Zhenyu Li
update
78ab311
raw
history blame
37.2 kB
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Shariq Farooq Bhat
# This file may include modifications from author Zhenyu Li
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.cuda.amp as amp
import numpy as np
from torch.autograd import Variable
from math import exp
import matplotlib.pyplot as plt
KEY_OUTPUT = 'metric_depth'
# import kornia
import copy
def extract_key(prediction, key):
if isinstance(prediction, dict):
return prediction[key]
return prediction
# Main loss function used for ZoeDepth. Copy/paste from AdaBins repo (https://github.com/shariqfarooq123/AdaBins/blob/0952d91e9e762be310bb4cd055cbfe2448c0ce20/loss.py#L7)
class SILogLoss(nn.Module):
"""SILog loss (pixel-wise)"""
def __init__(self, beta=0.15):
super(SILogLoss, self).__init__()
self.name = 'SILog'
self.beta = beta
def forward(self, input, target, mask=None, interpolate=True, return_interpolated=False):
hack_input = input
input = extract_key(input, KEY_OUTPUT)
if input.shape[-1] != target.shape[-1] and interpolate:
input = nn.functional.interpolate(
input, target.shape[-2:], mode='bilinear', align_corners=True)
intr_input = input
else:
intr_input = input
if target.ndim == 3:
target = target.unsqueeze(1)
if mask is not None:
if mask.ndim == 3:
mask = mask.unsqueeze(1)
input = input[mask]
target = target[mask]
with amp.autocast(enabled=False): # amp causes NaNs in this loss function
alpha = 1e-7
g = torch.log(input + alpha) - torch.log(target + alpha)
# n, c, h, w = g.shape
# norm = 1/(h*w)
# Dg = norm * torch.sum(g**2) - (0.85/(norm**2)) * (torch.sum(g))**2
Dg = torch.var(g) + self.beta * torch.pow(torch.mean(g), 2)
loss = 10 * torch.sqrt(Dg)
if torch.isnan(loss):
if input.numel() == 0:
loss = torch.mean(hack_input) * 0
if not return_interpolated:
return loss
return loss, intr_input
print("Nan SILog loss")
print("input:", input.shape)
print("target:", target.shape)
print("G", torch.sum(torch.isnan(g)))
print("Input min max", torch.min(input), torch.max(input))
print("Target min max", torch.min(target), torch.max(target))
print("Dg", torch.isnan(Dg))
print("loss", torch.isnan(loss))
if not return_interpolated:
return loss
return loss, intr_input
def grad(x):
# x.shape : n, c, h, w
diff_x = x[..., 1:, 1:] - x[..., 1:, :-1]
diff_y = x[..., 1:, 1:] - x[..., :-1, 1:]
mag = diff_x**2 + diff_y**2
# angle_ratio
angle = torch.atan(diff_y / (diff_x + 1e-10))
return mag, angle
def grad_mask(mask):
return mask[..., 1:, 1:] & mask[..., 1:, :-1] & mask[..., :-1, 1:]
# class GradL1Loss(nn.Module):
# """Gradient loss"""
# def __init__(self):
# super(GradL1Loss, self).__init__()
# self.name = 'GradL1'
# def forward(self, input, target, mask=None, interpolate=True, return_interpolated=False):
# input = extract_key(input, KEY_OUTPUT)
# if input.shape[-1] != target.shape[-1] and interpolate:
# input = nn.functional.interpolate(
# input, target.shape[-2:], mode='bilinear', align_corners=True)
# intr_input = input
# else:
# intr_input = input
# grad_gt = grad(target)
# grad_pred = grad(input)
# mask_g = grad_mask(mask)
# loss = nn.functional.l1_loss(grad_pred[0][mask_g], grad_gt[0][mask_g])
# loss = loss + \
# nn.functional.l1_loss(grad_pred[1][mask_g], grad_gt[1][mask_g])
# if not return_interpolated:
# return loss
# return loss, intr_input
class GradL1Loss(nn.Module):
"""Gradient loss"""
def __init__(self):
super(GradL1Loss, self).__init__()
self.name = 'GradL1'
def forward(self, input, target, mask=None, interpolate=True, return_interpolated=False):
input = extract_key(input, KEY_OUTPUT)
if input.shape[-1] != target.shape[-1] and interpolate:
input = nn.functional.interpolate(
input, target.shape[-2:], mode='bilinear', align_corners=True)
intr_input = input
else:
intr_input = input
grad_gt = grad(target)
grad_pred = grad(input)
mask_g = grad_mask(mask)
loss = nn.functional.l1_loss(grad_pred[0][mask_g], grad_gt[0][mask_g])
loss = loss + \
nn.functional.l1_loss(grad_pred[1][mask_g], grad_gt[1][mask_g])
if not return_interpolated:
return loss
return loss, intr_input
class OrdinalRegressionLoss(object):
def __init__(self, ord_num, beta, discretization="SID"):
self.ord_num = ord_num
self.beta = beta
self.discretization = discretization
def _create_ord_label(self, gt):
N,one, H, W = gt.shape
# print("gt shape:", gt.shape)
ord_c0 = torch.ones(N, self.ord_num, H, W).to(gt.device)
if self.discretization == "SID":
label = self.ord_num * torch.log(gt) / np.log(self.beta)
else:
label = self.ord_num * (gt - 1.0) / (self.beta - 1.0)
label = label.long()
mask = torch.linspace(0, self.ord_num - 1, self.ord_num, requires_grad=False) \
.view(1, self.ord_num, 1, 1).to(gt.device)
mask = mask.repeat(N, 1, H, W).contiguous().long()
mask = (mask > label)
ord_c0[mask] = 0
ord_c1 = 1 - ord_c0
# implementation according to the paper.
# ord_label = torch.ones(N, self.ord_num * 2, H, W).to(gt.device)
# ord_label[:, 0::2, :, :] = ord_c0
# ord_label[:, 1::2, :, :] = ord_c1
# reimplementation for fast speed.
ord_label = torch.cat((ord_c0, ord_c1), dim=1)
return ord_label, mask
def __call__(self, prob, gt):
"""
:param prob: ordinal regression probability, N x 2*Ord Num x H x W, torch.Tensor
:param gt: depth ground truth, NXHxW, torch.Tensor
:return: loss: loss value, torch.float
"""
# N, C, H, W = prob.shape
valid_mask = gt > 0.
ord_label, mask = self._create_ord_label(gt)
# print("prob shape: {}, ord label shape: {}".format(prob.shape, ord_label.shape))
entropy = -prob * ord_label
loss = torch.sum(entropy, dim=1)[valid_mask.squeeze(1)]
return loss.mean()
class DiscreteNLLLoss(nn.Module):
"""Cross entropy loss"""
def __init__(self, min_depth=1e-3, max_depth=10, depth_bins=64):
super(DiscreteNLLLoss, self).__init__()
self.name = 'CrossEntropy'
self.ignore_index = -(depth_bins + 1)
# self._loss_func = nn.NLLLoss(ignore_index=self.ignore_index)
self._loss_func = nn.CrossEntropyLoss(ignore_index=self.ignore_index)
self.min_depth = min_depth
self.max_depth = max_depth
self.depth_bins = depth_bins
self.alpha = 1
self.zeta = 1 - min_depth
self.beta = max_depth + self.zeta
def quantize_depth(self, depth):
# depth : N1HW
# output : NCHW
# Quantize depth log-uniformly on [1, self.beta] into self.depth_bins bins
depth = torch.log(depth / self.alpha) / np.log(self.beta / self.alpha)
depth = depth * (self.depth_bins - 1)
depth = torch.round(depth)
depth = depth.long()
return depth
def _dequantize_depth(self, depth):
"""
Inverse of quantization
depth : NCHW -> N1HW
"""
# Get the center of the bin
def forward(self, input, target, mask=None, interpolate=True, return_interpolated=False):
input = extract_key(input, KEY_OUTPUT)
# assert torch.all(input <= 0), "Input should be negative"
if input.shape[-1] != target.shape[-1] and interpolate:
input = nn.functional.interpolate(
input, target.shape[-2:], mode='bilinear', align_corners=True)
intr_input = input
else:
intr_input = input
# assert torch.all(input)<=1)
if target.ndim == 3:
target = target.unsqueeze(1)
target = self.quantize_depth(target)
if mask is not None:
if mask.ndim == 3:
mask = mask.unsqueeze(1)
# Set the mask to ignore_index
mask = mask.long()
input = input * mask + (1 - mask) * self.ignore_index
target = target * mask + (1 - mask) * self.ignore_index
input = input.flatten(2) # N, nbins, H*W
target = target.flatten(1) # N, H*W
loss = self._loss_func(input, target)
if not return_interpolated:
return loss
return loss, intr_input
def compute_scale_and_shift(prediction, target, mask):
# system matrix: A = [[a_00, a_01], [a_10, a_11]]
a_00 = torch.sum(mask * prediction * prediction, (1, 2))
a_01 = torch.sum(mask * prediction, (1, 2))
a_11 = torch.sum(mask, (1, 2))
# right hand side: b = [b_0, b_1]
b_0 = torch.sum(mask * prediction * target, (1, 2))
b_1 = torch.sum(mask * target, (1, 2))
# solution: x = A^-1 . b = [[a_11, -a_01], [-a_10, a_00]] / (a_00 * a_11 - a_01 * a_10) . b
x_0 = torch.zeros_like(b_0)
x_1 = torch.zeros_like(b_1)
det = a_00 * a_11 - a_01 * a_01
# A needs to be a positive definite matrix.
valid = det > 0
x_0[valid] = (a_11[valid] * b_0[valid] - a_01[valid] * b_1[valid]) / det[valid]
x_1[valid] = (-a_01[valid] * b_0[valid] + a_00[valid] * b_1[valid]) / det[valid]
return x_0, x_1
class ScaleAndShiftInvariantLoss(nn.Module):
def __init__(self):
super().__init__()
self.name = "SSILoss"
def forward(self, prediction, target, mask, interpolate=True, return_interpolated=False):
if prediction.shape[-1] != target.shape[-1] and interpolate:
prediction = nn.functional.interpolate(prediction, target.shape[-2:], mode='bilinear', align_corners=True)
intr_input = prediction
else:
intr_input = prediction
prediction, target, mask = prediction.squeeze(), target.squeeze(), mask.squeeze()
assert prediction.shape == target.shape, f"Shape mismatch: Expected same shape but got {prediction.shape} and {target.shape}."
scale, shift = compute_scale_and_shift(prediction, target, mask)
scaled_prediction = scale.view(-1, 1, 1) * prediction + shift.view(-1, 1, 1)
loss = nn.functional.l1_loss(scaled_prediction[mask], target[mask])
if not return_interpolated:
return loss
return loss, intr_input
class BudgetConstraint(nn.Module):
"""
Given budget constraint to reduce expected inference FLOPs in the Dynamic Network.
"""
def __init__(self, loss_mu, flops_all, warm_up=True):
super().__init__()
self.loss_mu = loss_mu
self.flops_all = flops_all
self.warm_up = warm_up
def forward(self, flops_expt, warm_up_rate=1.0):
if self.warm_up:
warm_up_rate = min(1.0, warm_up_rate)
else:
warm_up_rate = 1.0
losses = warm_up_rate * ((flops_expt / self.flops_all - self.loss_mu)**2)
return losses
if __name__ == '__main__':
# Tests for DiscreteNLLLoss
celoss = DiscreteNLLLoss()
print(celoss(torch.rand(4, 64, 26, 32)*10, torch.rand(4, 1, 26, 32)*10, ))
d = torch.Tensor([6.59, 3.8, 10.0])
print(celoss.dequantize_depth(celoss.quantize_depth(d)))
class HistogramMatchingLoss(nn.Module):
def __init__(self, min_depth, max_depth, bins=512):
super(HistogramMatchingLoss, self).__init__()
self.name = 'HistogramMatchingLoss'
self.min_depth = min_depth
self.max_depth = max_depth
self.bins = bins
def forward(self, input, target, mask, interpolate=True):
if input.shape[-1] != mask.shape[-1] and interpolate:
input = nn.functional.interpolate(
input, mask.shape[-2:], mode='bilinear', align_corners=True)
if target.shape[-1] != mask.shape[-1] and interpolate:
target = nn.functional.interpolate(
target, mask.shape[-2:], mode='bilinear', align_corners=True)
input[~mask] = 0
target[~mask] = 0
pred_hist = torch.histc(input, bins=self.bins, min=self.min_depth, max=self.max_depth)
gt_hist = torch.histc(target, bins=self.bins, min=self.min_depth, max=self.max_depth)
pred_hist /= pred_hist.sum(dim=0, keepdim=True)
gt_hist /= gt_hist.sum(dim=0, keepdim=True)
# print(pred_hist.shape)
# print(pred_hist)
# _pred_hist = pred_hist.detach().cpu().numpy()
# _gt_hist = gt_hist.detach().cpu().numpy()
# plt.subplot(2, 1, 1)
# plt.bar(range(len(_pred_hist)), _pred_hist)
# plt.subplot(2, 1, 2)
# plt.bar(range(len(_gt_hist)), _gt_hist)
# plt.savefig('./debug_scale.png')
# Compute cumulative histograms (CDF)
cdf_pred = torch.cumsum(pred_hist, dim=0)
cdf_gt = torch.cumsum(gt_hist, dim=0)
# Compute Earth Mover's Distance (EMD) between the CDFs
loss = torch.mean(torch.abs(cdf_pred - cdf_gt))
# loss = torch.mean(torch.sqrt((pred_hist - gt_hist)**2))
# loss = F.kl_div(torch.log(pred_hist + 1e-10), gt_hist, reduction='mean')
return loss
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
return gauss/gauss.sum()
def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
return window
def _ssim(img1, img2, window, window_size, channel, size_average = True):
mu1 = F.conv2d(img1, window, padding = window_size//2, groups = channel)
mu2 = F.conv2d(img2, window, padding = window_size//2, groups = channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1*mu2
sigma1_sq = F.conv2d(img1*img1, window, padding = window_size//2, groups = channel) - mu1_sq
sigma2_sq = F.conv2d(img2*img2, window, padding = window_size//2, groups = channel) - mu2_sq
sigma12 = F.conv2d(img1*img2, window, padding = window_size//2, groups = channel) - mu1_mu2
C1 = 0.01**2
C2 = 0.03**2
ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))
if size_average:
return ssim_map.mean()
else:
return ssim_map.mean(1).mean(1).mean(1)
class SSIM(torch.nn.Module):
def __init__(self, window_size = 11, size_average = True):
super(SSIM, self).__init__()
self.window_size = window_size
self.size_average = size_average
self.channel = 1
self.window = create_window(window_size, self.channel)
def forward(self, img1, img2, mask, interpolate=True):
if img1.shape[-1] != mask.shape[-1] and interpolate:
img1 = nn.functional.interpolate(
img1, mask.shape[-2:], mode='bilinear', align_corners=True)
if img2.shape[-1] != mask.shape[-1] and interpolate:
img2 = nn.functional.interpolate(
img2, mask.shape[-2:], mode='bilinear', align_corners=True)
img1[~mask] = 0
img2[~mask] = 0
(_, channel, _, _) = img1.size()
if channel == self.channel and self.window.data.type() == img1.data.type():
window = self.window
else:
window = create_window(self.window_size, channel)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
self.window = window
self.channel = channel
loss = _ssim(img1, img2, window, self.window_size, channel, self.size_average)
return loss
def ssim(img1, img2, window_size = 11, size_average = True):
(_, channel, _, _) = img1.size()
window = create_window(window_size, channel)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
return _ssim(img1, img2, window, window_size, channel, size_average)
class ConsistencyLoss(nn.Module):
def __init__(self, target, focus_flatten=False, wp=1) -> None:
super().__init__()
self.name = 'Consistency'
self.target = target
self.mode = 'no-resize'
# self.mode = 'resize'
self.focus_flatten = focus_flatten
self.wp = wp
def gradient_y(self, img):
# gy = torch.cat([F.conv2d(img[:, i, :, :].unsqueeze(0), torch.Tensor([[1, 2, 1], [0, 0, 0], [-1, -2, -1]]).view((1, 1, 3, 3)).to(img.device), padding=1) for i in range(img.shape[1])], 1)
gy = F.conv2d(img, torch.Tensor([[1, 2, 1], [0, 0, 0], [-1, -2, -1]]).view((1, 1, 3, 3)).to(img.device), padding=1)
return gy
def gradient_x(self, img):
# gx = torch.cat([F.conv2d(img[:, i, :, :].unsqueeze(0), torch.Tensor([[1, 0, -1], [2, 0, -2], [1, 0, -1]]).view((1, 1, 3, 3)).to(img.device), padding=1) for i in range(img.shape[1])], 1)
gx = F.conv2d(img, torch.Tensor([[1, 0, -1], [2, 0, -2], [1, 0, -1]]).view((1, 1, 3, 3)).to(img.device), padding=1)
return gx
def forward(self, depth_preds, shifts, mask, temp_features, pred_f=None):
common_area_1_list = []
common_area_2_list = []
if self.focus_flatten:
# only consider flatten place
grad = kornia.filters.spatial_gradient(pred_f.detach())
grad_x, grad_y = grad[:, :, 0, :, :], grad[:, :, 1, :, :]
grad = torch.sqrt(grad_x ** 2 + grad_y ** 2)
grad_ext = grad > 0.05 # over 5cm
grad_ext = grad_ext.float()
grad_blur = kornia.filters.gaussian_blur2d(grad_ext, (11, 11), (3, 3))
grad_ext = grad_blur > 0 # over 5cm
grad_ext = grad_blur == 0
mask = torch.logical_and(mask, grad_ext)
if self.target == "mix":
## for feature
bs, c, h, w = depth_preds.shape
split_depth = torch.split(depth_preds, bs//2, dim=0)
split_mask = torch.split(F.interpolate(mask.float(), (384, 512)).bool(), bs//2, dim=0)
feat_ori_list = []
feat_shift_list = []
multi_level_mask = []
for idx, feature in enumerate(temp_features): # multi-level
split_feat = torch.split(feature, bs//2, dim=0)
_, _, h, w = split_feat[0].shape
feat_ori_list.append(split_feat[0])
feat_shift_list.append(split_feat[1])
mask_ori_cur_scale = F.interpolate(split_mask[0].float(), (h, w)).bool()
multi_level_mask.append(mask_ori_cur_scale)
for idx_out, (feat_ori_cur_level, feat_shift_cur_level, mask_ori_cur_level) in enumerate(zip(feat_ori_list, feat_shift_list, multi_level_mask)): # iter multi-scale
scale_factor = 2 ** (5 - idx_out)
_, _, cur_scale_h, cur_scale_w = feat_ori_cur_level.shape
scale_factor = int(384 / cur_scale_h)
for idx_in, (feat_ori, feat_shift, mask_ori, shift_bs) in enumerate(zip(feat_ori_cur_level, feat_shift_cur_level, mask_ori_cur_level, shifts)): # iter bs (paired feat)
c, _, _ = feat_ori.shape
mask_ori = mask_ori.repeat(c, 1, 1)
shift_h, shift_w = int(shift_bs[0] * (384/540) / scale_factor), int(shift_bs[1]* (512/960) / scale_factor)
if shift_h >= 0 and shift_w >= 0:
common_area_1 = feat_ori[:, shift_h:, shift_w:]
common_area_2 = feat_shift[:, :-shift_h, :-shift_w]
mask_common = mask_ori[:, shift_h:, shift_w:]
elif shift_h >= 0 and shift_w <= 0:
common_area_1 = feat_ori[:, shift_h:, :-abs(shift_w)]
common_area_2 = feat_shift[:, :-shift_h, abs(shift_w):]
mask_common = mask_ori[:, shift_h:, :-abs(shift_w)]
elif shift_h <= 0 and shift_w <= 0:
common_area_1 = feat_ori[:, :-abs(shift_h), :-abs(shift_w)]
common_area_2 = feat_shift[:, abs(shift_h):, abs(shift_w):]
mask_common = mask_ori[:, :-abs(shift_h), :-abs(shift_w)]
elif shift_h <= 0 and shift_w >= 0:
common_area_1 = feat_ori[:, :-abs(shift_h):, shift_w:]
common_area_2 = feat_shift[:, abs(shift_h):, :-shift_w]
mask_common = mask_ori[:, :-abs(shift_h):, shift_w:]
else:
print("can you really reach here?")
common_area_masked_1 = common_area_1[mask_common].flatten()
common_area_masked_2 = common_area_2[mask_common].flatten()
common_area_1_list.append(common_area_masked_1)
common_area_2_list.append(common_area_masked_2)
common_area_1 = torch.cat(common_area_1_list)
common_area_2 = torch.cat(common_area_2_list)
if common_area_1.numel() == 0 or common_area_2.numel() == 0:
consistency_loss = torch.Tensor([0]).squeeze()
else:
consistency_loss = F.mse_loss(common_area_1, common_area_2)
consistency_loss_feat = consistency_loss
common_area_1_list = []
common_area_2_list = []
## for pred
bs, c, h, w = depth_preds.shape
split_depth = torch.split(depth_preds, bs//2, dim=0)
split_mask = torch.split(mask, bs//2, dim=0)
for shift, depth_ori, depth_shift, mask_ori, mask_shift in zip(shifts, split_depth[0], split_depth[1], split_mask[0], split_mask[1]):
shift_h, shift_w = shift[0], shift[1]
if shift_h >= 0 and shift_w >= 0:
common_area_1 = depth_ori[:, shift_h:, shift_w:]
common_area_2 = depth_shift[:, :-shift_h, :-shift_w]
mask_common = mask_ori[:, shift_h:, shift_w:]
# mask_debug = mask_shift[:, :-shift_h, :-shift_w]
elif shift_h >= 0 and shift_w <= 0:
common_area_1 = depth_ori[:, shift_h:, :-abs(shift_w)]
common_area_2 = depth_shift[:, :-shift_h, abs(shift_w):]
mask_common = mask_ori[:, shift_h:, :-abs(shift_w)]
# mask_debug = mask_shift[:, :-shift_h, abs(shift_w):]
elif shift_h <= 0 and shift_w <= 0:
common_area_1 = depth_ori[:, :-abs(shift_h), :-abs(shift_w)]
common_area_2 = depth_shift[:, abs(shift_h):, abs(shift_w):]
mask_common = mask_ori[:, :-abs(shift_h), :-abs(shift_w)]
# mask_debug = mask_shift[:, abs(shift_h):, abs(shift_w):]
elif shift_h <= 0 and shift_w >= 0:
common_area_1 = depth_ori[:, :-abs(shift_h):, shift_w:]
common_area_2 = depth_shift[:, abs(shift_h):, :-shift_w]
mask_common = mask_ori[:, :-abs(shift_h):, shift_w:]
# mask_debug = mask_shift[:, abs(shift_h):, :-shift_w]
else:
print("can you really reach here?")
common_area_1 = common_area_1[mask_common].flatten()
common_area_2 = common_area_2[mask_common].flatten()
common_area_1_list.append(common_area_1)
common_area_2_list.append(common_area_2)
common_area_1 = torch.cat(common_area_1_list)
common_area_2 = torch.cat(common_area_2_list)
if common_area_1.numel() == 0 or common_area_2.numel() == 0:
consistency_loss = torch.Tensor([0]).squeeze()
else:
# pred_hist = torch.histc(common_area_1, bins=512, min=0, max=80)
# gt_hist = torch.histc(common_area_2, bins=512, min=0, max=80)
# pred_hist /= pred_hist.sum(dim=0, keepdim=True)
# gt_hist /= gt_hist.sum(dim=0, keepdim=True)
# # Compute cumulative histograms (CDF)
# cdf_pred = torch.cumsum(pred_hist, dim=0)
# cdf_gt = torch.cumsum(gt_hist, dim=0)
# # Compute Earth Mover's Distance (EMD) between the CDFs
# consistency_loss = torch.mean(torch.abs(cdf_pred - cdf_gt))
consistency_loss = F.mse_loss(common_area_1, common_area_2)
consistency_loss_pred = consistency_loss
consistency_loss = consistency_loss_pred * self.wp + consistency_loss_feat
return consistency_loss
elif 'feat' in self.target:
if self.mode == 'resize':
bs, c, h, w = depth_preds.shape
split_depth = torch.split(depth_preds, bs//2, dim=0)
split_mask = torch.split(mask, bs//2, dim=0)
feat_ori_list = []
feat_shift_list = []
for idx, feature in enumerate(temp_features): # multi-level
if idx < 4:
continue
split_feat = torch.split(feature, bs//2, dim=0)
f = F.interpolate(split_feat[0], (h, w), mode='bilinear', align_corners=True)
feat_ori_list.append(f)
f = F.interpolate(split_feat[1], (h, w), mode='bilinear', align_corners=True)
feat_shift_list.append(f)
for idx_out, (feat_ori_cur_level, feat_shift_cur_level) in enumerate(zip(feat_ori_list, feat_shift_list)): # iter multi-scale
scale_factor = 2 ** (5 - idx_out)
for idx_in, (feat_ori, feat_shift, mask_ori, shift_bs) in enumerate(zip(feat_ori_cur_level, feat_shift_cur_level, split_mask[0], shifts)): # iter bs (paired feat)
c, h, w = feat_ori.shape
mask_ori = mask_ori.repeat(c, 1, 1)
shift_h, shift_w = shift_bs[0], shift_bs[1]
if shift_h >= 0 and shift_w >= 0:
common_area_1 = feat_ori[:, shift_h:, shift_w:]
common_area_2 = feat_shift[:, :-shift_h, :-shift_w]
mask_common = mask_ori[:, shift_h:, shift_w:]
elif shift_h >= 0 and shift_w <= 0:
common_area_1 = feat_ori[:, shift_h:, :-abs(shift_w)]
common_area_2 = feat_shift[:, :-shift_h, abs(shift_w):]
mask_common = mask_ori[:, shift_h:, :-abs(shift_w)]
elif shift_h <= 0 and shift_w <= 0:
common_area_1 = feat_ori[:, :-abs(shift_h), :-abs(shift_w)]
common_area_2 = feat_shift[:, abs(shift_h):, abs(shift_w):]
mask_common = mask_ori[:, :-abs(shift_h), :-abs(shift_w)]
elif shift_h <= 0 and shift_w >= 0:
common_area_1 = feat_ori[:, :-abs(shift_h):, shift_w:]
common_area_2 = feat_shift[:, abs(shift_h):, :-shift_w]
mask_common = mask_ori[:, :-abs(shift_h):, shift_w:]
else:
print("can you really reach here?")
common_area_masked_1 = common_area_1[mask_common].flatten()
common_area_masked_2 = common_area_2[mask_common].flatten()
# common_area_masked_1 = common_area_1.flatten()
# common_area_masked_2 = common_area_2.flatten()
common_area_1_list.append(common_area_masked_1)
common_area_2_list.append(common_area_masked_2)
common_area_1 = torch.cat(common_area_1_list)
common_area_2 = torch.cat(common_area_2_list)
if common_area_1.numel() == 0 or common_area_2.numel() == 0:
consistency_loss = torch.Tensor([0]).squeeze()
else:
consistency_loss = F.mse_loss(common_area_1, common_area_2)
return consistency_loss
else:
bs, c, h, w = depth_preds.shape
split_depth = torch.split(depth_preds, bs//2, dim=0)
mask = F.interpolate(mask.float(), (384, 512)).bool() # back to 384, 512
split_mask = torch.split(mask, bs//2, dim=0)
feat_ori_list = []
feat_shift_list = []
multi_level_mask = []
for idx, feature in enumerate(temp_features): # multi-level
split_feat = torch.split(feature, bs//2, dim=0)
_, _, h, w = split_feat[0].shape
feat_ori_list.append(split_feat[0])
feat_shift_list.append(split_feat[1])
mask_ori_cur_scale = F.interpolate(split_mask[0].float(), (h, w)).bool()
multi_level_mask.append(mask_ori_cur_scale)
for idx_out, (feat_ori_cur_level, feat_shift_cur_level, mask_ori_cur_level) in enumerate(zip(feat_ori_list, feat_shift_list, multi_level_mask)): # iter multi-scale
scale_factor = 2 ** (5 - idx_out)
_, _, cur_scale_h, cur_scale_w = feat_ori_cur_level.shape
scale_factor = int(384 / cur_scale_h)
for idx_in, (feat_ori, feat_shift, mask_ori, shift_bs) in enumerate(zip(feat_ori_cur_level, feat_shift_cur_level, mask_ori_cur_level, shifts)): # iter bs (paired feat)
c, _, _ = feat_ori.shape
mask_ori = mask_ori.repeat(c, 1, 1)
shift_h, shift_w = int(shift_bs[0] * (384/540) / scale_factor), int(shift_bs[1]* (512/960) / scale_factor)
if shift_h >= 0 and shift_w >= 0:
common_area_1 = feat_ori[:, shift_h:, shift_w:]
common_area_2 = feat_shift[:, :-shift_h, :-shift_w]
mask_common = mask_ori[:, shift_h:, shift_w:]
elif shift_h >= 0 and shift_w <= 0:
common_area_1 = feat_ori[:, shift_h:, :-abs(shift_w)]
common_area_2 = feat_shift[:, :-shift_h, abs(shift_w):]
mask_common = mask_ori[:, shift_h:, :-abs(shift_w)]
elif shift_h <= 0 and shift_w <= 0:
common_area_1 = feat_ori[:, :-abs(shift_h), :-abs(shift_w)]
common_area_2 = feat_shift[:, abs(shift_h):, abs(shift_w):]
mask_common = mask_ori[:, :-abs(shift_h), :-abs(shift_w)]
elif shift_h <= 0 and shift_w >= 0:
common_area_1 = feat_ori[:, :-abs(shift_h):, shift_w:]
common_area_2 = feat_shift[:, abs(shift_h):, :-shift_w]
mask_common = mask_ori[:, :-abs(shift_h):, shift_w:]
else:
print("can you really reach here?")
common_area_masked_1 = common_area_1[mask_common].flatten()
common_area_masked_2 = common_area_2[mask_common].flatten()
common_area_1_list.append(common_area_masked_1)
common_area_2_list.append(common_area_masked_2)
common_area_1 = torch.cat(common_area_1_list)
common_area_2 = torch.cat(common_area_2_list)
if common_area_1.numel() == 0 or common_area_2.numel() == 0:
consistency_loss = torch.Tensor([0]).squeeze()
else:
consistency_loss = F.mse_loss(common_area_1, common_area_2)
return consistency_loss
elif self.target == 'pred':
bs, c, h, w = depth_preds.shape
split_depth = torch.split(depth_preds, bs//2, dim=0)
split_mask = torch.split(mask, bs//2, dim=0)
for shift, depth_ori, depth_shift, mask_ori, mask_shift in zip(shifts, split_depth[0], split_depth[1], split_mask[0], split_mask[1]):
shift_h, shift_w = shift[0], shift[1]
if shift_h >= 0 and shift_w >= 0:
common_area_1 = depth_ori[:, shift_h:, shift_w:]
common_area_2 = depth_shift[:, :-shift_h, :-shift_w]
mask_common = mask_ori[:, shift_h:, shift_w:]
# mask_debug = mask_shift[:, :-shift_h, :-shift_w]
elif shift_h >= 0 and shift_w <= 0:
common_area_1 = depth_ori[:, shift_h:, :-abs(shift_w)]
common_area_2 = depth_shift[:, :-shift_h, abs(shift_w):]
mask_common = mask_ori[:, shift_h:, :-abs(shift_w)]
# mask_debug = mask_shift[:, :-shift_h, abs(shift_w):]
elif shift_h <= 0 and shift_w <= 0:
common_area_1 = depth_ori[:, :-abs(shift_h), :-abs(shift_w)]
common_area_2 = depth_shift[:, abs(shift_h):, abs(shift_w):]
mask_common = mask_ori[:, :-abs(shift_h), :-abs(shift_w)]
# mask_debug = mask_shift[:, abs(shift_h):, abs(shift_w):]
elif shift_h <= 0 and shift_w >= 0:
common_area_1 = depth_ori[:, :-abs(shift_h):, shift_w:]
common_area_2 = depth_shift[:, abs(shift_h):, :-shift_w]
mask_common = mask_ori[:, :-abs(shift_h):, shift_w:]
# mask_debug = mask_shift[:, abs(shift_h):, :-shift_w]
else:
print("can you really reach here?")
common_area_1 = common_area_1[mask_common].flatten()
common_area_2 = common_area_2[mask_common].flatten()
common_area_1_list.append(common_area_1)
common_area_2_list.append(common_area_2)
common_area_1 = torch.cat(common_area_1_list)
common_area_2 = torch.cat(common_area_2_list)
if common_area_1.numel() == 0 or common_area_2.numel() == 0:
consistency_loss = torch.Tensor([0]).squeeze()
else:
# pred_hist = torch.histc(common_area_1, bins=512, min=0, max=80)
# gt_hist = torch.histc(common_area_2, bins=512, min=0, max=80)
# pred_hist /= pred_hist.sum(dim=0, keepdim=True)
# gt_hist /= gt_hist.sum(dim=0, keepdim=True)
# # Compute cumulative histograms (CDF)
# cdf_pred = torch.cumsum(pred_hist, dim=0)
# cdf_gt = torch.cumsum(gt_hist, dim=0)
# # Compute Earth Mover's Distance (EMD) between the CDFs
# consistency_loss = torch.mean(torch.abs(cdf_pred - cdf_gt))
consistency_loss = F.mse_loss(common_area_1, common_area_2)
return consistency_loss
else:
raise NotImplementedError