Zhenyu Li
update
78ab311
raw
history blame
9.18 kB
import os
import sys
import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
from torch.nn import functional as F
class BlockTypeA(nn.Module):
def __init__(self, in_c1, in_c2, out_c1, out_c2, upscale = True):
super(BlockTypeA, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_c2, out_c2, kernel_size=1),
nn.BatchNorm2d(out_c2),
nn.ReLU(inplace=True)
)
self.conv2 = nn.Sequential(
nn.Conv2d(in_c1, out_c1, kernel_size=1),
nn.BatchNorm2d(out_c1),
nn.ReLU(inplace=True)
)
self.upscale = upscale
def forward(self, a, b):
b = self.conv1(b)
a = self.conv2(a)
b = F.interpolate(b, scale_factor=2.0, mode='bilinear', align_corners=True)
return torch.cat((a, b), dim=1)
class BlockTypeB(nn.Module):
def __init__(self, in_c, out_c):
super(BlockTypeB, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
nn.BatchNorm2d(in_c),
nn.ReLU()
)
self.conv2 = nn.Sequential(
nn.Conv2d(in_c, out_c, kernel_size=3, padding=1),
nn.BatchNorm2d(out_c),
nn.ReLU()
)
def forward(self, x):
x = self.conv1(x) + x
x = self.conv2(x)
return x
class BlockTypeC(nn.Module):
def __init__(self, in_c, out_c):
super(BlockTypeC, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_c, in_c, kernel_size=3, padding=5, dilation=5),
nn.BatchNorm2d(in_c),
nn.ReLU()
)
self.conv2 = nn.Sequential(
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
nn.BatchNorm2d(in_c),
nn.ReLU()
)
self.conv3 = nn.Conv2d(in_c, out_c, kernel_size=1)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
return x
def _make_divisible(v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
:param v:
:param divisor:
:param min_value:
:return:
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
class ConvBNReLU(nn.Sequential):
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
self.channel_pad = out_planes - in_planes
self.stride = stride
#padding = (kernel_size - 1) // 2
# TFLite uses slightly different padding than PyTorch
if stride == 2:
padding = 0
else:
padding = (kernel_size - 1) // 2
super(ConvBNReLU, self).__init__(
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
nn.BatchNorm2d(out_planes),
nn.ReLU6(inplace=True)
)
self.max_pool = nn.MaxPool2d(kernel_size=stride, stride=stride)
def forward(self, x):
# TFLite uses different padding
if self.stride == 2:
x = F.pad(x, (0, 1, 0, 1), "constant", 0)
#print(x.shape)
for module in self:
if not isinstance(module, nn.MaxPool2d):
x = module(x)
return x
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride, expand_ratio):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
hidden_dim = int(round(inp * expand_ratio))
self.use_res_connect = self.stride == 1 and inp == oup
layers = []
if expand_ratio != 1:
# pw
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
layers.extend([
# dw
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
])
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV2(nn.Module):
def __init__(self, pretrained=True):
"""
MobileNet V2 main class
Args:
num_classes (int): Number of classes
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
inverted_residual_setting: Network structure
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
Set to 1 to turn off rounding
block: Module specifying inverted residual building block for mobilenet
"""
super(MobileNetV2, self).__init__()
block = InvertedResidual
input_channel = 32
last_channel = 1280
width_mult = 1.0
round_nearest = 8
inverted_residual_setting = [
# t, c, n, s
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
#[6, 96, 3, 1],
#[6, 160, 3, 2],
#[6, 320, 1, 1],
]
# only check the first element, assuming user knows t,c,n,s are required
if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
raise ValueError("inverted_residual_setting should be non-empty "
"or a 4-element list, got {}".format(inverted_residual_setting))
# building first layer
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
features = [ConvBNReLU(4, input_channel, stride=2)]
# building inverted residual blocks
for t, c, n, s in inverted_residual_setting:
output_channel = _make_divisible(c * width_mult, round_nearest)
for i in range(n):
stride = s if i == 0 else 1
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
input_channel = output_channel
self.features = nn.Sequential(*features)
self.fpn_selected = [3, 6, 10]
# weight initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
#if pretrained:
# self._load_pretrained_model()
def _forward_impl(self, x):
# This exists since TorchScript doesn't support inheritance, so the superclass method
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
fpn_features = []
for i, f in enumerate(self.features):
if i > self.fpn_selected[-1]:
break
x = f(x)
if i in self.fpn_selected:
fpn_features.append(x)
c2, c3, c4 = fpn_features
return c2, c3, c4
def forward(self, x):
return self._forward_impl(x)
def _load_pretrained_model(self):
pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/mobilenet_v2-b0353104.pth')
model_dict = {}
state_dict = self.state_dict()
for k, v in pretrain_dict.items():
if k in state_dict:
model_dict[k] = v
state_dict.update(model_dict)
self.load_state_dict(state_dict)
class MobileV2_MLSD_Tiny(nn.Module):
def __init__(self):
super(MobileV2_MLSD_Tiny, self).__init__()
self.backbone = MobileNetV2(pretrained=True)
self.block12 = BlockTypeA(in_c1= 32, in_c2= 64,
out_c1= 64, out_c2=64)
self.block13 = BlockTypeB(128, 64)
self.block14 = BlockTypeA(in_c1 = 24, in_c2 = 64,
out_c1= 32, out_c2= 32)
self.block15 = BlockTypeB(64, 64)
self.block16 = BlockTypeC(64, 16)
def forward(self, x):
c2, c3, c4 = self.backbone(x)
x = self.block12(c3, c4)
x = self.block13(x)
x = self.block14(c2, x)
x = self.block15(x)
x = self.block16(x)
x = x[:, 7:, :, :]
#print(x.shape)
x = F.interpolate(x, scale_factor=2.0, mode='bilinear', align_corners=True)
return x