,
batch_size=config.batch_size,
shuffle=(train_sampler is None),
num_workers=config.workers,
pin_memory=True,
persistent_workers=True,
sampler=train_sampler)
elif mode == 'online_eval':
dataset = GTA(config, mode, config.data_path, config.filenames_val)
# dataset = U4KDataset(config, mode, config.data_path, config.filenames_train)
if config.distributed: # redundant. here only for readability and to be more explicit
# Give whole test set to all processes (and report evaluation only on one) regardless
eval_sampler = None
else:
eval_sampler = None
dataloader = DataLoader(dataset, 1,
shuffle=False,
num_workers=1,
pin_memory=False,
sampler=eval_sampler)
else:
dataset = GTA(config, mode, config.data_path, config.filenames_test)
dataloader = DataLoader(dataset, 1, shuffle=False, num_workers=1)
return dataloader