PatchFusion / zoedepth /trainers /zoedepth_custom_trainer.py
Zhenyu Li
update
78ab311
raw
history blame
35.3 kB
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Zhenyu Li
# This file is partly inspired from ZoeDepth (https://github.com/isl-org/ZoeDepth/blob/main/zoedepth/trainers/zoedepth_trainer.py); author: Shariq Farooq Bhat
import os
import torch
import torch.cuda.amp as amp
import torch.nn as nn
from zoedepth.trainers.loss_sample import SILogLoss, DistributionLoss
from zoedepth.trainers.loss import SILogLoss as DenseSILogLoss
from zoedepth.trainers.loss import BudgetConstraint, HistogramMatchingLoss, SSIM, ConsistencyLoss
from zoedepth.utils.config import DATASETS_CONFIG
from zoedepth.utils.misc import compute_metrics
from zoedepth.data.preprocess import get_black_border
from .base_trainer import BaseTrainer, is_rank_zero, colors, flatten
from torchvision import transforms
from PIL import Image
import numpy as np
import wandb
import uuid
from tqdm import tqdm
from datetime import datetime as dt
import torch.distributed as dist
import copy
from zoedepth.utils.misc import generatemask
import torch.optim as optim
class Trainer(BaseTrainer):
def __init__(self, config, model, train_loader, test_loader=None, device=None):
self.addf = config.get("addf", False)
self.lazy_epoch = -1
self.boostingdepth = config.get("boostingdepth", False)
super().__init__(config, model, train_loader,
test_loader=test_loader, device=device)
self.device = device
self.silog_loss = SILogLoss(beta=config.get("beta", 0.15))
self.dense_silog_loss = DenseSILogLoss(beta=config.get("beta", 0.15))
print("sigloss's beta is set to {}".format(config.get("beta", 0.15)))
self.scaler = amp.GradScaler(enabled=self.config.use_amp)
self.distribution_loss = DistributionLoss(max_depth=self.config.max_depth)
self.sampled_training = config.get("sampled_training", False)
self.sec_stage = config.get("sec_stage", False)
self.multi_consistency = config.get("multi_consistency", False)
self.use_blur = config.get("use_blur", False)
self.dynamic = config.get("dynamic", False)
if self.dynamic:
self.dynamic_unupdate_rate = config.get("dynamic_unupdate_rate", 0.0)
self.budget_loss = BudgetConstraint(loss_mu=0.0, flops_all=21552.5684, warm_up=True)
self.use_scale_loss = config.get("use_scale_loss", False)
if self.use_scale_loss:
if config.get("scale_type", "ssim"):
self.scale_loss = SSIM(window_size=config.get("window_size", int(11)))
else:
self.scale_loss = HistogramMatchingLoss(min_depth=self.config.min_depth, max_depth=self.config.max_depth)
self.scale_target = config.get("scale_target", None)
self.consistency_training = config.get("consistency_training", False)
if self.consistency_training:
self.consistency_target = config.get("consistency_target", None)
self.consistency_loss = ConsistencyLoss(self.consistency_target, config.get("focus_flatten", False), config.get("w_p", 1.0))
print("current weight for consistency loss is {}. focus_flatten is {}. w_p is {}".format(self.config.w_consistency, config.get("focus_flatten", False), config.get("w_p", 1.0)))
def train_on_batch(self, batch, train_step, step_rate):
"""
Expects a batch of images and depth as input
batch["image"].shape : batch_size, c, h, w
batch["depth"].shape : batch_size, 1, h, w
"""
images, depths_gt = batch['image'].to(self.device), batch['depth'].to(self.device)
image_raw = batch.get("image_raw", None)
if image_raw is not None:
image_raw = image_raw.to(self.device)
sample_points = None
if self.sampled_training:
sample_points = batch['sample_points'].to(self.device)
bbox = batch.get("bbox", None)
if bbox is not None:
bbox = bbox.to(self.device)
bbox_raw = batch.get("bbox_raw", None)
if bbox_raw is not None:
bbox_raw = bbox_raw.to(self.device)
depth_raw = batch.get("depth_raw", None)
if depth_raw is not None:
depth_raw = depth_raw.to(self.device)
crop_area = batch.get("crop_area", None)
if crop_area is not None:
crop_area = crop_area.to(self.device)
shift = batch.get("shift", None)
if shift is not None:
shift = shift.to(self.device)
dataset = batch['dataset'][0]
b, c, h, w = images.size()
mask = batch["mask"].to(self.device).to(torch.bool)
sample_mask = batch.get("sample_mask", None)
if sample_mask is not None:
sample_mask = sample_mask.to(self.device).to(torch.bool)
mask_raw = batch.get("mask_raw", None)
if mask_raw is not None:
mask_raw = mask_raw.to(self.device).to(torch.bool)
losses = {}
with amp.autocast(enabled=self.config.use_amp):
if self.sampled_training:
output = self.model(images, sample_points, mode='train', image_raw=image_raw, bbox=bbox, depth_raw=depth_raw, crop_area=crop_area, shift=shift, bbox_raw=bbox_raw)
else:
output = self.model(images, None, mode='train', image_raw=image_raw, bbox=bbox, depth_raw=depth_raw, crop_area=crop_area, shift=shift, bbox_raw=bbox_raw)
if self.boostingdepth:
if self.lazy_epoch < self.epoch:
output.update_learning_rate()
self.lazy_epoch = self.epoch
input_dict = dict()
input_dict['data_gtfake'] = depths_gt
output.set_input_train_gt(input_dict)
output.optimize_parameters()
pred_depths = output.fake_B
pred = output.fake_B
# print(torch.min(pred), torch.max(pred))
losses = output.get_current_losses()
else:
pred_depths = output['metric_depth']
if self.sampled_training:
sampled_depth_gt = sample_points[:, :, -1].float().unsqueeze(dim=-1)
sampled_depth_gt = sampled_depth_gt.permute(0, 2, 1)
if self.config.get("representation", "") == 'biLaplacian':
# only for sampled training for now
l_dist, l_si = self.distribution_loss(output, sampled_depth_gt, mask=sample_mask)
loss = self.config.w_dist * l_dist + self.config.w_si * l_si
losses['distribution_loss'] = l_dist
losses['sigloss'] = l_si
if self.multi_consistency:
coarse, fine = output['coarse_depth_pred'], output['fine_depth_pred']
l_si_f = self.dense_silog_loss(
fine, depths_gt, mask=mask, interpolate=True, return_interpolated=False)
l_si_c = self.dense_silog_loss(
coarse, depth_raw, mask=mask_raw, interpolate=True, return_interpolated=False)
losses['sigloss_f'] = l_si_f
losses['l_si_c'] = l_si_c
loss += self.config.w_si * (l_si_f + l_si_c)
else:
if self.sampled_training:
l_si = self.silog_loss(
pred_depths, sampled_depth_gt, mask=sample_mask)
loss = self.config.w_si * l_si
losses[self.silog_loss.name] = l_si
if self.multi_consistency:
coarse, fine = output['coarse_depth_pred'], output['fine_depth_pred']
l_si_f = self.dense_silog_loss(
fine, depths_gt, mask=mask, interpolate=True, return_interpolated=False)
l_si_c = self.dense_silog_loss(
coarse, depth_raw, mask=mask_raw, interpolate=True, return_interpolated=False)
losses['sigloss_f'] = l_si_f
losses['l_si_c'] = l_si_c
loss += self.config.w_si * (l_si_f + l_si_c)
else:
if self.multi_consistency:
#### here here here
pred_depths, coarse, fine = output['metric_depth'], output['coarse_depth_pred'], output['fine_depth_pred']
if self.consistency_training:
depths_gt = torch.split(depths_gt, 1, dim=1)
depths_gt = torch.cat(depths_gt, dim=0)
mask = torch.split(mask, 1, dim=-1)
mask = torch.cat(mask, dim=0).permute(0, 3, 1, 2)
mask_raw = torch.cat([mask_raw, mask_raw], dim=0)
depth_raw = torch.cat([depth_raw, depth_raw], dim=0)
temp_features = output.get('temp_features', None)
l_si_1, pred = self.dense_silog_loss(
pred_depths, depths_gt, mask=mask, interpolate=True, return_interpolated=True)
l_si_f, pred_f = self.dense_silog_loss(
fine, depths_gt, mask=mask, interpolate=True, return_interpolated=True)
l_si_c = self.dense_silog_loss(
coarse, depth_raw, mask=mask_raw, interpolate=True, return_interpolated=False)
losses[self.silog_loss.name] = l_si_1
losses['sigloss_f'] = l_si_f
losses['l_si_c'] = l_si_c
# loss = l_si_1 + l_si_f + l_si_c
loss = l_si_1
if self.consistency_training:
try:
# depths_gt? pred_f?
l_consistency = self.consistency_loss(pred, shift, mask, temp_features, pred_f=depths_gt) # use the resized pred
except RuntimeError as e:
print(e)
print("some runtime error here! Hack with 0")
l_consistency = torch.Tensor([0]).squeeze()
losses[self.consistency_loss.name] = l_consistency
loss += l_consistency * self.config.w_consistency
else:
l_si, pred = self.dense_silog_loss(
pred_depths, depths_gt, mask=mask, interpolate=True, return_interpolated=True)
loss = self.config.w_si * l_si
losses[self.silog_loss.name] = l_si
if self.dynamic:
if step_rate > self.dynamic_unupdate_rate:
warm_up_rate = min(1.0, (step_rate - self.dynamic_unupdate_rate) / 0.02)
flop_cost = self.budget_loss(output['all_cell_flops'], warm_up_rate=warm_up_rate)
loss += self.config.w_flop * flop_cost
losses['flop_loss'] = flop_cost
else:
flop_cost = self.budget_loss(output['all_cell_flops'], warm_up_rate=1)
loss += 0 * flop_cost
losses['flop_loss'] = flop_cost
if self.use_scale_loss:
if self.scale_target == 'coarse':
h_loss = self.scale_loss(pred_depths, output['coarse_depth_pred_roi'], mask, interpolate=True)
else:
h_loss = self.scale_loss(pred_depths, depths_gt, mask, interpolate=True)
loss += self.config.w_scale * h_loss
losses['scale_loss'] = h_loss
# self.scaler.scale(loss).backward()
# if self.config.clip_grad > 0:
# self.scaler.unscale_(self.optimizer)
# nn.utils.clip_grad_norm_(
# self.model.parameters(), self.config.clip_grad)
# self.scaler.step(self.optimizer)
# self.scaler.update()
# self.optimizer.zero_grad()
self.scaler.scale(loss).backward()
if self.config.clip_grad > 0:
self.scaler.unscale_(self.optimizer)
nn.utils.clip_grad_norm_(
self.model.parameters(), self.config.clip_grad)
self.scaler.step(self.optimizer)
self.scaler.update()
self.optimizer.zero_grad()
if self.should_log and (self.step % int(self.config.log_images_every * self.iters_per_epoch)) == 0:
if self.config.get("debug", False):
pred = nn.functional.interpolate(
pred[0:1], depths_gt.shape[-2:], mode='bilinear', align_corners=True)[0]
import matplotlib.pyplot as plt
plt.imshow(pred.squeeze().detach().cpu().numpy())
plt.savefig('debug.png')
pass
else:
pred = nn.functional.interpolate(
pred[0:1], depths_gt.shape[-2:], mode='bilinear', align_corners=True)[0]
depths_gt[torch.logical_not(mask)] = DATASETS_CONFIG[dataset]['max_depth']
if self.consistency_training:
split_images = torch.split(images, 3, dim=1)
images = torch.cat(split_images, dim=0)
self.log_images(rgb={"Input": images[0, ...]}, depth={"GT": depths_gt[0], "PredictedMono": pred}, prefix="Train",
min_depth=DATASETS_CONFIG[dataset]['min_depth'], max_depth=DATASETS_CONFIG[dataset]['max_depth'])
return losses
@torch.no_grad()
def eval_infer(self, x, image_raw, bboxs=None, crop_area=None, dataset='u4k', bbox_raw=None):
m = self.model.module if self.config.multigpu else self.model
if dataset == 'u4k':
base_h = 540
base_w = 960
elif dataset == 'gta':
base_h = 270
base_w = 480
elif dataset == 'nyu':
base_h = 120 * 2
base_w = 160 * 2
else:
raise NotImplementedError
if dataset == 'nyu':
if self.sec_stage:
images_crops = torch.split(x, 3, dim=1)
bboxs_list = torch.split(bboxs, 1, dim=1)
crop_areas = torch.split(crop_area, 1, dim=1)
pred_depth_crops = []
for i, (img, bbox, crop_area) in enumerate(zip(images_crops, bboxs_list, crop_areas)):
with amp.autocast(enabled=self.config.use_amp):
if i == 0:
out_dict = m(img, mode='eval', image_raw=image_raw, bbox=bbox[0], crop_area=crop_area, bbox_raw=bbox_raw[:, i, :] if bbox_raw is not None else None)
# whole_depth_pred = out_dict['coarse_depth_pred']
pred_depth_crop = out_dict['metric_depth']
else:
pred_depth_crop = m(img, mode='eval', image_raw=image_raw, bbox=bbox[0], crop_area=crop_area, bbox_raw=bbox_raw[:, i, :] if bbox_raw is not None else None)['metric_depth']
pred_depth_crop = nn.functional.interpolate(
pred_depth_crop, (base_h, base_w), mode='bilinear', align_corners=True)
pred_depth_crops.append(pred_depth_crop)
x_start, y_start = [0, base_h], [0, base_w]
pred_depth = torch.zeros((base_h*2, base_w*2)).cuda()
inner_idx = 0
for ii, x in enumerate(x_start):
for jj, y in enumerate(y_start):
if self.use_blur:
pred_depth[x: x+base_h, y: y+base_w] = pred_depth_crops[inner_idx].squeeze() # do not care about boundry during validation
else:
pred_depth[x: x+base_h, y: y+base_w] = pred_depth_crops[inner_idx].squeeze()
inner_idx += 1
pred_depth = pred_depth.squeeze(dim=0)
else:
with amp.autocast(enabled=self.config.use_amp):
pred_depth = m(x, mode='eval', image_raw=image_raw)['metric_depth']
else:
if self.sec_stage:
images_crops = torch.split(x, 3, dim=1)
bboxs_list = torch.split(bboxs, 1, dim=1)
crop_areas = torch.split(crop_area, 1, dim=1)
pred_depth_crops = []
for i, (img, bbox, crop_area) in enumerate(zip(images_crops, bboxs_list, crop_areas)):
with amp.autocast(enabled=self.config.use_amp):
if i == 0:
out_dict = m(img, mode='eval', image_raw=image_raw, bbox=bbox[0], crop_area=crop_area, bbox_raw=bbox_raw[:, i, :] if bbox_raw is not None else None)
# whole_depth_pred = out_dict['coarse_depth_pred']
pred_depth_crop = out_dict['metric_depth']
else:
pred_depth_crop = m(img, mode='eval', image_raw=image_raw, bbox=bbox[0], crop_area=crop_area, bbox_raw=bbox_raw[:, i, :] if bbox_raw is not None else None)['metric_depth']
pred_depth_crop = nn.functional.interpolate(
pred_depth_crop, (base_h, base_w), mode='bilinear', align_corners=True)
pred_depth_crops.append(pred_depth_crop)
x_start, y_start = [0, base_h], [0, base_w]
pred_depth = torch.zeros((base_h*2, base_w*2)).cuda()
inner_idx = 0
for ii, x in enumerate(x_start):
for jj, y in enumerate(y_start):
if self.use_blur:
pred_depth[x: x+base_h, y: y+base_w] = pred_depth_crops[inner_idx].squeeze() # do not care about boundry during validation
else:
pred_depth[x: x+base_h, y: y+base_w] = pred_depth_crops[inner_idx].squeeze()
inner_idx += 1
pred_depth = pred_depth.squeeze(dim=0)
else:
with amp.autocast(enabled=self.config.use_amp):
pred_depth = m(x, mode='eval', image_raw=image_raw)['metric_depth']
return pred_depth
@torch.no_grad()
def crop_aware_infer(self, x, image_raw):
# if we are not avoiding the black border, we can just use the normal inference
if not self.config.get("avoid_boundary", False):
return self.eval_infer(x)
# otherwise, we need to crop the image to avoid the black border
# For now, this may be a bit slow due to converting to numpy and back
# We assume no normalization is done on the input image
# get the black border
assert x.shape[0] == 1, "Only batch size 1 is supported for now"
x_pil = transforms.ToPILImage()(x[0].cpu())
x_np = np.array(x_pil, dtype=np.uint8)
black_border_params = get_black_border(x_np)
top, bottom, left, right = black_border_params.top, black_border_params.bottom, black_border_params.left, black_border_params.right
x_np_cropped = x_np[top:bottom, left:right, :]
x_cropped = transforms.ToTensor()(Image.fromarray(x_np_cropped))
# run inference on the cropped image
pred_depths_cropped = self.eval_infer(x_cropped.unsqueeze(0).to(self.device))
# resize the prediction to x_np_cropped's size
pred_depths_cropped = nn.functional.interpolate(
pred_depths_cropped, size=(x_np_cropped.shape[0], x_np_cropped.shape[1]), mode="bilinear", align_corners=False)
# pad the prediction back to the original size
pred_depths = torch.zeros((1, 1, x_np.shape[0], x_np.shape[1]), device=pred_depths_cropped.device, dtype=pred_depths_cropped.dtype)
pred_depths[:, :, top:bottom, left:right] = pred_depths_cropped
return pred_depths
def validate_on_batch(self, batch, val_step):
images = batch['image'].to(self.device)
depths_gt = batch['depth'].to(self.device)
dataset = batch['dataset'][0]
image_raw = batch['image_raw'].to(self.device)
mask = batch["mask"].to(self.device)
disp_gt_edges = batch['disp_gt_edges'].squeeze().numpy()
bboxs = batch.get("bbox", None)
if bboxs is not None:
bboxs = bboxs.to(self.device)
bbox_raw = batch.get("bbox_raw", None)
if bbox_raw is not None:
bbox_raw = bbox_raw.to(self.device)
crop_area = batch.get("crop_area", None)
if crop_area is not None:
crop_area = crop_area.to(self.device)
if 'has_valid_depth' in batch:
if not batch['has_valid_depth']:
return None, None
depths_gt = depths_gt.squeeze().unsqueeze(0).unsqueeze(0)
mask = mask.squeeze().unsqueeze(0).unsqueeze(0)
# if dataset == 'nyu':
# pred_depths = self.crop_aware_infer(images, image_raw)
# else:
# pred_depths = self.eval_infer(images, image_raw, bboxs, crop_area, dataset, bbox_raw)
pred_depths = self.eval_infer(images, image_raw, bboxs, crop_area, dataset, bbox_raw)
pred_depths = pred_depths.squeeze().unsqueeze(0).unsqueeze(0)
# print(pred_depths.shape) # torch.Size([1, 1, 2160, 3840])
# print(depths_gt.shape) # torch.Size([1, 1, 2160, 3840])
with amp.autocast(enabled=self.config.use_amp):
if self.sampled_training:
l_depth = self.silog_loss(
pred_depths, depths_gt, mask=mask.to(torch.bool))
else:
l_depth = self.dense_silog_loss(
pred_depths, depths_gt, mask=mask.to(torch.bool), interpolate=True)
metrics = compute_metrics(depths_gt, pred_depths, disp_gt_edges=disp_gt_edges, **self.config)
losses = {f"{self.silog_loss.name}": l_depth.item()}
if self.should_log and self.config.get("debug", False):
print(metrics)
if val_step in [21, 27] and self.should_log:
if self.config.get("debug", False):
pass
else:
if self.sec_stage:
log_rgb = image_raw
else:
log_rgb = images
scale_pred = nn.functional.interpolate(
pred_depths[0:1], depths_gt.shape[-2:], mode='bilinear', align_corners=True)[0]
depths_gt[torch.logical_not(mask)] = DATASETS_CONFIG[dataset]['max_depth']
self.log_images(rgb={"Input": log_rgb[0]}, depth={"GT": depths_gt[0], "PredictedMono": scale_pred}, prefix="Test",
min_depth=DATASETS_CONFIG[dataset]['min_depth'], max_depth=DATASETS_CONFIG[dataset]['max_depth'])
return metrics, losses
def train(self):
print(f"Training {self.config.name}")
if self.config.uid is None:
self.config.uid = str(uuid.uuid4()).split('-')[-1]
run_id = f"{dt.now().strftime('%d-%h_%H-%M')}-{self.config.uid}"
self.config.run_id = run_id
self.config.experiment_id = f"{self.config.wandb_start}_{self.config.name}{self.config.version_name}_{run_id}"
self.should_write = ((not self.config.distributed)
or self.config.rank == 0)
self.should_log = self.should_write # and logging
if self.should_log:
if self.config.get("debug", False):
pass
else:
tags = self.config.tags.split(
',') if self.config.tags != '' else None
wandb.init(project=self.config.project, name=self.config.experiment_id, config=flatten(self.config), dir=self.config.root,
tags=tags, notes=self.config.notes, settings=wandb.Settings(start_method="fork"))
self.model.train()
self.step = 0
best_loss = np.inf
validate_every = int(self.config.validate_every * self.iters_per_epoch)
if self.config.prefetch:
for i, batch in tqdm(enumerate(self.train_loader), desc=f"Prefetching...",
total=self.iters_per_epoch) if is_rank_zero(self.config) else enumerate(self.train_loader):
pass
losses = {}
def stringify_losses(L): return "; ".join(map(
lambda kv: f"{colors.fg.purple}{kv[0]}{colors.reset}: {round(kv[1].item(),3):.4e}", L.items()))
epoch_len = len(self.train_loader)
total_step = epoch_len * self.config.epochs
for epoch in range(self.config.epochs):
if self.should_early_stop():
break
self.epoch = epoch
# self.save_checkpoint(f"{self.config.experiment_id}_latest.pt") # debug
################################# Train loop ##########################################################
if self.should_log:
if self.config.get("debug", False):
pass
else:
wandb.log({"Epoch": epoch}, step=self.step)
pbar = tqdm(enumerate(self.train_loader), desc=f"Epoch: {epoch + 1}/{self.config.epochs}. Loop: Train",
total=self.iters_per_epoch) if is_rank_zero(self.config) else enumerate(self.train_loader)
# 1532146.125
for i, batch in pbar:
current_step = epoch_len * epoch + i
step_rate = current_step / total_step
# metrics, test_losses = self.validate()
# print(metrics)
if self.should_early_stop():
print("Early stopping")
break
# print(f"Batch {self.step+1} on rank {self.config.rank}")
losses = self.train_on_batch(batch, i, step_rate)
# print(f"trained batch {self.step+1} on rank {self.config.rank}")
if self.config.get("debug", False):
log_info = ""
for name, loss in losses.items():
log_info += "{}: {}, ".format(name, loss)
print(log_info)
if self.boostingdepth:
for k,v in losses.items():
losses[k] = torch.tensor(v)
self.raise_if_nan(losses)
if is_rank_zero(self.config) and self.config.print_losses:
pbar.set_description(
f"Epoch: {epoch + 1}/{self.config.epochs}. Loop: Train. Losses: {stringify_losses(losses)}")
self.scheduler.step()
if self.should_log and self.step % 50 == 0:
if self.config.get("debug", False):
log_info = ""
for name, loss in losses.items():
log_info += "{}: {}, ".format(name, loss)
print(log_info)
else:
wandb.log({f"Train/{name}": loss.item()
for name, loss in losses.items()}, step=self.step)
# current_lr = self.optimizer.param_groups[0]['lr']
current_lr = self.scheduler.get_last_lr()[0]
wandb.log({f"Train/LR": current_lr}, step=self.step)
momentum = self.optimizer.param_groups[0]['betas'][0]
wandb.log({f"Train/momentum": momentum}, step=self.step)
wandb.log({f"Train/step_rate": step_rate}, step=self.step)
self.step += 1
########################################################################################################
if self.test_loader:
if (self.step % validate_every) == 0:
self.model.eval()
if self.should_write:
self.save_checkpoint(
f"{self.config.experiment_id}_latest.pt")
################################# Validation loop ##################################################
# validate on the entire validation set in every process but save only from rank 0, I know, inefficient, but avoids divergence of processes
metrics, test_losses = self.validate()
# print("Validated: {}".format(metrics))
if self.should_log:
if self.config.get("debug", False):
log_info = ""
for name, loss in test_losses.items():
log_info += "{}: {}, ".format(name, loss)
log_info = "\n"
for name, val in metrics.items():
log_info += "{}: {}, ".format(name, val)
print(log_info)
else:
wandb.log(
{f"Test/{name}": tloss for name, tloss in test_losses.items()}, step=self.step)
wandb.log({f"Metrics/{k}": v for k,
v in metrics.items()}, step=self.step)
if (metrics[self.metric_criterion] < best_loss) and self.should_write:
self.save_checkpoint(
f"{self.config.experiment_id}_best.pt")
best_loss = metrics[self.metric_criterion]
self.model.train()
if self.config.distributed:
dist.barrier()
# print(f"Validated: {metrics} on device {self.config.rank}")
# print(f"Finished step {self.step} on device {self.config.rank}")
#################################################################################################
# Save / validate at the end
self.step += 1 # log as final point
self.model.eval()
self.save_checkpoint(f"{self.config.experiment_id}_latest.pt")
if self.test_loader:
################################# Validation loop ##################################################
metrics, test_losses = self.validate()
# print("Validated: {}".format(metrics))
if self.should_log:
if self.config.get("debug", False):
log_info = ""
for name, loss in test_losses.items():
log_info += "{}: {}, ".format(name, loss)
log_info = "\n"
for name, val in metrics.items():
log_info += "{}: {}, ".format(name, val)
print(log_info)
else:
wandb.log({f"Test/{name}": tloss for name,
tloss in test_losses.items()}, step=self.step)
wandb.log({f"Metrics/{k}": v for k,
v in metrics.items()}, step=self.step)
if (metrics[self.metric_criterion] < best_loss) and self.should_write:
self.save_checkpoint(
f"{self.config.experiment_id}_best.pt")
best_loss = metrics[self.metric_criterion]
self.model.train()
def init_optimizer(self):
m = self.model.module if self.config.multigpu else self.model
if self.config.same_lr:
print("Using same LR")
if hasattr(m, 'core'):
m.core.unfreeze()
params = self.model.parameters()
else:
print("Using diff LR")
if not hasattr(m, 'get_lr_params'):
raise NotImplementedError(
f"Model {m.__class__.__name__} does not implement get_lr_params. Please implement it or use the same LR for all parameters.")
params = m.get_lr_params(self.config.lr)
# if self.addf:
# return optim.Adam(params, lr=self.config.lr, betas=(0.5, 0.999))
# else:
# return optim.AdamW(params, lr=self.config.lr, weight_decay=self.config.wd)
return optim.AdamW(params, lr=self.config.lr, weight_decay=self.config.wd)
def save_checkpoint(self, filename):
if not self.should_write:
return
root = self.config.save_dir
if not os.path.isdir(root):
os.makedirs(root)
fpath = os.path.join(root, filename)
m = self.model.module if self.config.multigpu else self.model
torch.save(
{
"model": m.state_dict(),
"optimizer": None, # TODO : Change to self.optimizer.state_dict() if resume support is needed, currently None to reduce file size
"epoch": self.epoch
}, fpath)
if self.boostingdepth:
fpath = os.path.join(root, "_fusion" + filename)
m.fusion_network.save_networks(fpath)