Spaces:
Runtime error
Runtime error
# MIT License | |
# Copyright (c) 2022 Intelligent Systems Lab Org | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# File author: Shariq Farooq Bhat | |
# This file may include modifications from author Zhenyu Li | |
import os | |
import uuid | |
import warnings | |
from datetime import datetime as dt | |
from typing import Dict | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch | |
import torch.distributed as dist | |
import torch.nn as nn | |
import torch.optim as optim | |
import wandb | |
from tqdm import tqdm | |
from zoedepth.utils.config import flatten | |
from zoedepth.utils.misc import RunningAverageDict, colorize, colors | |
def is_rank_zero(args): | |
return args.rank == 0 | |
class BaseTrainer: | |
def __init__(self, config, model, train_loader, test_loader=None, device=None): | |
""" Base Trainer class for training a model.""" | |
self.config = config | |
self.metric_criterion = "abs_rel" | |
if device is None: | |
device = torch.device( | |
'cuda') if torch.cuda.is_available() else torch.device('cpu') | |
self.device = device | |
self.model = model | |
self.train_loader = train_loader | |
self.test_loader = test_loader | |
self.optimizer = self.init_optimizer() | |
self.scheduler = self.init_scheduler() | |
# import matplotlib.pyplot as plt | |
# lrs = [] | |
# momentums = [] | |
# for e in range(self.config.epochs): | |
# for s in range(len(self.train_loader)): | |
# self.scheduler.step() | |
# self.optimizer.step() | |
# lr = self.scheduler.get_last_lr()[2] | |
# lrs.append(lr) | |
# print(self.optimizer.param_groups[0]['betas']) | |
# momentum = self.optimizer.param_groups[0]['betas'][0] | |
# momentums.append(momentum) | |
# step = [_ for _ in range(len(lrs))] | |
# plt.scatter(step, momentums) | |
# plt.savefig("debug.png") | |
# exit(100) | |
def resize_to_target(self, prediction, target): | |
if prediction.shape[2:] != target.shape[-2:]: | |
prediction = nn.functional.interpolate( | |
prediction, size=target.shape[-2:], mode="bilinear", align_corners=True | |
) | |
return prediction | |
def load_ckpt(self, checkpoint_dir="./checkpoints", ckpt_type="best"): | |
import glob | |
import os | |
from zoedepth.models.model_io import load_wts | |
if hasattr(self.config, "checkpoint"): | |
checkpoint = self.config.checkpoint | |
elif hasattr(self.config, "ckpt_pattern"): | |
pattern = self.config.ckpt_pattern | |
matches = glob.glob(os.path.join( | |
checkpoint_dir, f"*{pattern}*{ckpt_type}*")) | |
if not (len(matches) > 0): | |
raise ValueError(f"No matches found for the pattern {pattern}") | |
checkpoint = matches[0] | |
else: | |
return | |
model = load_wts(self.model, checkpoint) | |
# TODO : Resuming training is not properly supported in this repo. Implement loading / saving of optimizer and scheduler to support it. | |
print("Loaded weights from {0}".format(checkpoint)) | |
warnings.warn( | |
"Resuming training is not properly supported in this repo. Implement loading / saving of optimizer and scheduler to support it.") | |
self.model = model | |
def init_optimizer(self): | |
m = self.model.module if self.config.multigpu else self.model | |
if self.config.same_lr: | |
print("Using same LR") | |
if hasattr(m, 'core'): | |
m.core.unfreeze() | |
params = self.model.parameters() | |
else: | |
print("Using diff LR") | |
if not hasattr(m, 'get_lr_params'): | |
raise NotImplementedError( | |
f"Model {m.__class__.__name__} does not implement get_lr_params. Please implement it or use the same LR for all parameters.") | |
params = m.get_lr_params(self.config.lr) | |
return optim.AdamW(params, lr=self.config.lr, weight_decay=self.config.wd) | |
def init_scheduler(self): | |
lrs = [l['lr'] for l in self.optimizer.param_groups] | |
return optim.lr_scheduler.OneCycleLR(self.optimizer, lrs, epochs=self.config.epochs, steps_per_epoch=len(self.train_loader), | |
cycle_momentum=self.config.cycle_momentum, | |
base_momentum=self.config.get('base_momentum', 0.85), max_momentum=self.config.get('max_momentum', 0.95), div_factor=self.config.div_factor, | |
final_div_factor=self.config.final_div_factor, pct_start=self.config.pct_start, three_phase=self.config.three_phase) | |
def train_on_batch(self, batch, train_step): | |
raise NotImplementedError | |
def validate_on_batch(self, batch, val_step): | |
raise NotImplementedError | |
def raise_if_nan(self, losses): | |
for key, value in losses.items(): | |
if torch.isnan(value): | |
raise ValueError(f"{key} is NaN, Stopping training") | |
def iters_per_epoch(self): | |
return len(self.train_loader) | |
def total_iters(self): | |
return self.config.epochs * self.iters_per_epoch | |
def should_early_stop(self): | |
if self.config.get('early_stop', False) and self.step > self.config.early_stop: | |
return True | |
def train(self): | |
print(f"Training {self.config.name}") | |
if self.config.uid is None: | |
self.config.uid = str(uuid.uuid4()).split('-')[-1] | |
run_id = f"{dt.now().strftime('%d-%h_%H-%M')}-{self.config.uid}" | |
self.config.run_id = run_id | |
self.config.experiment_id = f"{self.config.name}{self.config.version_name}_{run_id}" | |
self.should_write = ((not self.config.distributed) | |
or self.config.rank == 0) | |
self.should_log = self.should_write # and logging | |
if self.should_log: | |
tags = self.config.tags.split( | |
',') if self.config.tags != '' else None | |
wandb.init(project=self.config.project, name=self.config.experiment_id, config=flatten(self.config), dir=self.config.root, | |
tags=tags, notes=self.config.notes, settings=wandb.Settings(start_method="fork")) | |
self.model.train() | |
self.step = 0 | |
best_loss = np.inf | |
validate_every = int(self.config.validate_every * self.iters_per_epoch) | |
if self.config.prefetch: | |
for i, batch in tqdm(enumerate(self.train_loader), desc=f"Prefetching...", | |
total=self.iters_per_epoch) if is_rank_zero(self.config) else enumerate(self.train_loader): | |
pass | |
losses = {} | |
def stringify_losses(L): return "; ".join(map( | |
lambda kv: f"{colors.fg.purple}{kv[0]}{colors.reset}: {round(kv[1].item(),3):.4e}", L.items())) | |
for epoch in range(self.config.epochs): | |
if self.should_early_stop(): | |
break | |
self.epoch = epoch | |
# self.model.eval() | |
# metrics, test_losses = self.validate() | |
# print(metrics) | |
# exit(100) | |
################################# Train loop ########################################################## | |
if self.should_log: | |
wandb.log({"Epoch": epoch}, step=self.step) | |
pbar = tqdm(enumerate(self.train_loader), desc=f"Epoch: {epoch + 1}/{self.config.epochs}. Loop: Train", | |
total=self.iters_per_epoch) if is_rank_zero(self.config) else enumerate(self.train_loader) | |
for i, batch in pbar: | |
if self.should_early_stop(): | |
print("Early stopping") | |
break | |
# print(f"Batch {self.step+1} on rank {self.config.rank}") | |
losses = self.train_on_batch(batch, i) | |
# print(f"trained batch {self.step+1} on rank {self.config.rank}") | |
self.raise_if_nan(losses) | |
if is_rank_zero(self.config) and self.config.print_losses: | |
pbar.set_description( | |
f"Epoch: {epoch + 1}/{self.config.epochs}. Loop: Train. Losses: {stringify_losses(losses)}") | |
self.scheduler.step() | |
if self.should_log and self.step % 50 == 0: | |
wandb.log({f"Train/{name}": loss.item() | |
for name, loss in losses.items()}, step=self.step) | |
# current_lr = self.optimizer.param_groups[0]['lr'] | |
current_lr = self.scheduler.get_last_lr()[0] | |
wandb.log({f"Train/LR": current_lr}, step=self.step) | |
momentum = self.optimizer.param_groups[0]['betas'][0] | |
wandb.log({f"Train/momentum": momentum}, step=self.step) | |
self.step += 1 | |
######################################################################################################## | |
if self.test_loader: | |
if (self.step % validate_every) == 0: | |
self.model.eval() | |
if self.should_write: | |
self.save_checkpoint( | |
f"{self.config.experiment_id}_latest.pt") | |
################################# Validation loop ################################################## | |
# validate on the entire validation set in every process but save only from rank 0, I know, inefficient, but avoids divergence of processes | |
metrics, test_losses = self.validate() | |
# print("Validated: {}".format(metrics)) | |
if self.should_log: | |
wandb.log( | |
{f"Test/{name}": tloss for name, tloss in test_losses.items()}, step=self.step) | |
wandb.log({f"Metrics/{k}": v for k, | |
v in metrics.items()}, step=self.step) | |
if (metrics[self.metric_criterion] < best_loss) and self.should_write: | |
self.save_checkpoint( | |
f"{self.config.experiment_id}_best.pt") | |
best_loss = metrics[self.metric_criterion] | |
self.model.train() | |
if self.config.distributed: | |
dist.barrier() | |
# print(f"Validated: {metrics} on device {self.config.rank}") | |
# print(f"Finished step {self.step} on device {self.config.rank}") | |
################################################################################################# | |
# Save / validate at the end | |
self.step += 1 # log as final point | |
self.model.eval() | |
self.save_checkpoint(f"{self.config.experiment_id}_latest.pt") | |
if self.test_loader: | |
################################# Validation loop ################################################## | |
metrics, test_losses = self.validate() | |
# print("Validated: {}".format(metrics)) | |
if self.should_log: | |
wandb.log({f"Test/{name}": tloss for name, | |
tloss in test_losses.items()}, step=self.step) | |
wandb.log({f"Metrics/{k}": v for k, | |
v in metrics.items()}, step=self.step) | |
if (metrics[self.metric_criterion] < best_loss) and self.should_write: | |
self.save_checkpoint( | |
f"{self.config.experiment_id}_best.pt") | |
best_loss = metrics[self.metric_criterion] | |
self.model.train() | |
def validate(self): | |
with torch.no_grad(): | |
losses_avg = RunningAverageDict() | |
metrics_avg = RunningAverageDict() | |
for i, batch in tqdm(enumerate(self.test_loader), desc=f"Epoch: {self.epoch + 1}/{self.config.epochs}. Loop: Validation", total=len(self.test_loader), disable=not is_rank_zero(self.config)): | |
metrics, losses = self.validate_on_batch(batch, val_step=i) | |
if losses: | |
losses_avg.update(losses) | |
if metrics: | |
metrics_avg.update(metrics) | |
r1, r2 = metrics_avg.get_value(), losses_avg.get_value() | |
if self.should_log and self.config.get("debug", False): | |
print(r1) | |
return r1, r2 | |
def save_checkpoint(self, filename): | |
if not self.should_write: | |
return | |
root = self.config.save_dir | |
if not os.path.isdir(root): | |
os.makedirs(root) | |
fpath = os.path.join(root, filename) | |
m = self.model.module if self.config.multigpu else self.model | |
torch.save( | |
{ | |
"model": m.state_dict(), | |
"optimizer": None, # TODO : Change to self.optimizer.state_dict() if resume support is needed, currently None to reduce file size | |
"epoch": self.epoch | |
}, fpath) | |
def log_images(self, rgb: Dict[str, list] = {}, depth: Dict[str, list] = {}, scalar_field: Dict[str, list] = {}, prefix="", scalar_cmap="turbo_r", min_depth=None, max_depth=None): | |
if not self.should_log: | |
return | |
# if min_depth is None: | |
# try: | |
# min_depth = self.config.min_depth | |
# max_depth = self.config.max_depth | |
# except AttributeError: | |
# min_depth = None | |
# max_depth = None | |
depths_gt = depth['GT'] | |
invalid_mask = torch.logical_or(depths_gt<=min_depth, depths_gt>=max_depth).detach().cpu().squeeze().numpy() | |
min_depth = None | |
max_depth = None | |
depth = {k: colorize(v, vmin=min_depth, vmax=max_depth, invalid_mask=invalid_mask) | |
for k, v in depth.items()} | |
# depth = {k: colorize(v, vmin=0, vmax=80, invalid_mask=invalid_mask) | |
# for k, v in depth.items()} | |
scalar_field = {k: colorize( | |
v, vmin=None, vmax=None, cmap=scalar_cmap) for k, v in scalar_field.items()} | |
images = {**rgb, **depth, **scalar_field} | |
wimages = { | |
prefix+"Predictions": [wandb.Image(v, caption=k) for k, v in images.items()]} | |
wandb.log(wimages, step=self.step) | |
def log_line_plot(self, data): | |
if not self.should_log: | |
return | |
plt.plot(data) | |
plt.ylabel("Scale factors") | |
wandb.log({"Scale factors": wandb.Image(plt)}, step=self.step) | |
plt.close() | |
def log_bar_plot(self, title, labels, values): | |
if not self.should_log: | |
return | |
data = [[label, val] for (label, val) in zip(labels, values)] | |
table = wandb.Table(data=data, columns=["label", "value"]) | |
wandb.log({title: wandb.plot.bar(table, "label", | |
"value", title=title)}, step=self.step) | |