Spaces:
Runtime error
Runtime error
Zhyever
commited on
Commit
·
1f418ff
1
Parent(s):
4ac0a25
refactor
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ControlNet/.gitignore +0 -143
- ControlNet/LICENSE +0 -201
- ControlNet/README.md +0 -348
- ControlNet/annotator/canny/__init__.py +0 -6
- ControlNet/annotator/ckpts/ckpts.txt +0 -1
- ControlNet/annotator/hed/__init__.py +0 -96
- ControlNet/annotator/midas/LICENSE +0 -21
- ControlNet/annotator/midas/__init__.py +0 -42
- ControlNet/annotator/midas/api.py +0 -169
- ControlNet/annotator/midas/midas/__init__.py +0 -0
- ControlNet/annotator/midas/midas/base_model.py +0 -16
- ControlNet/annotator/midas/midas/dpt_depth.py +0 -109
- ControlNet/annotator/midas/midas/midas_net.py +0 -76
- ControlNet/annotator/midas/midas/midas_net_custom.py +0 -128
- ControlNet/annotator/midas/midas/transforms.py +0 -234
- ControlNet/annotator/midas/midas/vit.py +0 -491
- ControlNet/annotator/midas/utils.py +0 -189
- ControlNet/annotator/mlsd/LICENSE +0 -201
- ControlNet/annotator/mlsd/__init__.py +0 -43
- ControlNet/annotator/mlsd/models/mbv2_mlsd_large.py +0 -292
- ControlNet/annotator/mlsd/models/mbv2_mlsd_tiny.py +0 -275
- ControlNet/annotator/mlsd/utils.py +0 -580
- ControlNet/annotator/openpose/LICENSE +0 -108
- ControlNet/annotator/openpose/__init__.py +0 -49
- ControlNet/annotator/openpose/body.py +0 -219
- ControlNet/annotator/openpose/hand.py +0 -86
- ControlNet/annotator/openpose/model.py +0 -219
- ControlNet/annotator/openpose/util.py +0 -164
- ControlNet/annotator/uniformer/LICENSE +0 -203
- ControlNet/annotator/uniformer/__init__.py +0 -27
- ControlNet/annotator/uniformer/configs/_base_/default_runtime.py +0 -14
- ControlNet/annotator/uniformer/configs/_base_/models/ann_r50-d8.py +0 -46
- ControlNet/annotator/uniformer/configs/_base_/models/apcnet_r50-d8.py +0 -44
- ControlNet/annotator/uniformer/configs/_base_/models/ccnet_r50-d8.py +0 -44
- ControlNet/annotator/uniformer/configs/_base_/models/cgnet.py +0 -35
- ControlNet/annotator/uniformer/configs/_base_/models/danet_r50-d8.py +0 -44
- ControlNet/annotator/uniformer/configs/_base_/models/deeplabv3_r50-d8.py +0 -44
- ControlNet/annotator/uniformer/configs/_base_/models/deeplabv3_unet_s5-d16.py +0 -50
- ControlNet/annotator/uniformer/configs/_base_/models/deeplabv3plus_r50-d8.py +0 -46
- ControlNet/annotator/uniformer/configs/_base_/models/dmnet_r50-d8.py +0 -44
- ControlNet/annotator/uniformer/configs/_base_/models/dnl_r50-d8.py +0 -46
- ControlNet/annotator/uniformer/configs/_base_/models/emanet_r50-d8.py +0 -47
- ControlNet/annotator/uniformer/configs/_base_/models/encnet_r50-d8.py +0 -48
- ControlNet/annotator/uniformer/configs/_base_/models/fast_scnn.py +0 -57
- ControlNet/annotator/uniformer/configs/_base_/models/fcn_hr18.py +0 -52
- ControlNet/annotator/uniformer/configs/_base_/models/fcn_r50-d8.py +0 -45
- ControlNet/annotator/uniformer/configs/_base_/models/fcn_unet_s5-d16.py +0 -51
- ControlNet/annotator/uniformer/configs/_base_/models/fpn_r50.py +0 -36
- ControlNet/annotator/uniformer/configs/_base_/models/fpn_uniformer.py +0 -35
- ControlNet/annotator/uniformer/configs/_base_/models/gcnet_r50-d8.py +0 -46
ControlNet/.gitignore
DELETED
@@ -1,143 +0,0 @@
|
|
1 |
-
.idea/
|
2 |
-
|
3 |
-
training/
|
4 |
-
lightning_logs/
|
5 |
-
image_log/
|
6 |
-
|
7 |
-
*.pth
|
8 |
-
*.pt
|
9 |
-
*.ckpt
|
10 |
-
*.safetensors
|
11 |
-
|
12 |
-
gradio_pose2image_private.py
|
13 |
-
gradio_canny2image_private.py
|
14 |
-
|
15 |
-
# Byte-compiled / optimized / DLL files
|
16 |
-
__pycache__/
|
17 |
-
*.py[cod]
|
18 |
-
*$py.class
|
19 |
-
|
20 |
-
# C extensions
|
21 |
-
*.so
|
22 |
-
|
23 |
-
# Distribution / packaging
|
24 |
-
.Python
|
25 |
-
build/
|
26 |
-
develop-eggs/
|
27 |
-
dist/
|
28 |
-
downloads/
|
29 |
-
eggs/
|
30 |
-
.eggs/
|
31 |
-
lib/
|
32 |
-
lib64/
|
33 |
-
parts/
|
34 |
-
sdist/
|
35 |
-
var/
|
36 |
-
wheels/
|
37 |
-
pip-wheel-metadata/
|
38 |
-
share/python-wheels/
|
39 |
-
*.egg-info/
|
40 |
-
.installed.cfg
|
41 |
-
*.egg
|
42 |
-
MANIFEST
|
43 |
-
|
44 |
-
# PyInstaller
|
45 |
-
# Usually these files are written by a python script from a template
|
46 |
-
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
47 |
-
*.manifest
|
48 |
-
*.spec
|
49 |
-
|
50 |
-
# Installer logs
|
51 |
-
pip-log.txt
|
52 |
-
pip-delete-this-directory.txt
|
53 |
-
|
54 |
-
# Unit test / coverage reports
|
55 |
-
htmlcov/
|
56 |
-
.tox/
|
57 |
-
.nox/
|
58 |
-
.coverage
|
59 |
-
.coverage.*
|
60 |
-
.cache
|
61 |
-
nosetests.xml
|
62 |
-
coverage.xml
|
63 |
-
*.cover
|
64 |
-
*.py,cover
|
65 |
-
.hypothesis/
|
66 |
-
.pytest_cache/
|
67 |
-
|
68 |
-
# Translations
|
69 |
-
*.mo
|
70 |
-
*.pot
|
71 |
-
|
72 |
-
# Django stuff:
|
73 |
-
*.log
|
74 |
-
local_settings.py
|
75 |
-
db.sqlite3
|
76 |
-
db.sqlite3-journal
|
77 |
-
|
78 |
-
# Flask stuff:
|
79 |
-
instance/
|
80 |
-
.webassets-cache
|
81 |
-
|
82 |
-
# Scrapy stuff:
|
83 |
-
.scrapy
|
84 |
-
|
85 |
-
# Sphinx documentation
|
86 |
-
docs/_build/
|
87 |
-
|
88 |
-
# PyBuilder
|
89 |
-
target/
|
90 |
-
|
91 |
-
# Jupyter Notebook
|
92 |
-
.ipynb_checkpoints
|
93 |
-
|
94 |
-
# IPython
|
95 |
-
profile_default/
|
96 |
-
ipython_config.py
|
97 |
-
|
98 |
-
# pyenv
|
99 |
-
.python-version
|
100 |
-
|
101 |
-
# pipenv
|
102 |
-
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
103 |
-
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
104 |
-
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
105 |
-
# install all needed dependencies.
|
106 |
-
#Pipfile.lock
|
107 |
-
|
108 |
-
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
109 |
-
__pypackages__/
|
110 |
-
|
111 |
-
# Celery stuff
|
112 |
-
celerybeat-schedule
|
113 |
-
celerybeat.pid
|
114 |
-
|
115 |
-
# SageMath parsed files
|
116 |
-
*.sage.py
|
117 |
-
|
118 |
-
# Environments
|
119 |
-
.env
|
120 |
-
.venv
|
121 |
-
env/
|
122 |
-
venv/
|
123 |
-
ENV/
|
124 |
-
env.bak/
|
125 |
-
venv.bak/
|
126 |
-
|
127 |
-
# Spyder project settings
|
128 |
-
.spyderproject
|
129 |
-
.spyproject
|
130 |
-
|
131 |
-
# Rope project settings
|
132 |
-
.ropeproject
|
133 |
-
|
134 |
-
# mkdocs documentation
|
135 |
-
/site
|
136 |
-
|
137 |
-
# mypy
|
138 |
-
.mypy_cache/
|
139 |
-
.dmypy.json
|
140 |
-
dmypy.json
|
141 |
-
|
142 |
-
# Pyre type checker
|
143 |
-
.pyre/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/LICENSE
DELETED
@@ -1,201 +0,0 @@
|
|
1 |
-
Apache License
|
2 |
-
Version 2.0, January 2004
|
3 |
-
http://www.apache.org/licenses/
|
4 |
-
|
5 |
-
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
-
|
7 |
-
1. Definitions.
|
8 |
-
|
9 |
-
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
-
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
-
|
12 |
-
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
-
the copyright owner that is granting the License.
|
14 |
-
|
15 |
-
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
-
other entities that control, are controlled by, or are under common
|
17 |
-
control with that entity. For the purposes of this definition,
|
18 |
-
"control" means (i) the power, direct or indirect, to cause the
|
19 |
-
direction or management of such entity, whether by contract or
|
20 |
-
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
-
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
-
|
23 |
-
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
-
exercising permissions granted by this License.
|
25 |
-
|
26 |
-
"Source" form shall mean the preferred form for making modifications,
|
27 |
-
including but not limited to software source code, documentation
|
28 |
-
source, and configuration files.
|
29 |
-
|
30 |
-
"Object" form shall mean any form resulting from mechanical
|
31 |
-
transformation or translation of a Source form, including but
|
32 |
-
not limited to compiled object code, generated documentation,
|
33 |
-
and conversions to other media types.
|
34 |
-
|
35 |
-
"Work" shall mean the work of authorship, whether in Source or
|
36 |
-
Object form, made available under the License, as indicated by a
|
37 |
-
copyright notice that is included in or attached to the work
|
38 |
-
(an example is provided in the Appendix below).
|
39 |
-
|
40 |
-
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
-
form, that is based on (or derived from) the Work and for which the
|
42 |
-
editorial revisions, annotations, elaborations, or other modifications
|
43 |
-
represent, as a whole, an original work of authorship. For the purposes
|
44 |
-
of this License, Derivative Works shall not include works that remain
|
45 |
-
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
-
the Work and Derivative Works thereof.
|
47 |
-
|
48 |
-
"Contribution" shall mean any work of authorship, including
|
49 |
-
the original version of the Work and any modifications or additions
|
50 |
-
to that Work or Derivative Works thereof, that is intentionally
|
51 |
-
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
-
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
-
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
-
means any form of electronic, verbal, or written communication sent
|
55 |
-
to the Licensor or its representatives, including but not limited to
|
56 |
-
communication on electronic mailing lists, source code control systems,
|
57 |
-
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
-
Licensor for the purpose of discussing and improving the Work, but
|
59 |
-
excluding communication that is conspicuously marked or otherwise
|
60 |
-
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
-
|
62 |
-
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
-
on behalf of whom a Contribution has been received by Licensor and
|
64 |
-
subsequently incorporated within the Work.
|
65 |
-
|
66 |
-
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
-
this License, each Contributor hereby grants to You a perpetual,
|
68 |
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
-
copyright license to reproduce, prepare Derivative Works of,
|
70 |
-
publicly display, publicly perform, sublicense, and distribute the
|
71 |
-
Work and such Derivative Works in Source or Object form.
|
72 |
-
|
73 |
-
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
-
this License, each Contributor hereby grants to You a perpetual,
|
75 |
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
-
(except as stated in this section) patent license to make, have made,
|
77 |
-
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
-
where such license applies only to those patent claims licensable
|
79 |
-
by such Contributor that are necessarily infringed by their
|
80 |
-
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
-
with the Work to which such Contribution(s) was submitted. If You
|
82 |
-
institute patent litigation against any entity (including a
|
83 |
-
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
-
or a Contribution incorporated within the Work constitutes direct
|
85 |
-
or contributory patent infringement, then any patent licenses
|
86 |
-
granted to You under this License for that Work shall terminate
|
87 |
-
as of the date such litigation is filed.
|
88 |
-
|
89 |
-
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
-
Work or Derivative Works thereof in any medium, with or without
|
91 |
-
modifications, and in Source or Object form, provided that You
|
92 |
-
meet the following conditions:
|
93 |
-
|
94 |
-
(a) You must give any other recipients of the Work or
|
95 |
-
Derivative Works a copy of this License; and
|
96 |
-
|
97 |
-
(b) You must cause any modified files to carry prominent notices
|
98 |
-
stating that You changed the files; and
|
99 |
-
|
100 |
-
(c) You must retain, in the Source form of any Derivative Works
|
101 |
-
that You distribute, all copyright, patent, trademark, and
|
102 |
-
attribution notices from the Source form of the Work,
|
103 |
-
excluding those notices that do not pertain to any part of
|
104 |
-
the Derivative Works; and
|
105 |
-
|
106 |
-
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
-
distribution, then any Derivative Works that You distribute must
|
108 |
-
include a readable copy of the attribution notices contained
|
109 |
-
within such NOTICE file, excluding those notices that do not
|
110 |
-
pertain to any part of the Derivative Works, in at least one
|
111 |
-
of the following places: within a NOTICE text file distributed
|
112 |
-
as part of the Derivative Works; within the Source form or
|
113 |
-
documentation, if provided along with the Derivative Works; or,
|
114 |
-
within a display generated by the Derivative Works, if and
|
115 |
-
wherever such third-party notices normally appear. The contents
|
116 |
-
of the NOTICE file are for informational purposes only and
|
117 |
-
do not modify the License. You may add Your own attribution
|
118 |
-
notices within Derivative Works that You distribute, alongside
|
119 |
-
or as an addendum to the NOTICE text from the Work, provided
|
120 |
-
that such additional attribution notices cannot be construed
|
121 |
-
as modifying the License.
|
122 |
-
|
123 |
-
You may add Your own copyright statement to Your modifications and
|
124 |
-
may provide additional or different license terms and conditions
|
125 |
-
for use, reproduction, or distribution of Your modifications, or
|
126 |
-
for any such Derivative Works as a whole, provided Your use,
|
127 |
-
reproduction, and distribution of the Work otherwise complies with
|
128 |
-
the conditions stated in this License.
|
129 |
-
|
130 |
-
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
-
any Contribution intentionally submitted for inclusion in the Work
|
132 |
-
by You to the Licensor shall be under the terms and conditions of
|
133 |
-
this License, without any additional terms or conditions.
|
134 |
-
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
-
the terms of any separate license agreement you may have executed
|
136 |
-
with Licensor regarding such Contributions.
|
137 |
-
|
138 |
-
6. Trademarks. This License does not grant permission to use the trade
|
139 |
-
names, trademarks, service marks, or product names of the Licensor,
|
140 |
-
except as required for reasonable and customary use in describing the
|
141 |
-
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
-
|
143 |
-
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
-
agreed to in writing, Licensor provides the Work (and each
|
145 |
-
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
-
implied, including, without limitation, any warranties or conditions
|
148 |
-
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
-
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
-
appropriateness of using or redistributing the Work and assume any
|
151 |
-
risks associated with Your exercise of permissions under this License.
|
152 |
-
|
153 |
-
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
-
whether in tort (including negligence), contract, or otherwise,
|
155 |
-
unless required by applicable law (such as deliberate and grossly
|
156 |
-
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
-
liable to You for damages, including any direct, indirect, special,
|
158 |
-
incidental, or consequential damages of any character arising as a
|
159 |
-
result of this License or out of the use or inability to use the
|
160 |
-
Work (including but not limited to damages for loss of goodwill,
|
161 |
-
work stoppage, computer failure or malfunction, or any and all
|
162 |
-
other commercial damages or losses), even if such Contributor
|
163 |
-
has been advised of the possibility of such damages.
|
164 |
-
|
165 |
-
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
-
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
-
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
-
or other liability obligations and/or rights consistent with this
|
169 |
-
License. However, in accepting such obligations, You may act only
|
170 |
-
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
-
of any other Contributor, and only if You agree to indemnify,
|
172 |
-
defend, and hold each Contributor harmless for any liability
|
173 |
-
incurred by, or claims asserted against, such Contributor by reason
|
174 |
-
of your accepting any such warranty or additional liability.
|
175 |
-
|
176 |
-
END OF TERMS AND CONDITIONS
|
177 |
-
|
178 |
-
APPENDIX: How to apply the Apache License to your work.
|
179 |
-
|
180 |
-
To apply the Apache License to your work, attach the following
|
181 |
-
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
-
replaced with your own identifying information. (Don't include
|
183 |
-
the brackets!) The text should be enclosed in the appropriate
|
184 |
-
comment syntax for the file format. We also recommend that a
|
185 |
-
file or class name and description of purpose be included on the
|
186 |
-
same "printed page" as the copyright notice for easier
|
187 |
-
identification within third-party archives.
|
188 |
-
|
189 |
-
Copyright [yyyy] [name of copyright owner]
|
190 |
-
|
191 |
-
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
-
you may not use this file except in compliance with the License.
|
193 |
-
You may obtain a copy of the License at
|
194 |
-
|
195 |
-
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
-
|
197 |
-
Unless required by applicable law or agreed to in writing, software
|
198 |
-
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
-
See the License for the specific language governing permissions and
|
201 |
-
limitations under the License.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/README.md
DELETED
@@ -1,348 +0,0 @@
|
|
1 |
-
# News: A nightly version of ControlNet 1.1 is released!
|
2 |
-
|
3 |
-
[ControlNet 1.1](https://github.com/lllyasviel/ControlNet-v1-1-nightly) is released. Those new models will be merged to this repo after we make sure that everything is good.
|
4 |
-
|
5 |
-
# Below is ControlNet 1.0
|
6 |
-
|
7 |
-
Official implementation of [Adding Conditional Control to Text-to-Image Diffusion Models](https://arxiv.org/abs/2302.05543).
|
8 |
-
|
9 |
-
ControlNet is a neural network structure to control diffusion models by adding extra conditions.
|
10 |
-
|
11 |
-
![img](github_page/he.png)
|
12 |
-
|
13 |
-
It copys the weights of neural network blocks into a "locked" copy and a "trainable" copy.
|
14 |
-
|
15 |
-
The "trainable" one learns your condition. The "locked" one preserves your model.
|
16 |
-
|
17 |
-
Thanks to this, training with small dataset of image pairs will not destroy the production-ready diffusion models.
|
18 |
-
|
19 |
-
The "zero convolution" is 1×1 convolution with both weight and bias initialized as zeros.
|
20 |
-
|
21 |
-
Before training, all zero convolutions output zeros, and ControlNet will not cause any distortion.
|
22 |
-
|
23 |
-
No layer is trained from scratch. You are still fine-tuning. Your original model is safe.
|
24 |
-
|
25 |
-
This allows training on small-scale or even personal devices.
|
26 |
-
|
27 |
-
This is also friendly to merge/replacement/offsetting of models/weights/blocks/layers.
|
28 |
-
|
29 |
-
### FAQ
|
30 |
-
|
31 |
-
**Q:** But wait, if the weight of a conv layer is zero, the gradient will also be zero, and the network will not learn anything. Why "zero convolution" works?
|
32 |
-
|
33 |
-
**A:** This is not true. [See an explanation here](docs/faq.md).
|
34 |
-
|
35 |
-
# Stable Diffusion + ControlNet
|
36 |
-
|
37 |
-
By repeating the above simple structure 14 times, we can control stable diffusion in this way:
|
38 |
-
|
39 |
-
![img](github_page/sd.png)
|
40 |
-
|
41 |
-
In this way, the ControlNet can **reuse** the SD encoder as a **deep, strong, robust, and powerful backbone** to learn diverse controls. Many evidences (like [this](https://jerryxu.net/ODISE/) and [this](https://vpd.ivg-research.xyz/)) validate that the SD encoder is an excellent backbone.
|
42 |
-
|
43 |
-
Note that the way we connect layers is computational efficient. The original SD encoder does not need to store gradients (the locked original SD Encoder Block 1234 and Middle). The required GPU memory is not much larger than original SD, although many layers are added. Great!
|
44 |
-
|
45 |
-
# Features & News
|
46 |
-
|
47 |
-
2023/0/14 - We released [ControlNet 1.1](https://github.com/lllyasviel/ControlNet-v1-1-nightly). Those new models will be merged to this repo after we make sure that everything is good.
|
48 |
-
|
49 |
-
2023/03/03 - We released a discussion - [Precomputed ControlNet: Speed up ControlNet by 45%, but is it necessary?](https://github.com/lllyasviel/ControlNet/discussions/216)
|
50 |
-
|
51 |
-
2023/02/26 - We released a blog - [Ablation Study: Why ControlNets use deep encoder? What if it was lighter? Or even an MLP?](https://github.com/lllyasviel/ControlNet/discussions/188)
|
52 |
-
|
53 |
-
2023/02/20 - Implementation for non-prompt mode released. See also [Guess Mode / Non-Prompt Mode](#guess-anchor).
|
54 |
-
|
55 |
-
2023/02/12 - Now you can play with any community model by [Transferring the ControlNet](https://github.com/lllyasviel/ControlNet/discussions/12).
|
56 |
-
|
57 |
-
2023/02/11 - [Low VRAM mode](docs/low_vram.md) is added. Please use this mode if you are using 8GB GPU(s) or if you want larger batch size.
|
58 |
-
|
59 |
-
# Production-Ready Pretrained Models
|
60 |
-
|
61 |
-
First create a new conda environment
|
62 |
-
|
63 |
-
conda env create -f environment.yaml
|
64 |
-
conda activate control
|
65 |
-
|
66 |
-
All models and detectors can be downloaded from [our Hugging Face page](https://huggingface.co/lllyasviel/ControlNet). Make sure that SD models are put in "ControlNet/models" and detectors are put in "ControlNet/annotator/ckpts". Make sure that you download all necessary pretrained weights and detector models from that Hugging Face page, including HED edge detection model, Midas depth estimation model, Openpose, and so on.
|
67 |
-
|
68 |
-
We provide 9 Gradio apps with these models.
|
69 |
-
|
70 |
-
All test images can be found at the folder "test_imgs".
|
71 |
-
|
72 |
-
## ControlNet with Canny Edge
|
73 |
-
|
74 |
-
Stable Diffusion 1.5 + ControlNet (using simple Canny edge detection)
|
75 |
-
|
76 |
-
python gradio_canny2image.py
|
77 |
-
|
78 |
-
The Gradio app also allows you to change the Canny edge thresholds. Just try it for more details.
|
79 |
-
|
80 |
-
Prompt: "bird"
|
81 |
-
![p](github_page/p1.png)
|
82 |
-
|
83 |
-
Prompt: "cute dog"
|
84 |
-
![p](github_page/p2.png)
|
85 |
-
|
86 |
-
## ControlNet with M-LSD Lines
|
87 |
-
|
88 |
-
Stable Diffusion 1.5 + ControlNet (using simple M-LSD straight line detection)
|
89 |
-
|
90 |
-
python gradio_hough2image.py
|
91 |
-
|
92 |
-
The Gradio app also allows you to change the M-LSD thresholds. Just try it for more details.
|
93 |
-
|
94 |
-
Prompt: "room"
|
95 |
-
![p](github_page/p3.png)
|
96 |
-
|
97 |
-
Prompt: "building"
|
98 |
-
![p](github_page/p4.png)
|
99 |
-
|
100 |
-
## ControlNet with HED Boundary
|
101 |
-
|
102 |
-
Stable Diffusion 1.5 + ControlNet (using soft HED Boundary)
|
103 |
-
|
104 |
-
python gradio_hed2image.py
|
105 |
-
|
106 |
-
The soft HED Boundary will preserve many details in input images, making this app suitable for recoloring and stylizing. Just try it for more details.
|
107 |
-
|
108 |
-
Prompt: "oil painting of handsome old man, masterpiece"
|
109 |
-
![p](github_page/p5.png)
|
110 |
-
|
111 |
-
Prompt: "Cyberpunk robot"
|
112 |
-
![p](github_page/p6.png)
|
113 |
-
|
114 |
-
## ControlNet with User Scribbles
|
115 |
-
|
116 |
-
Stable Diffusion 1.5 + ControlNet (using Scribbles)
|
117 |
-
|
118 |
-
python gradio_scribble2image.py
|
119 |
-
|
120 |
-
Note that the UI is based on Gradio, and Gradio is somewhat difficult to customize. Right now you need to draw scribbles outside the UI (using your favorite drawing software, for example, MS Paint) and then import the scribble image to Gradio.
|
121 |
-
|
122 |
-
Prompt: "turtle"
|
123 |
-
![p](github_page/p7.png)
|
124 |
-
|
125 |
-
Prompt: "hot air balloon"
|
126 |
-
![p](github_page/p8.png)
|
127 |
-
|
128 |
-
### Interactive Interface
|
129 |
-
|
130 |
-
We actually provide an interactive interface
|
131 |
-
|
132 |
-
python gradio_scribble2image_interactive.py
|
133 |
-
|
134 |
-
~~However, because gradio is very [buggy](https://github.com/gradio-app/gradio/issues/3166) and difficult to customize, right now, user need to first set canvas width and heights and then click "Open drawing canvas" to get a drawing area. Please do not upload image to that drawing canvas. Also, the drawing area is very small; it should be bigger. But I failed to find out how to make it larger. Again, gradio is really buggy.~~ (Now fixed, will update asap)
|
135 |
-
|
136 |
-
The below dog sketch is drawn by me. Perhaps we should draw a better dog for showcase.
|
137 |
-
|
138 |
-
Prompt: "dog in a room"
|
139 |
-
![p](github_page/p20.png)
|
140 |
-
|
141 |
-
## ControlNet with Fake Scribbles
|
142 |
-
|
143 |
-
Stable Diffusion 1.5 + ControlNet (using fake scribbles)
|
144 |
-
|
145 |
-
python gradio_fake_scribble2image.py
|
146 |
-
|
147 |
-
Sometimes we are lazy, and we do not want to draw scribbles. This script use the exactly same scribble-based model but use a simple algorithm to synthesize scribbles from input images.
|
148 |
-
|
149 |
-
Prompt: "bag"
|
150 |
-
![p](github_page/p9.png)
|
151 |
-
|
152 |
-
Prompt: "shose" (Note that "shose" is a typo; it should be "shoes". But it still seems to work.)
|
153 |
-
![p](github_page/p10.png)
|
154 |
-
|
155 |
-
## ControlNet with Human Pose
|
156 |
-
|
157 |
-
Stable Diffusion 1.5 + ControlNet (using human pose)
|
158 |
-
|
159 |
-
python gradio_pose2image.py
|
160 |
-
|
161 |
-
Apparently, this model deserves a better UI to directly manipulate pose skeleton. However, again, Gradio is somewhat difficult to customize. Right now you need to input an image and then the Openpose will detect the pose for you.
|
162 |
-
|
163 |
-
Prompt: "Chief in the kitchen"
|
164 |
-
![p](github_page/p11.png)
|
165 |
-
|
166 |
-
Prompt: "An astronaut on the moon"
|
167 |
-
![p](github_page/p12.png)
|
168 |
-
|
169 |
-
## ControlNet with Semantic Segmentation
|
170 |
-
|
171 |
-
Stable Diffusion 1.5 + ControlNet (using semantic segmentation)
|
172 |
-
|
173 |
-
python gradio_seg2image.py
|
174 |
-
|
175 |
-
This model use ADE20K's segmentation protocol. Again, this model deserves a better UI to directly draw the segmentations. However, again, Gradio is somewhat difficult to customize. Right now you need to input an image and then a model called Uniformer will detect the segmentations for you. Just try it for more details.
|
176 |
-
|
177 |
-
Prompt: "House"
|
178 |
-
![p](github_page/p13.png)
|
179 |
-
|
180 |
-
Prompt: "River"
|
181 |
-
![p](github_page/p14.png)
|
182 |
-
|
183 |
-
## ControlNet with Depth
|
184 |
-
|
185 |
-
Stable Diffusion 1.5 + ControlNet (using depth map)
|
186 |
-
|
187 |
-
python gradio_depth2image.py
|
188 |
-
|
189 |
-
Great! Now SD 1.5 also have a depth control. FINALLY. So many possibilities (considering SD1.5 has much more community models than SD2).
|
190 |
-
|
191 |
-
Note that different from Stability's model, the ControlNet receive the full 512×512 depth map, rather than 64×64 depth. Note that Stability's SD2 depth model use 64*64 depth maps. This means that the ControlNet will preserve more details in the depth map.
|
192 |
-
|
193 |
-
This is always a strength because if users do not want to preserve more details, they can simply use another SD to post-process an i2i. But if they want to preserve more details, ControlNet becomes their only choice. Again, SD2 uses 64×64 depth, we use 512×512.
|
194 |
-
|
195 |
-
Prompt: "Stormtrooper's lecture"
|
196 |
-
![p](github_page/p15.png)
|
197 |
-
|
198 |
-
## ControlNet with Normal Map
|
199 |
-
|
200 |
-
Stable Diffusion 1.5 + ControlNet (using normal map)
|
201 |
-
|
202 |
-
python gradio_normal2image.py
|
203 |
-
|
204 |
-
This model use normal map. Rightnow in the APP, the normal is computed from the midas depth map and a user threshold (to determine how many area is background with identity normal face to viewer, tune the "Normal background threshold" in the gradio app to get a feeling).
|
205 |
-
|
206 |
-
Prompt: "Cute toy"
|
207 |
-
![p](github_page/p17.png)
|
208 |
-
|
209 |
-
Prompt: "Plaster statue of Abraham Lincoln"
|
210 |
-
![p](github_page/p18.png)
|
211 |
-
|
212 |
-
Compared to depth model, this model seems to be a bit better at preserving the geometry. This is intuitive: minor details are not salient in depth maps, but are salient in normal maps. Below is the depth result with same inputs. You can see that the hairstyle of the man in the input image is modified by depth model, but preserved by the normal model.
|
213 |
-
|
214 |
-
Prompt: "Plaster statue of Abraham Lincoln"
|
215 |
-
![p](github_page/p19.png)
|
216 |
-
|
217 |
-
## ControlNet with Anime Line Drawing
|
218 |
-
|
219 |
-
We also trained a relatively simple ControlNet for anime line drawings. This tool may be useful for artistic creations. (Although the image details in the results is a bit modified, since it still diffuse latent images.)
|
220 |
-
|
221 |
-
This model is not available right now. We need to evaluate the potential risks before releasing this model. Nevertheless, you may be interested in [transferring the ControlNet to any community model](https://github.com/lllyasviel/ControlNet/discussions/12).
|
222 |
-
|
223 |
-
![p](github_page/p21.png)
|
224 |
-
|
225 |
-
<a id="guess-anchor"></a>
|
226 |
-
|
227 |
-
# Guess Mode / Non-Prompt Mode
|
228 |
-
|
229 |
-
The "guess mode" (or called non-prompt mode) will completely unleash all the power of the very powerful ControlNet encoder.
|
230 |
-
|
231 |
-
See also the blog - [Ablation Study: Why ControlNets use deep encoder? What if it was lighter? Or even an MLP?](https://github.com/lllyasviel/ControlNet/discussions/188)
|
232 |
-
|
233 |
-
You need to manually check the "Guess Mode" toggle to enable this mode.
|
234 |
-
|
235 |
-
In this mode, the ControlNet encoder will try best to recognize the content of the input control map, like depth map, edge map, scribbles, etc, even if you remove all prompts.
|
236 |
-
|
237 |
-
**Let's have fun with some very challenging experimental settings!**
|
238 |
-
|
239 |
-
**No prompts. No "positive" prompts. No "negative" prompts. No extra caption detector. One single diffusion loop.**
|
240 |
-
|
241 |
-
For this mode, we recommend to use 50 steps and guidance scale between 3 and 5.
|
242 |
-
|
243 |
-
![p](github_page/uc2a.png)
|
244 |
-
|
245 |
-
No prompts:
|
246 |
-
|
247 |
-
![p](github_page/uc2b.png)
|
248 |
-
|
249 |
-
Note that the below example is 768×768. No prompts. No "positive" prompts. No "negative" prompts.
|
250 |
-
|
251 |
-
![p](github_page/uc1.png)
|
252 |
-
|
253 |
-
By tuning the parameters, you can get some very intereting results like below:
|
254 |
-
|
255 |
-
![p](github_page/uc3.png)
|
256 |
-
|
257 |
-
Because no prompt is available, the ControlNet encoder will "guess" what is in the control map. Sometimes the guess result is really interesting. Because diffusion algorithm can essentially give multiple results, the ControlNet seems able to give multiple guesses, like this:
|
258 |
-
|
259 |
-
![p](github_page/uc4.png)
|
260 |
-
|
261 |
-
Without prompt, the HED seems good at generating images look like paintings when the control strength is relatively low:
|
262 |
-
|
263 |
-
![p](github_page/uc6.png)
|
264 |
-
|
265 |
-
The Guess Mode is also supported in [WebUI Plugin](https://github.com/Mikubill/sd-webui-controlnet):
|
266 |
-
|
267 |
-
![p](github_page/uci1.png)
|
268 |
-
|
269 |
-
No prompts. Default WebUI parameters. Pure random results with the seed being 12345. Standard SD1.5. Input scribble is in "test_imgs" folder to reproduce.
|
270 |
-
|
271 |
-
![p](github_page/uci2.png)
|
272 |
-
|
273 |
-
Below is another challenging example:
|
274 |
-
|
275 |
-
![p](github_page/uci3.png)
|
276 |
-
|
277 |
-
No prompts. Default WebUI parameters. Pure random results with the seed being 12345. Standard SD1.5. Input scribble is in "test_imgs" folder to reproduce.
|
278 |
-
|
279 |
-
![p](github_page/uci4.png)
|
280 |
-
|
281 |
-
Note that in the guess mode, you will still be able to input prompts. The only difference is that the model will "try harder" to guess what is in the control map even if you do not provide the prompt. Just try it yourself!
|
282 |
-
|
283 |
-
Besides, if you write some scripts (like BLIP) to generate image captions from the "guess mode" images, and then use the generated captions as prompts to diffuse again, you will get a SOTA pipeline for fully automatic conditional image generating.
|
284 |
-
|
285 |
-
# Combining Multiple ControlNets
|
286 |
-
|
287 |
-
ControlNets are composable: more than one ControlNet can be easily composed to multi-condition control.
|
288 |
-
|
289 |
-
Right now this feature is in experimental stage in the [Mikubill' A1111 Webui Plugin](https://github.com/Mikubill/sd-webui-controlnet):
|
290 |
-
|
291 |
-
![p](github_page/multi2.png)
|
292 |
-
|
293 |
-
![p](github_page/multi.png)
|
294 |
-
|
295 |
-
As long as the models are controlling the same SD, the "boundary" between different research projects does not even exist. This plugin also allows different methods to work together!
|
296 |
-
|
297 |
-
# Use ControlNet in Any Community Model (SD1.X)
|
298 |
-
|
299 |
-
This is an experimental feature.
|
300 |
-
|
301 |
-
[See the steps here](https://github.com/lllyasviel/ControlNet/discussions/12).
|
302 |
-
|
303 |
-
Or you may want to use the [Mikubill' A1111 Webui Plugin](https://github.com/Mikubill/sd-webui-controlnet) which is plug-and-play and does not need manual merging.
|
304 |
-
|
305 |
-
# Annotate Your Own Data
|
306 |
-
|
307 |
-
We provide simple python scripts to process images.
|
308 |
-
|
309 |
-
[See a gradio example here](docs/annotator.md).
|
310 |
-
|
311 |
-
# Train with Your Own Data
|
312 |
-
|
313 |
-
Training a ControlNet is as easy as (or even easier than) training a simple pix2pix.
|
314 |
-
|
315 |
-
[See the steps here](docs/train.md).
|
316 |
-
|
317 |
-
# Related Resources
|
318 |
-
|
319 |
-
Special Thank to the great project - [Mikubill' A1111 Webui Plugin](https://github.com/Mikubill/sd-webui-controlnet) !
|
320 |
-
|
321 |
-
We also thank Hysts for making [Hugging Face Space](https://huggingface.co/spaces/hysts/ControlNet) as well as more than 65 models in that amazing [Colab list](https://github.com/camenduru/controlnet-colab)!
|
322 |
-
|
323 |
-
Thank haofanwang for making [ControlNet-for-Diffusers](https://github.com/haofanwang/ControlNet-for-Diffusers)!
|
324 |
-
|
325 |
-
We also thank all authors for making Controlnet DEMOs, including but not limited to [fffiloni](https://huggingface.co/spaces/fffiloni/ControlNet-Video), [other-model](https://huggingface.co/spaces/hysts/ControlNet-with-other-models), [ThereforeGames](https://github.com/AUTOMATIC1111/stable-diffusion-webui/discussions/7784), [RamAnanth1](https://huggingface.co/spaces/RamAnanth1/ControlNet), etc!
|
326 |
-
|
327 |
-
Besides, you may also want to read these amazing related works:
|
328 |
-
|
329 |
-
[Composer: Creative and Controllable Image Synthesis with Composable Conditions](https://github.com/damo-vilab/composer): A much bigger model to control diffusion!
|
330 |
-
|
331 |
-
[T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models](https://github.com/TencentARC/T2I-Adapter): A much smaller model to control stable diffusion!
|
332 |
-
|
333 |
-
[ControlLoRA: A Light Neural Network To Control Stable Diffusion Spatial Information](https://github.com/HighCWu/ControlLoRA): Implement Controlnet using LORA!
|
334 |
-
|
335 |
-
And these amazing recent projects: [InstructPix2Pix Learning to Follow Image Editing Instructions](https://www.timothybrooks.com/instruct-pix2pix), [Pix2pix-zero: Zero-shot Image-to-Image Translation](https://github.com/pix2pixzero/pix2pix-zero), [Plug-and-Play Diffusion Features for Text-Driven Image-to-Image Translation](https://github.com/MichalGeyer/plug-and-play), [MaskSketch: Unpaired Structure-guided Masked Image Generation](https://arxiv.org/abs/2302.05496), [SEGA: Instructing Diffusion using Semantic Dimensions](https://arxiv.org/abs/2301.12247), [Universal Guidance for Diffusion Models](https://github.com/arpitbansal297/Universal-Guided-Diffusion), [Region-Aware Diffusion for Zero-shot Text-driven Image Editing](https://github.com/haha-lisa/RDM-Region-Aware-Diffusion-Model), [Domain Expansion of Image Generators](https://arxiv.org/abs/2301.05225), [Image Mixer](https://twitter.com/LambdaAPI/status/1626327289288957956), [MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation](https://multidiffusion.github.io/)
|
336 |
-
|
337 |
-
# Citation
|
338 |
-
|
339 |
-
@misc{zhang2023adding,
|
340 |
-
title={Adding Conditional Control to Text-to-Image Diffusion Models},
|
341 |
-
author={Lvmin Zhang and Anyi Rao and Maneesh Agrawala},
|
342 |
-
booktitle={IEEE International Conference on Computer Vision (ICCV)}
|
343 |
-
year={2023},
|
344 |
-
}
|
345 |
-
|
346 |
-
[Arxiv Link](https://arxiv.org/abs/2302.05543)
|
347 |
-
|
348 |
-
[Supplementary Materials](https://lllyasviel.github.io/misc/202309/cnet_supp.pdf)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/canny/__init__.py
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
import cv2
|
2 |
-
|
3 |
-
|
4 |
-
class CannyDetector:
|
5 |
-
def __call__(self, img, low_threshold, high_threshold):
|
6 |
-
return cv2.Canny(img, low_threshold, high_threshold)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/ckpts/ckpts.txt
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
Weights here.
|
|
|
|
ControlNet/annotator/hed/__init__.py
DELETED
@@ -1,96 +0,0 @@
|
|
1 |
-
# This is an improved version and model of HED edge detection with Apache License, Version 2.0.
|
2 |
-
# Please use this implementation in your products
|
3 |
-
# This implementation may produce slightly different results from Saining Xie's official implementations,
|
4 |
-
# but it generates smoother edges and is more suitable for ControlNet as well as other image-to-image translations.
|
5 |
-
# Different from official models and other implementations, this is an RGB-input model (rather than BGR)
|
6 |
-
# and in this way it works better for gradio's RGB protocol
|
7 |
-
|
8 |
-
import os
|
9 |
-
import cv2
|
10 |
-
import torch
|
11 |
-
import numpy as np
|
12 |
-
|
13 |
-
from einops import rearrange
|
14 |
-
from annotator.util import annotator_ckpts_path
|
15 |
-
|
16 |
-
|
17 |
-
class DoubleConvBlock(torch.nn.Module):
|
18 |
-
def __init__(self, input_channel, output_channel, layer_number):
|
19 |
-
super().__init__()
|
20 |
-
self.convs = torch.nn.Sequential()
|
21 |
-
self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
|
22 |
-
for i in range(1, layer_number):
|
23 |
-
self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
|
24 |
-
self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0)
|
25 |
-
|
26 |
-
def __call__(self, x, down_sampling=False):
|
27 |
-
h = x
|
28 |
-
if down_sampling:
|
29 |
-
h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2))
|
30 |
-
for conv in self.convs:
|
31 |
-
h = conv(h)
|
32 |
-
h = torch.nn.functional.relu(h)
|
33 |
-
return h, self.projection(h)
|
34 |
-
|
35 |
-
|
36 |
-
class ControlNetHED_Apache2(torch.nn.Module):
|
37 |
-
def __init__(self):
|
38 |
-
super().__init__()
|
39 |
-
self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1)))
|
40 |
-
self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2)
|
41 |
-
self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2)
|
42 |
-
self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3)
|
43 |
-
self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3)
|
44 |
-
self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3)
|
45 |
-
|
46 |
-
def __call__(self, x):
|
47 |
-
h = x - self.norm
|
48 |
-
h, projection1 = self.block1(h)
|
49 |
-
h, projection2 = self.block2(h, down_sampling=True)
|
50 |
-
h, projection3 = self.block3(h, down_sampling=True)
|
51 |
-
h, projection4 = self.block4(h, down_sampling=True)
|
52 |
-
h, projection5 = self.block5(h, down_sampling=True)
|
53 |
-
return projection1, projection2, projection3, projection4, projection5
|
54 |
-
|
55 |
-
|
56 |
-
class HEDdetector:
|
57 |
-
def __init__(self):
|
58 |
-
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/ControlNetHED.pth"
|
59 |
-
modelpath = os.path.join(annotator_ckpts_path, "ControlNetHED.pth")
|
60 |
-
if not os.path.exists(modelpath):
|
61 |
-
from basicsr.utils.download_util import load_file_from_url
|
62 |
-
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
|
63 |
-
self.netNetwork = ControlNetHED_Apache2().float().cuda().eval()
|
64 |
-
self.netNetwork.load_state_dict(torch.load(modelpath))
|
65 |
-
|
66 |
-
def __call__(self, input_image):
|
67 |
-
assert input_image.ndim == 3
|
68 |
-
H, W, C = input_image.shape
|
69 |
-
with torch.no_grad():
|
70 |
-
image_hed = torch.from_numpy(input_image.copy()).float().cuda()
|
71 |
-
image_hed = rearrange(image_hed, 'h w c -> 1 c h w')
|
72 |
-
edges = self.netNetwork(image_hed)
|
73 |
-
edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges]
|
74 |
-
edges = [cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) for e in edges]
|
75 |
-
edges = np.stack(edges, axis=2)
|
76 |
-
edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64)))
|
77 |
-
edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
|
78 |
-
return edge
|
79 |
-
|
80 |
-
|
81 |
-
def nms(x, t, s):
|
82 |
-
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
|
83 |
-
|
84 |
-
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
|
85 |
-
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
|
86 |
-
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
|
87 |
-
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
|
88 |
-
|
89 |
-
y = np.zeros_like(x)
|
90 |
-
|
91 |
-
for f in [f1, f2, f3, f4]:
|
92 |
-
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
|
93 |
-
|
94 |
-
z = np.zeros_like(y, dtype=np.uint8)
|
95 |
-
z[y > t] = 255
|
96 |
-
return z
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/midas/LICENSE
DELETED
@@ -1,21 +0,0 @@
|
|
1 |
-
MIT License
|
2 |
-
|
3 |
-
Copyright (c) 2019 Intel ISL (Intel Intelligent Systems Lab)
|
4 |
-
|
5 |
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
-
of this software and associated documentation files (the "Software"), to deal
|
7 |
-
in the Software without restriction, including without limitation the rights
|
8 |
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
-
copies of the Software, and to permit persons to whom the Software is
|
10 |
-
furnished to do so, subject to the following conditions:
|
11 |
-
|
12 |
-
The above copyright notice and this permission notice shall be included in all
|
13 |
-
copies or substantial portions of the Software.
|
14 |
-
|
15 |
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
-
SOFTWARE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/midas/__init__.py
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
# Midas Depth Estimation
|
2 |
-
# From https://github.com/isl-org/MiDaS
|
3 |
-
# MIT LICENSE
|
4 |
-
|
5 |
-
import cv2
|
6 |
-
import numpy as np
|
7 |
-
import torch
|
8 |
-
|
9 |
-
from einops import rearrange
|
10 |
-
from .api import MiDaSInference
|
11 |
-
|
12 |
-
|
13 |
-
class MidasDetector:
|
14 |
-
def __init__(self):
|
15 |
-
self.model = MiDaSInference(model_type="dpt_hybrid").cuda()
|
16 |
-
|
17 |
-
def __call__(self, input_image, a=np.pi * 2.0, bg_th=0.1):
|
18 |
-
assert input_image.ndim == 3
|
19 |
-
image_depth = input_image
|
20 |
-
with torch.no_grad():
|
21 |
-
image_depth = torch.from_numpy(image_depth).float().cuda()
|
22 |
-
image_depth = image_depth / 127.5 - 1.0
|
23 |
-
image_depth = rearrange(image_depth, 'h w c -> 1 c h w')
|
24 |
-
depth = self.model(image_depth)[0]
|
25 |
-
|
26 |
-
depth_pt = depth.clone()
|
27 |
-
depth_pt -= torch.min(depth_pt)
|
28 |
-
depth_pt /= torch.max(depth_pt)
|
29 |
-
depth_pt = depth_pt.cpu().numpy()
|
30 |
-
depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8)
|
31 |
-
|
32 |
-
depth_np = depth.cpu().numpy()
|
33 |
-
x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3)
|
34 |
-
y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3)
|
35 |
-
z = np.ones_like(x) * a
|
36 |
-
x[depth_pt < bg_th] = 0
|
37 |
-
y[depth_pt < bg_th] = 0
|
38 |
-
normal = np.stack([x, y, z], axis=2)
|
39 |
-
normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5
|
40 |
-
normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
|
41 |
-
|
42 |
-
return depth_image, normal_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/midas/api.py
DELETED
@@ -1,169 +0,0 @@
|
|
1 |
-
# based on https://github.com/isl-org/MiDaS
|
2 |
-
|
3 |
-
import cv2
|
4 |
-
import os
|
5 |
-
import torch
|
6 |
-
import torch.nn as nn
|
7 |
-
from torchvision.transforms import Compose
|
8 |
-
|
9 |
-
from .midas.dpt_depth import DPTDepthModel
|
10 |
-
from .midas.midas_net import MidasNet
|
11 |
-
from .midas.midas_net_custom import MidasNet_small
|
12 |
-
from .midas.transforms import Resize, NormalizeImage, PrepareForNet
|
13 |
-
from annotator.util import annotator_ckpts_path
|
14 |
-
|
15 |
-
|
16 |
-
ISL_PATHS = {
|
17 |
-
"dpt_large": os.path.join(annotator_ckpts_path, "dpt_large-midas-2f21e586.pt"),
|
18 |
-
"dpt_hybrid": os.path.join(annotator_ckpts_path, "dpt_hybrid-midas-501f0c75.pt"),
|
19 |
-
"midas_v21": "",
|
20 |
-
"midas_v21_small": "",
|
21 |
-
}
|
22 |
-
|
23 |
-
remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt"
|
24 |
-
|
25 |
-
|
26 |
-
def disabled_train(self, mode=True):
|
27 |
-
"""Overwrite model.train with this function to make sure train/eval mode
|
28 |
-
does not change anymore."""
|
29 |
-
return self
|
30 |
-
|
31 |
-
|
32 |
-
def load_midas_transform(model_type):
|
33 |
-
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
34 |
-
# load transform only
|
35 |
-
if model_type == "dpt_large": # DPT-Large
|
36 |
-
net_w, net_h = 384, 384
|
37 |
-
resize_mode = "minimal"
|
38 |
-
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
39 |
-
|
40 |
-
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
41 |
-
net_w, net_h = 384, 384
|
42 |
-
resize_mode = "minimal"
|
43 |
-
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
44 |
-
|
45 |
-
elif model_type == "midas_v21":
|
46 |
-
net_w, net_h = 384, 384
|
47 |
-
resize_mode = "upper_bound"
|
48 |
-
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
49 |
-
|
50 |
-
elif model_type == "midas_v21_small":
|
51 |
-
net_w, net_h = 256, 256
|
52 |
-
resize_mode = "upper_bound"
|
53 |
-
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
54 |
-
|
55 |
-
else:
|
56 |
-
assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
|
57 |
-
|
58 |
-
transform = Compose(
|
59 |
-
[
|
60 |
-
Resize(
|
61 |
-
net_w,
|
62 |
-
net_h,
|
63 |
-
resize_target=None,
|
64 |
-
keep_aspect_ratio=True,
|
65 |
-
ensure_multiple_of=32,
|
66 |
-
resize_method=resize_mode,
|
67 |
-
image_interpolation_method=cv2.INTER_CUBIC,
|
68 |
-
),
|
69 |
-
normalization,
|
70 |
-
PrepareForNet(),
|
71 |
-
]
|
72 |
-
)
|
73 |
-
|
74 |
-
return transform
|
75 |
-
|
76 |
-
|
77 |
-
def load_model(model_type):
|
78 |
-
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
79 |
-
# load network
|
80 |
-
model_path = ISL_PATHS[model_type]
|
81 |
-
if model_type == "dpt_large": # DPT-Large
|
82 |
-
model = DPTDepthModel(
|
83 |
-
path=model_path,
|
84 |
-
backbone="vitl16_384",
|
85 |
-
non_negative=True,
|
86 |
-
)
|
87 |
-
net_w, net_h = 384, 384
|
88 |
-
resize_mode = "minimal"
|
89 |
-
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
90 |
-
|
91 |
-
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
92 |
-
if not os.path.exists(model_path):
|
93 |
-
from basicsr.utils.download_util import load_file_from_url
|
94 |
-
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
|
95 |
-
|
96 |
-
model = DPTDepthModel(
|
97 |
-
path=model_path,
|
98 |
-
backbone="vitb_rn50_384",
|
99 |
-
non_negative=True,
|
100 |
-
)
|
101 |
-
net_w, net_h = 384, 384
|
102 |
-
resize_mode = "minimal"
|
103 |
-
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
104 |
-
|
105 |
-
elif model_type == "midas_v21":
|
106 |
-
model = MidasNet(model_path, non_negative=True)
|
107 |
-
net_w, net_h = 384, 384
|
108 |
-
resize_mode = "upper_bound"
|
109 |
-
normalization = NormalizeImage(
|
110 |
-
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
111 |
-
)
|
112 |
-
|
113 |
-
elif model_type == "midas_v21_small":
|
114 |
-
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
|
115 |
-
non_negative=True, blocks={'expand': True})
|
116 |
-
net_w, net_h = 256, 256
|
117 |
-
resize_mode = "upper_bound"
|
118 |
-
normalization = NormalizeImage(
|
119 |
-
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
120 |
-
)
|
121 |
-
|
122 |
-
else:
|
123 |
-
print(f"model_type '{model_type}' not implemented, use: --model_type large")
|
124 |
-
assert False
|
125 |
-
|
126 |
-
transform = Compose(
|
127 |
-
[
|
128 |
-
Resize(
|
129 |
-
net_w,
|
130 |
-
net_h,
|
131 |
-
resize_target=None,
|
132 |
-
keep_aspect_ratio=True,
|
133 |
-
ensure_multiple_of=32,
|
134 |
-
resize_method=resize_mode,
|
135 |
-
image_interpolation_method=cv2.INTER_CUBIC,
|
136 |
-
),
|
137 |
-
normalization,
|
138 |
-
PrepareForNet(),
|
139 |
-
]
|
140 |
-
)
|
141 |
-
|
142 |
-
return model.eval(), transform
|
143 |
-
|
144 |
-
|
145 |
-
class MiDaSInference(nn.Module):
|
146 |
-
MODEL_TYPES_TORCH_HUB = [
|
147 |
-
"DPT_Large",
|
148 |
-
"DPT_Hybrid",
|
149 |
-
"MiDaS_small"
|
150 |
-
]
|
151 |
-
MODEL_TYPES_ISL = [
|
152 |
-
"dpt_large",
|
153 |
-
"dpt_hybrid",
|
154 |
-
"midas_v21",
|
155 |
-
"midas_v21_small",
|
156 |
-
]
|
157 |
-
|
158 |
-
def __init__(self, model_type):
|
159 |
-
super().__init__()
|
160 |
-
assert (model_type in self.MODEL_TYPES_ISL)
|
161 |
-
model, _ = load_model(model_type)
|
162 |
-
self.model = model
|
163 |
-
self.model.train = disabled_train
|
164 |
-
|
165 |
-
def forward(self, x):
|
166 |
-
with torch.no_grad():
|
167 |
-
prediction = self.model(x)
|
168 |
-
return prediction
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/midas/midas/__init__.py
DELETED
File without changes
|
ControlNet/annotator/midas/midas/base_model.py
DELETED
@@ -1,16 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
|
3 |
-
|
4 |
-
class BaseModel(torch.nn.Module):
|
5 |
-
def load(self, path):
|
6 |
-
"""Load model from file.
|
7 |
-
|
8 |
-
Args:
|
9 |
-
path (str): file path
|
10 |
-
"""
|
11 |
-
parameters = torch.load(path, map_location=torch.device('cpu'))
|
12 |
-
|
13 |
-
if "optimizer" in parameters:
|
14 |
-
parameters = parameters["model"]
|
15 |
-
|
16 |
-
self.load_state_dict(parameters)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/midas/midas/dpt_depth.py
DELETED
@@ -1,109 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
from .base_model import BaseModel
|
6 |
-
from .blocks import (
|
7 |
-
FeatureFusionBlock,
|
8 |
-
FeatureFusionBlock_custom,
|
9 |
-
Interpolate,
|
10 |
-
_make_encoder,
|
11 |
-
forward_vit,
|
12 |
-
)
|
13 |
-
|
14 |
-
|
15 |
-
def _make_fusion_block(features, use_bn):
|
16 |
-
return FeatureFusionBlock_custom(
|
17 |
-
features,
|
18 |
-
nn.ReLU(False),
|
19 |
-
deconv=False,
|
20 |
-
bn=use_bn,
|
21 |
-
expand=False,
|
22 |
-
align_corners=True,
|
23 |
-
)
|
24 |
-
|
25 |
-
|
26 |
-
class DPT(BaseModel):
|
27 |
-
def __init__(
|
28 |
-
self,
|
29 |
-
head,
|
30 |
-
features=256,
|
31 |
-
backbone="vitb_rn50_384",
|
32 |
-
readout="project",
|
33 |
-
channels_last=False,
|
34 |
-
use_bn=False,
|
35 |
-
):
|
36 |
-
|
37 |
-
super(DPT, self).__init__()
|
38 |
-
|
39 |
-
self.channels_last = channels_last
|
40 |
-
|
41 |
-
hooks = {
|
42 |
-
"vitb_rn50_384": [0, 1, 8, 11],
|
43 |
-
"vitb16_384": [2, 5, 8, 11],
|
44 |
-
"vitl16_384": [5, 11, 17, 23],
|
45 |
-
}
|
46 |
-
|
47 |
-
# Instantiate backbone and reassemble blocks
|
48 |
-
self.pretrained, self.scratch = _make_encoder(
|
49 |
-
backbone,
|
50 |
-
features,
|
51 |
-
False, # Set to true of you want to train from scratch, uses ImageNet weights
|
52 |
-
groups=1,
|
53 |
-
expand=False,
|
54 |
-
exportable=False,
|
55 |
-
hooks=hooks[backbone],
|
56 |
-
use_readout=readout,
|
57 |
-
)
|
58 |
-
|
59 |
-
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
|
60 |
-
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
|
61 |
-
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
|
62 |
-
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
|
63 |
-
|
64 |
-
self.scratch.output_conv = head
|
65 |
-
|
66 |
-
|
67 |
-
def forward(self, x):
|
68 |
-
if self.channels_last == True:
|
69 |
-
x.contiguous(memory_format=torch.channels_last)
|
70 |
-
|
71 |
-
layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
|
72 |
-
|
73 |
-
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
74 |
-
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
75 |
-
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
76 |
-
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
77 |
-
|
78 |
-
path_4 = self.scratch.refinenet4(layer_4_rn)
|
79 |
-
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
80 |
-
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
81 |
-
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
82 |
-
|
83 |
-
out = self.scratch.output_conv(path_1)
|
84 |
-
|
85 |
-
return out
|
86 |
-
|
87 |
-
|
88 |
-
class DPTDepthModel(DPT):
|
89 |
-
def __init__(self, path=None, non_negative=True, **kwargs):
|
90 |
-
features = kwargs["features"] if "features" in kwargs else 256
|
91 |
-
|
92 |
-
head = nn.Sequential(
|
93 |
-
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
|
94 |
-
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
|
95 |
-
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
|
96 |
-
nn.ReLU(True),
|
97 |
-
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
98 |
-
nn.ReLU(True) if non_negative else nn.Identity(),
|
99 |
-
nn.Identity(),
|
100 |
-
)
|
101 |
-
|
102 |
-
super().__init__(head, **kwargs)
|
103 |
-
|
104 |
-
if path is not None:
|
105 |
-
self.load(path)
|
106 |
-
|
107 |
-
def forward(self, x):
|
108 |
-
return super().forward(x).squeeze(dim=1)
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/midas/midas/midas_net.py
DELETED
@@ -1,76 +0,0 @@
|
|
1 |
-
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
2 |
-
This file contains code that is adapted from
|
3 |
-
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
4 |
-
"""
|
5 |
-
import torch
|
6 |
-
import torch.nn as nn
|
7 |
-
|
8 |
-
from .base_model import BaseModel
|
9 |
-
from .blocks import FeatureFusionBlock, Interpolate, _make_encoder
|
10 |
-
|
11 |
-
|
12 |
-
class MidasNet(BaseModel):
|
13 |
-
"""Network for monocular depth estimation.
|
14 |
-
"""
|
15 |
-
|
16 |
-
def __init__(self, path=None, features=256, non_negative=True):
|
17 |
-
"""Init.
|
18 |
-
|
19 |
-
Args:
|
20 |
-
path (str, optional): Path to saved model. Defaults to None.
|
21 |
-
features (int, optional): Number of features. Defaults to 256.
|
22 |
-
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
23 |
-
"""
|
24 |
-
print("Loading weights: ", path)
|
25 |
-
|
26 |
-
super(MidasNet, self).__init__()
|
27 |
-
|
28 |
-
use_pretrained = False if path is None else True
|
29 |
-
|
30 |
-
self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained)
|
31 |
-
|
32 |
-
self.scratch.refinenet4 = FeatureFusionBlock(features)
|
33 |
-
self.scratch.refinenet3 = FeatureFusionBlock(features)
|
34 |
-
self.scratch.refinenet2 = FeatureFusionBlock(features)
|
35 |
-
self.scratch.refinenet1 = FeatureFusionBlock(features)
|
36 |
-
|
37 |
-
self.scratch.output_conv = nn.Sequential(
|
38 |
-
nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
|
39 |
-
Interpolate(scale_factor=2, mode="bilinear"),
|
40 |
-
nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
|
41 |
-
nn.ReLU(True),
|
42 |
-
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
43 |
-
nn.ReLU(True) if non_negative else nn.Identity(),
|
44 |
-
)
|
45 |
-
|
46 |
-
if path:
|
47 |
-
self.load(path)
|
48 |
-
|
49 |
-
def forward(self, x):
|
50 |
-
"""Forward pass.
|
51 |
-
|
52 |
-
Args:
|
53 |
-
x (tensor): input data (image)
|
54 |
-
|
55 |
-
Returns:
|
56 |
-
tensor: depth
|
57 |
-
"""
|
58 |
-
|
59 |
-
layer_1 = self.pretrained.layer1(x)
|
60 |
-
layer_2 = self.pretrained.layer2(layer_1)
|
61 |
-
layer_3 = self.pretrained.layer3(layer_2)
|
62 |
-
layer_4 = self.pretrained.layer4(layer_3)
|
63 |
-
|
64 |
-
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
65 |
-
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
66 |
-
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
67 |
-
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
68 |
-
|
69 |
-
path_4 = self.scratch.refinenet4(layer_4_rn)
|
70 |
-
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
71 |
-
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
72 |
-
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
73 |
-
|
74 |
-
out = self.scratch.output_conv(path_1)
|
75 |
-
|
76 |
-
return torch.squeeze(out, dim=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/midas/midas/midas_net_custom.py
DELETED
@@ -1,128 +0,0 @@
|
|
1 |
-
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
2 |
-
This file contains code that is adapted from
|
3 |
-
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
4 |
-
"""
|
5 |
-
import torch
|
6 |
-
import torch.nn as nn
|
7 |
-
|
8 |
-
from .base_model import BaseModel
|
9 |
-
from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder
|
10 |
-
|
11 |
-
|
12 |
-
class MidasNet_small(BaseModel):
|
13 |
-
"""Network for monocular depth estimation.
|
14 |
-
"""
|
15 |
-
|
16 |
-
def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True,
|
17 |
-
blocks={'expand': True}):
|
18 |
-
"""Init.
|
19 |
-
|
20 |
-
Args:
|
21 |
-
path (str, optional): Path to saved model. Defaults to None.
|
22 |
-
features (int, optional): Number of features. Defaults to 256.
|
23 |
-
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
24 |
-
"""
|
25 |
-
print("Loading weights: ", path)
|
26 |
-
|
27 |
-
super(MidasNet_small, self).__init__()
|
28 |
-
|
29 |
-
use_pretrained = False if path else True
|
30 |
-
|
31 |
-
self.channels_last = channels_last
|
32 |
-
self.blocks = blocks
|
33 |
-
self.backbone = backbone
|
34 |
-
|
35 |
-
self.groups = 1
|
36 |
-
|
37 |
-
features1=features
|
38 |
-
features2=features
|
39 |
-
features3=features
|
40 |
-
features4=features
|
41 |
-
self.expand = False
|
42 |
-
if "expand" in self.blocks and self.blocks['expand'] == True:
|
43 |
-
self.expand = True
|
44 |
-
features1=features
|
45 |
-
features2=features*2
|
46 |
-
features3=features*4
|
47 |
-
features4=features*8
|
48 |
-
|
49 |
-
self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable)
|
50 |
-
|
51 |
-
self.scratch.activation = nn.ReLU(False)
|
52 |
-
|
53 |
-
self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
54 |
-
self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
55 |
-
self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
56 |
-
self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners)
|
57 |
-
|
58 |
-
|
59 |
-
self.scratch.output_conv = nn.Sequential(
|
60 |
-
nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups),
|
61 |
-
Interpolate(scale_factor=2, mode="bilinear"),
|
62 |
-
nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1),
|
63 |
-
self.scratch.activation,
|
64 |
-
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
65 |
-
nn.ReLU(True) if non_negative else nn.Identity(),
|
66 |
-
nn.Identity(),
|
67 |
-
)
|
68 |
-
|
69 |
-
if path:
|
70 |
-
self.load(path)
|
71 |
-
|
72 |
-
|
73 |
-
def forward(self, x):
|
74 |
-
"""Forward pass.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
x (tensor): input data (image)
|
78 |
-
|
79 |
-
Returns:
|
80 |
-
tensor: depth
|
81 |
-
"""
|
82 |
-
if self.channels_last==True:
|
83 |
-
print("self.channels_last = ", self.channels_last)
|
84 |
-
x.contiguous(memory_format=torch.channels_last)
|
85 |
-
|
86 |
-
|
87 |
-
layer_1 = self.pretrained.layer1(x)
|
88 |
-
layer_2 = self.pretrained.layer2(layer_1)
|
89 |
-
layer_3 = self.pretrained.layer3(layer_2)
|
90 |
-
layer_4 = self.pretrained.layer4(layer_3)
|
91 |
-
|
92 |
-
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
93 |
-
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
94 |
-
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
95 |
-
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
96 |
-
|
97 |
-
|
98 |
-
path_4 = self.scratch.refinenet4(layer_4_rn)
|
99 |
-
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
100 |
-
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
101 |
-
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
102 |
-
|
103 |
-
out = self.scratch.output_conv(path_1)
|
104 |
-
|
105 |
-
return torch.squeeze(out, dim=1)
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
def fuse_model(m):
|
110 |
-
prev_previous_type = nn.Identity()
|
111 |
-
prev_previous_name = ''
|
112 |
-
previous_type = nn.Identity()
|
113 |
-
previous_name = ''
|
114 |
-
for name, module in m.named_modules():
|
115 |
-
if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU:
|
116 |
-
# print("FUSED ", prev_previous_name, previous_name, name)
|
117 |
-
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True)
|
118 |
-
elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
|
119 |
-
# print("FUSED ", prev_previous_name, previous_name)
|
120 |
-
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True)
|
121 |
-
# elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
|
122 |
-
# print("FUSED ", previous_name, name)
|
123 |
-
# torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)
|
124 |
-
|
125 |
-
prev_previous_type = previous_type
|
126 |
-
prev_previous_name = previous_name
|
127 |
-
previous_type = type(module)
|
128 |
-
previous_name = name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/midas/midas/transforms.py
DELETED
@@ -1,234 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import cv2
|
3 |
-
import math
|
4 |
-
|
5 |
-
|
6 |
-
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
|
7 |
-
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
|
8 |
-
|
9 |
-
Args:
|
10 |
-
sample (dict): sample
|
11 |
-
size (tuple): image size
|
12 |
-
|
13 |
-
Returns:
|
14 |
-
tuple: new size
|
15 |
-
"""
|
16 |
-
shape = list(sample["disparity"].shape)
|
17 |
-
|
18 |
-
if shape[0] >= size[0] and shape[1] >= size[1]:
|
19 |
-
return sample
|
20 |
-
|
21 |
-
scale = [0, 0]
|
22 |
-
scale[0] = size[0] / shape[0]
|
23 |
-
scale[1] = size[1] / shape[1]
|
24 |
-
|
25 |
-
scale = max(scale)
|
26 |
-
|
27 |
-
shape[0] = math.ceil(scale * shape[0])
|
28 |
-
shape[1] = math.ceil(scale * shape[1])
|
29 |
-
|
30 |
-
# resize
|
31 |
-
sample["image"] = cv2.resize(
|
32 |
-
sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
|
33 |
-
)
|
34 |
-
|
35 |
-
sample["disparity"] = cv2.resize(
|
36 |
-
sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
|
37 |
-
)
|
38 |
-
sample["mask"] = cv2.resize(
|
39 |
-
sample["mask"].astype(np.float32),
|
40 |
-
tuple(shape[::-1]),
|
41 |
-
interpolation=cv2.INTER_NEAREST,
|
42 |
-
)
|
43 |
-
sample["mask"] = sample["mask"].astype(bool)
|
44 |
-
|
45 |
-
return tuple(shape)
|
46 |
-
|
47 |
-
|
48 |
-
class Resize(object):
|
49 |
-
"""Resize sample to given size (width, height).
|
50 |
-
"""
|
51 |
-
|
52 |
-
def __init__(
|
53 |
-
self,
|
54 |
-
width,
|
55 |
-
height,
|
56 |
-
resize_target=True,
|
57 |
-
keep_aspect_ratio=False,
|
58 |
-
ensure_multiple_of=1,
|
59 |
-
resize_method="lower_bound",
|
60 |
-
image_interpolation_method=cv2.INTER_AREA,
|
61 |
-
):
|
62 |
-
"""Init.
|
63 |
-
|
64 |
-
Args:
|
65 |
-
width (int): desired output width
|
66 |
-
height (int): desired output height
|
67 |
-
resize_target (bool, optional):
|
68 |
-
True: Resize the full sample (image, mask, target).
|
69 |
-
False: Resize image only.
|
70 |
-
Defaults to True.
|
71 |
-
keep_aspect_ratio (bool, optional):
|
72 |
-
True: Keep the aspect ratio of the input sample.
|
73 |
-
Output sample might not have the given width and height, and
|
74 |
-
resize behaviour depends on the parameter 'resize_method'.
|
75 |
-
Defaults to False.
|
76 |
-
ensure_multiple_of (int, optional):
|
77 |
-
Output width and height is constrained to be multiple of this parameter.
|
78 |
-
Defaults to 1.
|
79 |
-
resize_method (str, optional):
|
80 |
-
"lower_bound": Output will be at least as large as the given size.
|
81 |
-
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
|
82 |
-
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
|
83 |
-
Defaults to "lower_bound".
|
84 |
-
"""
|
85 |
-
self.__width = width
|
86 |
-
self.__height = height
|
87 |
-
|
88 |
-
self.__resize_target = resize_target
|
89 |
-
self.__keep_aspect_ratio = keep_aspect_ratio
|
90 |
-
self.__multiple_of = ensure_multiple_of
|
91 |
-
self.__resize_method = resize_method
|
92 |
-
self.__image_interpolation_method = image_interpolation_method
|
93 |
-
|
94 |
-
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
|
95 |
-
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
96 |
-
|
97 |
-
if max_val is not None and y > max_val:
|
98 |
-
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
99 |
-
|
100 |
-
if y < min_val:
|
101 |
-
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
102 |
-
|
103 |
-
return y
|
104 |
-
|
105 |
-
def get_size(self, width, height):
|
106 |
-
# determine new height and width
|
107 |
-
scale_height = self.__height / height
|
108 |
-
scale_width = self.__width / width
|
109 |
-
|
110 |
-
if self.__keep_aspect_ratio:
|
111 |
-
if self.__resize_method == "lower_bound":
|
112 |
-
# scale such that output size is lower bound
|
113 |
-
if scale_width > scale_height:
|
114 |
-
# fit width
|
115 |
-
scale_height = scale_width
|
116 |
-
else:
|
117 |
-
# fit height
|
118 |
-
scale_width = scale_height
|
119 |
-
elif self.__resize_method == "upper_bound":
|
120 |
-
# scale such that output size is upper bound
|
121 |
-
if scale_width < scale_height:
|
122 |
-
# fit width
|
123 |
-
scale_height = scale_width
|
124 |
-
else:
|
125 |
-
# fit height
|
126 |
-
scale_width = scale_height
|
127 |
-
elif self.__resize_method == "minimal":
|
128 |
-
# scale as least as possbile
|
129 |
-
if abs(1 - scale_width) < abs(1 - scale_height):
|
130 |
-
# fit width
|
131 |
-
scale_height = scale_width
|
132 |
-
else:
|
133 |
-
# fit height
|
134 |
-
scale_width = scale_height
|
135 |
-
else:
|
136 |
-
raise ValueError(
|
137 |
-
f"resize_method {self.__resize_method} not implemented"
|
138 |
-
)
|
139 |
-
|
140 |
-
if self.__resize_method == "lower_bound":
|
141 |
-
new_height = self.constrain_to_multiple_of(
|
142 |
-
scale_height * height, min_val=self.__height
|
143 |
-
)
|
144 |
-
new_width = self.constrain_to_multiple_of(
|
145 |
-
scale_width * width, min_val=self.__width
|
146 |
-
)
|
147 |
-
elif self.__resize_method == "upper_bound":
|
148 |
-
new_height = self.constrain_to_multiple_of(
|
149 |
-
scale_height * height, max_val=self.__height
|
150 |
-
)
|
151 |
-
new_width = self.constrain_to_multiple_of(
|
152 |
-
scale_width * width, max_val=self.__width
|
153 |
-
)
|
154 |
-
elif self.__resize_method == "minimal":
|
155 |
-
new_height = self.constrain_to_multiple_of(scale_height * height)
|
156 |
-
new_width = self.constrain_to_multiple_of(scale_width * width)
|
157 |
-
else:
|
158 |
-
raise ValueError(f"resize_method {self.__resize_method} not implemented")
|
159 |
-
|
160 |
-
return (new_width, new_height)
|
161 |
-
|
162 |
-
def __call__(self, sample):
|
163 |
-
width, height = self.get_size(
|
164 |
-
sample["image"].shape[1], sample["image"].shape[0]
|
165 |
-
)
|
166 |
-
|
167 |
-
# resize sample
|
168 |
-
sample["image"] = cv2.resize(
|
169 |
-
sample["image"],
|
170 |
-
(width, height),
|
171 |
-
interpolation=self.__image_interpolation_method,
|
172 |
-
)
|
173 |
-
|
174 |
-
if self.__resize_target:
|
175 |
-
if "disparity" in sample:
|
176 |
-
sample["disparity"] = cv2.resize(
|
177 |
-
sample["disparity"],
|
178 |
-
(width, height),
|
179 |
-
interpolation=cv2.INTER_NEAREST,
|
180 |
-
)
|
181 |
-
|
182 |
-
if "depth" in sample:
|
183 |
-
sample["depth"] = cv2.resize(
|
184 |
-
sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
|
185 |
-
)
|
186 |
-
|
187 |
-
sample["mask"] = cv2.resize(
|
188 |
-
sample["mask"].astype(np.float32),
|
189 |
-
(width, height),
|
190 |
-
interpolation=cv2.INTER_NEAREST,
|
191 |
-
)
|
192 |
-
sample["mask"] = sample["mask"].astype(bool)
|
193 |
-
|
194 |
-
return sample
|
195 |
-
|
196 |
-
|
197 |
-
class NormalizeImage(object):
|
198 |
-
"""Normlize image by given mean and std.
|
199 |
-
"""
|
200 |
-
|
201 |
-
def __init__(self, mean, std):
|
202 |
-
self.__mean = mean
|
203 |
-
self.__std = std
|
204 |
-
|
205 |
-
def __call__(self, sample):
|
206 |
-
sample["image"] = (sample["image"] - self.__mean) / self.__std
|
207 |
-
|
208 |
-
return sample
|
209 |
-
|
210 |
-
|
211 |
-
class PrepareForNet(object):
|
212 |
-
"""Prepare sample for usage as network input.
|
213 |
-
"""
|
214 |
-
|
215 |
-
def __init__(self):
|
216 |
-
pass
|
217 |
-
|
218 |
-
def __call__(self, sample):
|
219 |
-
image = np.transpose(sample["image"], (2, 0, 1))
|
220 |
-
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
|
221 |
-
|
222 |
-
if "mask" in sample:
|
223 |
-
sample["mask"] = sample["mask"].astype(np.float32)
|
224 |
-
sample["mask"] = np.ascontiguousarray(sample["mask"])
|
225 |
-
|
226 |
-
if "disparity" in sample:
|
227 |
-
disparity = sample["disparity"].astype(np.float32)
|
228 |
-
sample["disparity"] = np.ascontiguousarray(disparity)
|
229 |
-
|
230 |
-
if "depth" in sample:
|
231 |
-
depth = sample["depth"].astype(np.float32)
|
232 |
-
sample["depth"] = np.ascontiguousarray(depth)
|
233 |
-
|
234 |
-
return sample
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/midas/midas/vit.py
DELETED
@@ -1,491 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import timm
|
4 |
-
import types
|
5 |
-
import math
|
6 |
-
import torch.nn.functional as F
|
7 |
-
|
8 |
-
|
9 |
-
class Slice(nn.Module):
|
10 |
-
def __init__(self, start_index=1):
|
11 |
-
super(Slice, self).__init__()
|
12 |
-
self.start_index = start_index
|
13 |
-
|
14 |
-
def forward(self, x):
|
15 |
-
return x[:, self.start_index :]
|
16 |
-
|
17 |
-
|
18 |
-
class AddReadout(nn.Module):
|
19 |
-
def __init__(self, start_index=1):
|
20 |
-
super(AddReadout, self).__init__()
|
21 |
-
self.start_index = start_index
|
22 |
-
|
23 |
-
def forward(self, x):
|
24 |
-
if self.start_index == 2:
|
25 |
-
readout = (x[:, 0] + x[:, 1]) / 2
|
26 |
-
else:
|
27 |
-
readout = x[:, 0]
|
28 |
-
return x[:, self.start_index :] + readout.unsqueeze(1)
|
29 |
-
|
30 |
-
|
31 |
-
class ProjectReadout(nn.Module):
|
32 |
-
def __init__(self, in_features, start_index=1):
|
33 |
-
super(ProjectReadout, self).__init__()
|
34 |
-
self.start_index = start_index
|
35 |
-
|
36 |
-
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
|
37 |
-
|
38 |
-
def forward(self, x):
|
39 |
-
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
|
40 |
-
features = torch.cat((x[:, self.start_index :], readout), -1)
|
41 |
-
|
42 |
-
return self.project(features)
|
43 |
-
|
44 |
-
|
45 |
-
class Transpose(nn.Module):
|
46 |
-
def __init__(self, dim0, dim1):
|
47 |
-
super(Transpose, self).__init__()
|
48 |
-
self.dim0 = dim0
|
49 |
-
self.dim1 = dim1
|
50 |
-
|
51 |
-
def forward(self, x):
|
52 |
-
x = x.transpose(self.dim0, self.dim1)
|
53 |
-
return x
|
54 |
-
|
55 |
-
|
56 |
-
def forward_vit(pretrained, x):
|
57 |
-
b, c, h, w = x.shape
|
58 |
-
|
59 |
-
glob = pretrained.model.forward_flex(x)
|
60 |
-
|
61 |
-
layer_1 = pretrained.activations["1"]
|
62 |
-
layer_2 = pretrained.activations["2"]
|
63 |
-
layer_3 = pretrained.activations["3"]
|
64 |
-
layer_4 = pretrained.activations["4"]
|
65 |
-
|
66 |
-
layer_1 = pretrained.act_postprocess1[0:2](layer_1)
|
67 |
-
layer_2 = pretrained.act_postprocess2[0:2](layer_2)
|
68 |
-
layer_3 = pretrained.act_postprocess3[0:2](layer_3)
|
69 |
-
layer_4 = pretrained.act_postprocess4[0:2](layer_4)
|
70 |
-
|
71 |
-
unflatten = nn.Sequential(
|
72 |
-
nn.Unflatten(
|
73 |
-
2,
|
74 |
-
torch.Size(
|
75 |
-
[
|
76 |
-
h // pretrained.model.patch_size[1],
|
77 |
-
w // pretrained.model.patch_size[0],
|
78 |
-
]
|
79 |
-
),
|
80 |
-
)
|
81 |
-
)
|
82 |
-
|
83 |
-
if layer_1.ndim == 3:
|
84 |
-
layer_1 = unflatten(layer_1)
|
85 |
-
if layer_2.ndim == 3:
|
86 |
-
layer_2 = unflatten(layer_2)
|
87 |
-
if layer_3.ndim == 3:
|
88 |
-
layer_3 = unflatten(layer_3)
|
89 |
-
if layer_4.ndim == 3:
|
90 |
-
layer_4 = unflatten(layer_4)
|
91 |
-
|
92 |
-
layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
|
93 |
-
layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
|
94 |
-
layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
|
95 |
-
layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
|
96 |
-
|
97 |
-
return layer_1, layer_2, layer_3, layer_4
|
98 |
-
|
99 |
-
|
100 |
-
def _resize_pos_embed(self, posemb, gs_h, gs_w):
|
101 |
-
posemb_tok, posemb_grid = (
|
102 |
-
posemb[:, : self.start_index],
|
103 |
-
posemb[0, self.start_index :],
|
104 |
-
)
|
105 |
-
|
106 |
-
gs_old = int(math.sqrt(len(posemb_grid)))
|
107 |
-
|
108 |
-
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
|
109 |
-
posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
|
110 |
-
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
|
111 |
-
|
112 |
-
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
|
113 |
-
|
114 |
-
return posemb
|
115 |
-
|
116 |
-
|
117 |
-
def forward_flex(self, x):
|
118 |
-
b, c, h, w = x.shape
|
119 |
-
|
120 |
-
pos_embed = self._resize_pos_embed(
|
121 |
-
self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
|
122 |
-
)
|
123 |
-
|
124 |
-
B = x.shape[0]
|
125 |
-
|
126 |
-
if hasattr(self.patch_embed, "backbone"):
|
127 |
-
x = self.patch_embed.backbone(x)
|
128 |
-
if isinstance(x, (list, tuple)):
|
129 |
-
x = x[-1] # last feature if backbone outputs list/tuple of features
|
130 |
-
|
131 |
-
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
|
132 |
-
|
133 |
-
if getattr(self, "dist_token", None) is not None:
|
134 |
-
cls_tokens = self.cls_token.expand(
|
135 |
-
B, -1, -1
|
136 |
-
) # stole cls_tokens impl from Phil Wang, thanks
|
137 |
-
dist_token = self.dist_token.expand(B, -1, -1)
|
138 |
-
x = torch.cat((cls_tokens, dist_token, x), dim=1)
|
139 |
-
else:
|
140 |
-
cls_tokens = self.cls_token.expand(
|
141 |
-
B, -1, -1
|
142 |
-
) # stole cls_tokens impl from Phil Wang, thanks
|
143 |
-
x = torch.cat((cls_tokens, x), dim=1)
|
144 |
-
|
145 |
-
x = x + pos_embed
|
146 |
-
x = self.pos_drop(x)
|
147 |
-
|
148 |
-
for blk in self.blocks:
|
149 |
-
x = blk(x)
|
150 |
-
|
151 |
-
x = self.norm(x)
|
152 |
-
|
153 |
-
return x
|
154 |
-
|
155 |
-
|
156 |
-
activations = {}
|
157 |
-
|
158 |
-
|
159 |
-
def get_activation(name):
|
160 |
-
def hook(model, input, output):
|
161 |
-
activations[name] = output
|
162 |
-
|
163 |
-
return hook
|
164 |
-
|
165 |
-
|
166 |
-
def get_readout_oper(vit_features, features, use_readout, start_index=1):
|
167 |
-
if use_readout == "ignore":
|
168 |
-
readout_oper = [Slice(start_index)] * len(features)
|
169 |
-
elif use_readout == "add":
|
170 |
-
readout_oper = [AddReadout(start_index)] * len(features)
|
171 |
-
elif use_readout == "project":
|
172 |
-
readout_oper = [
|
173 |
-
ProjectReadout(vit_features, start_index) for out_feat in features
|
174 |
-
]
|
175 |
-
else:
|
176 |
-
assert (
|
177 |
-
False
|
178 |
-
), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
|
179 |
-
|
180 |
-
return readout_oper
|
181 |
-
|
182 |
-
|
183 |
-
def _make_vit_b16_backbone(
|
184 |
-
model,
|
185 |
-
features=[96, 192, 384, 768],
|
186 |
-
size=[384, 384],
|
187 |
-
hooks=[2, 5, 8, 11],
|
188 |
-
vit_features=768,
|
189 |
-
use_readout="ignore",
|
190 |
-
start_index=1,
|
191 |
-
):
|
192 |
-
pretrained = nn.Module()
|
193 |
-
|
194 |
-
pretrained.model = model
|
195 |
-
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
196 |
-
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
197 |
-
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
198 |
-
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
199 |
-
|
200 |
-
pretrained.activations = activations
|
201 |
-
|
202 |
-
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
203 |
-
|
204 |
-
# 32, 48, 136, 384
|
205 |
-
pretrained.act_postprocess1 = nn.Sequential(
|
206 |
-
readout_oper[0],
|
207 |
-
Transpose(1, 2),
|
208 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
209 |
-
nn.Conv2d(
|
210 |
-
in_channels=vit_features,
|
211 |
-
out_channels=features[0],
|
212 |
-
kernel_size=1,
|
213 |
-
stride=1,
|
214 |
-
padding=0,
|
215 |
-
),
|
216 |
-
nn.ConvTranspose2d(
|
217 |
-
in_channels=features[0],
|
218 |
-
out_channels=features[0],
|
219 |
-
kernel_size=4,
|
220 |
-
stride=4,
|
221 |
-
padding=0,
|
222 |
-
bias=True,
|
223 |
-
dilation=1,
|
224 |
-
groups=1,
|
225 |
-
),
|
226 |
-
)
|
227 |
-
|
228 |
-
pretrained.act_postprocess2 = nn.Sequential(
|
229 |
-
readout_oper[1],
|
230 |
-
Transpose(1, 2),
|
231 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
232 |
-
nn.Conv2d(
|
233 |
-
in_channels=vit_features,
|
234 |
-
out_channels=features[1],
|
235 |
-
kernel_size=1,
|
236 |
-
stride=1,
|
237 |
-
padding=0,
|
238 |
-
),
|
239 |
-
nn.ConvTranspose2d(
|
240 |
-
in_channels=features[1],
|
241 |
-
out_channels=features[1],
|
242 |
-
kernel_size=2,
|
243 |
-
stride=2,
|
244 |
-
padding=0,
|
245 |
-
bias=True,
|
246 |
-
dilation=1,
|
247 |
-
groups=1,
|
248 |
-
),
|
249 |
-
)
|
250 |
-
|
251 |
-
pretrained.act_postprocess3 = nn.Sequential(
|
252 |
-
readout_oper[2],
|
253 |
-
Transpose(1, 2),
|
254 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
255 |
-
nn.Conv2d(
|
256 |
-
in_channels=vit_features,
|
257 |
-
out_channels=features[2],
|
258 |
-
kernel_size=1,
|
259 |
-
stride=1,
|
260 |
-
padding=0,
|
261 |
-
),
|
262 |
-
)
|
263 |
-
|
264 |
-
pretrained.act_postprocess4 = nn.Sequential(
|
265 |
-
readout_oper[3],
|
266 |
-
Transpose(1, 2),
|
267 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
268 |
-
nn.Conv2d(
|
269 |
-
in_channels=vit_features,
|
270 |
-
out_channels=features[3],
|
271 |
-
kernel_size=1,
|
272 |
-
stride=1,
|
273 |
-
padding=0,
|
274 |
-
),
|
275 |
-
nn.Conv2d(
|
276 |
-
in_channels=features[3],
|
277 |
-
out_channels=features[3],
|
278 |
-
kernel_size=3,
|
279 |
-
stride=2,
|
280 |
-
padding=1,
|
281 |
-
),
|
282 |
-
)
|
283 |
-
|
284 |
-
pretrained.model.start_index = start_index
|
285 |
-
pretrained.model.patch_size = [16, 16]
|
286 |
-
|
287 |
-
# We inject this function into the VisionTransformer instances so that
|
288 |
-
# we can use it with interpolated position embeddings without modifying the library source.
|
289 |
-
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
290 |
-
pretrained.model._resize_pos_embed = types.MethodType(
|
291 |
-
_resize_pos_embed, pretrained.model
|
292 |
-
)
|
293 |
-
|
294 |
-
return pretrained
|
295 |
-
|
296 |
-
|
297 |
-
def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None):
|
298 |
-
model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
|
299 |
-
|
300 |
-
hooks = [5, 11, 17, 23] if hooks == None else hooks
|
301 |
-
return _make_vit_b16_backbone(
|
302 |
-
model,
|
303 |
-
features=[256, 512, 1024, 1024],
|
304 |
-
hooks=hooks,
|
305 |
-
vit_features=1024,
|
306 |
-
use_readout=use_readout,
|
307 |
-
)
|
308 |
-
|
309 |
-
|
310 |
-
def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None):
|
311 |
-
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
|
312 |
-
|
313 |
-
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
314 |
-
return _make_vit_b16_backbone(
|
315 |
-
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
|
316 |
-
)
|
317 |
-
|
318 |
-
|
319 |
-
def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None):
|
320 |
-
model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
|
321 |
-
|
322 |
-
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
323 |
-
return _make_vit_b16_backbone(
|
324 |
-
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
|
325 |
-
)
|
326 |
-
|
327 |
-
|
328 |
-
def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None):
|
329 |
-
model = timm.create_model(
|
330 |
-
"vit_deit_base_distilled_patch16_384", pretrained=pretrained
|
331 |
-
)
|
332 |
-
|
333 |
-
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
334 |
-
return _make_vit_b16_backbone(
|
335 |
-
model,
|
336 |
-
features=[96, 192, 384, 768],
|
337 |
-
hooks=hooks,
|
338 |
-
use_readout=use_readout,
|
339 |
-
start_index=2,
|
340 |
-
)
|
341 |
-
|
342 |
-
|
343 |
-
def _make_vit_b_rn50_backbone(
|
344 |
-
model,
|
345 |
-
features=[256, 512, 768, 768],
|
346 |
-
size=[384, 384],
|
347 |
-
hooks=[0, 1, 8, 11],
|
348 |
-
vit_features=768,
|
349 |
-
use_vit_only=False,
|
350 |
-
use_readout="ignore",
|
351 |
-
start_index=1,
|
352 |
-
):
|
353 |
-
pretrained = nn.Module()
|
354 |
-
|
355 |
-
pretrained.model = model
|
356 |
-
|
357 |
-
if use_vit_only == True:
|
358 |
-
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
359 |
-
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
360 |
-
else:
|
361 |
-
pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
|
362 |
-
get_activation("1")
|
363 |
-
)
|
364 |
-
pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
|
365 |
-
get_activation("2")
|
366 |
-
)
|
367 |
-
|
368 |
-
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
369 |
-
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
370 |
-
|
371 |
-
pretrained.activations = activations
|
372 |
-
|
373 |
-
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
374 |
-
|
375 |
-
if use_vit_only == True:
|
376 |
-
pretrained.act_postprocess1 = nn.Sequential(
|
377 |
-
readout_oper[0],
|
378 |
-
Transpose(1, 2),
|
379 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
380 |
-
nn.Conv2d(
|
381 |
-
in_channels=vit_features,
|
382 |
-
out_channels=features[0],
|
383 |
-
kernel_size=1,
|
384 |
-
stride=1,
|
385 |
-
padding=0,
|
386 |
-
),
|
387 |
-
nn.ConvTranspose2d(
|
388 |
-
in_channels=features[0],
|
389 |
-
out_channels=features[0],
|
390 |
-
kernel_size=4,
|
391 |
-
stride=4,
|
392 |
-
padding=0,
|
393 |
-
bias=True,
|
394 |
-
dilation=1,
|
395 |
-
groups=1,
|
396 |
-
),
|
397 |
-
)
|
398 |
-
|
399 |
-
pretrained.act_postprocess2 = nn.Sequential(
|
400 |
-
readout_oper[1],
|
401 |
-
Transpose(1, 2),
|
402 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
403 |
-
nn.Conv2d(
|
404 |
-
in_channels=vit_features,
|
405 |
-
out_channels=features[1],
|
406 |
-
kernel_size=1,
|
407 |
-
stride=1,
|
408 |
-
padding=0,
|
409 |
-
),
|
410 |
-
nn.ConvTranspose2d(
|
411 |
-
in_channels=features[1],
|
412 |
-
out_channels=features[1],
|
413 |
-
kernel_size=2,
|
414 |
-
stride=2,
|
415 |
-
padding=0,
|
416 |
-
bias=True,
|
417 |
-
dilation=1,
|
418 |
-
groups=1,
|
419 |
-
),
|
420 |
-
)
|
421 |
-
else:
|
422 |
-
pretrained.act_postprocess1 = nn.Sequential(
|
423 |
-
nn.Identity(), nn.Identity(), nn.Identity()
|
424 |
-
)
|
425 |
-
pretrained.act_postprocess2 = nn.Sequential(
|
426 |
-
nn.Identity(), nn.Identity(), nn.Identity()
|
427 |
-
)
|
428 |
-
|
429 |
-
pretrained.act_postprocess3 = nn.Sequential(
|
430 |
-
readout_oper[2],
|
431 |
-
Transpose(1, 2),
|
432 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
433 |
-
nn.Conv2d(
|
434 |
-
in_channels=vit_features,
|
435 |
-
out_channels=features[2],
|
436 |
-
kernel_size=1,
|
437 |
-
stride=1,
|
438 |
-
padding=0,
|
439 |
-
),
|
440 |
-
)
|
441 |
-
|
442 |
-
pretrained.act_postprocess4 = nn.Sequential(
|
443 |
-
readout_oper[3],
|
444 |
-
Transpose(1, 2),
|
445 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
446 |
-
nn.Conv2d(
|
447 |
-
in_channels=vit_features,
|
448 |
-
out_channels=features[3],
|
449 |
-
kernel_size=1,
|
450 |
-
stride=1,
|
451 |
-
padding=0,
|
452 |
-
),
|
453 |
-
nn.Conv2d(
|
454 |
-
in_channels=features[3],
|
455 |
-
out_channels=features[3],
|
456 |
-
kernel_size=3,
|
457 |
-
stride=2,
|
458 |
-
padding=1,
|
459 |
-
),
|
460 |
-
)
|
461 |
-
|
462 |
-
pretrained.model.start_index = start_index
|
463 |
-
pretrained.model.patch_size = [16, 16]
|
464 |
-
|
465 |
-
# We inject this function into the VisionTransformer instances so that
|
466 |
-
# we can use it with interpolated position embeddings without modifying the library source.
|
467 |
-
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
468 |
-
|
469 |
-
# We inject this function into the VisionTransformer instances so that
|
470 |
-
# we can use it with interpolated position embeddings without modifying the library source.
|
471 |
-
pretrained.model._resize_pos_embed = types.MethodType(
|
472 |
-
_resize_pos_embed, pretrained.model
|
473 |
-
)
|
474 |
-
|
475 |
-
return pretrained
|
476 |
-
|
477 |
-
|
478 |
-
def _make_pretrained_vitb_rn50_384(
|
479 |
-
pretrained, use_readout="ignore", hooks=None, use_vit_only=False
|
480 |
-
):
|
481 |
-
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
|
482 |
-
|
483 |
-
hooks = [0, 1, 8, 11] if hooks == None else hooks
|
484 |
-
return _make_vit_b_rn50_backbone(
|
485 |
-
model,
|
486 |
-
features=[256, 512, 768, 768],
|
487 |
-
size=[384, 384],
|
488 |
-
hooks=hooks,
|
489 |
-
use_vit_only=use_vit_only,
|
490 |
-
use_readout=use_readout,
|
491 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/midas/utils.py
DELETED
@@ -1,189 +0,0 @@
|
|
1 |
-
"""Utils for monoDepth."""
|
2 |
-
import sys
|
3 |
-
import re
|
4 |
-
import numpy as np
|
5 |
-
import cv2
|
6 |
-
import torch
|
7 |
-
|
8 |
-
|
9 |
-
def read_pfm(path):
|
10 |
-
"""Read pfm file.
|
11 |
-
|
12 |
-
Args:
|
13 |
-
path (str): path to file
|
14 |
-
|
15 |
-
Returns:
|
16 |
-
tuple: (data, scale)
|
17 |
-
"""
|
18 |
-
with open(path, "rb") as file:
|
19 |
-
|
20 |
-
color = None
|
21 |
-
width = None
|
22 |
-
height = None
|
23 |
-
scale = None
|
24 |
-
endian = None
|
25 |
-
|
26 |
-
header = file.readline().rstrip()
|
27 |
-
if header.decode("ascii") == "PF":
|
28 |
-
color = True
|
29 |
-
elif header.decode("ascii") == "Pf":
|
30 |
-
color = False
|
31 |
-
else:
|
32 |
-
raise Exception("Not a PFM file: " + path)
|
33 |
-
|
34 |
-
dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
|
35 |
-
if dim_match:
|
36 |
-
width, height = list(map(int, dim_match.groups()))
|
37 |
-
else:
|
38 |
-
raise Exception("Malformed PFM header.")
|
39 |
-
|
40 |
-
scale = float(file.readline().decode("ascii").rstrip())
|
41 |
-
if scale < 0:
|
42 |
-
# little-endian
|
43 |
-
endian = "<"
|
44 |
-
scale = -scale
|
45 |
-
else:
|
46 |
-
# big-endian
|
47 |
-
endian = ">"
|
48 |
-
|
49 |
-
data = np.fromfile(file, endian + "f")
|
50 |
-
shape = (height, width, 3) if color else (height, width)
|
51 |
-
|
52 |
-
data = np.reshape(data, shape)
|
53 |
-
data = np.flipud(data)
|
54 |
-
|
55 |
-
return data, scale
|
56 |
-
|
57 |
-
|
58 |
-
def write_pfm(path, image, scale=1):
|
59 |
-
"""Write pfm file.
|
60 |
-
|
61 |
-
Args:
|
62 |
-
path (str): pathto file
|
63 |
-
image (array): data
|
64 |
-
scale (int, optional): Scale. Defaults to 1.
|
65 |
-
"""
|
66 |
-
|
67 |
-
with open(path, "wb") as file:
|
68 |
-
color = None
|
69 |
-
|
70 |
-
if image.dtype.name != "float32":
|
71 |
-
raise Exception("Image dtype must be float32.")
|
72 |
-
|
73 |
-
image = np.flipud(image)
|
74 |
-
|
75 |
-
if len(image.shape) == 3 and image.shape[2] == 3: # color image
|
76 |
-
color = True
|
77 |
-
elif (
|
78 |
-
len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
|
79 |
-
): # greyscale
|
80 |
-
color = False
|
81 |
-
else:
|
82 |
-
raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
|
83 |
-
|
84 |
-
file.write("PF\n" if color else "Pf\n".encode())
|
85 |
-
file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
|
86 |
-
|
87 |
-
endian = image.dtype.byteorder
|
88 |
-
|
89 |
-
if endian == "<" or endian == "=" and sys.byteorder == "little":
|
90 |
-
scale = -scale
|
91 |
-
|
92 |
-
file.write("%f\n".encode() % scale)
|
93 |
-
|
94 |
-
image.tofile(file)
|
95 |
-
|
96 |
-
|
97 |
-
def read_image(path):
|
98 |
-
"""Read image and output RGB image (0-1).
|
99 |
-
|
100 |
-
Args:
|
101 |
-
path (str): path to file
|
102 |
-
|
103 |
-
Returns:
|
104 |
-
array: RGB image (0-1)
|
105 |
-
"""
|
106 |
-
img = cv2.imread(path)
|
107 |
-
|
108 |
-
if img.ndim == 2:
|
109 |
-
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
110 |
-
|
111 |
-
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
|
112 |
-
|
113 |
-
return img
|
114 |
-
|
115 |
-
|
116 |
-
def resize_image(img):
|
117 |
-
"""Resize image and make it fit for network.
|
118 |
-
|
119 |
-
Args:
|
120 |
-
img (array): image
|
121 |
-
|
122 |
-
Returns:
|
123 |
-
tensor: data ready for network
|
124 |
-
"""
|
125 |
-
height_orig = img.shape[0]
|
126 |
-
width_orig = img.shape[1]
|
127 |
-
|
128 |
-
if width_orig > height_orig:
|
129 |
-
scale = width_orig / 384
|
130 |
-
else:
|
131 |
-
scale = height_orig / 384
|
132 |
-
|
133 |
-
height = (np.ceil(height_orig / scale / 32) * 32).astype(int)
|
134 |
-
width = (np.ceil(width_orig / scale / 32) * 32).astype(int)
|
135 |
-
|
136 |
-
img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
|
137 |
-
|
138 |
-
img_resized = (
|
139 |
-
torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float()
|
140 |
-
)
|
141 |
-
img_resized = img_resized.unsqueeze(0)
|
142 |
-
|
143 |
-
return img_resized
|
144 |
-
|
145 |
-
|
146 |
-
def resize_depth(depth, width, height):
|
147 |
-
"""Resize depth map and bring to CPU (numpy).
|
148 |
-
|
149 |
-
Args:
|
150 |
-
depth (tensor): depth
|
151 |
-
width (int): image width
|
152 |
-
height (int): image height
|
153 |
-
|
154 |
-
Returns:
|
155 |
-
array: processed depth
|
156 |
-
"""
|
157 |
-
depth = torch.squeeze(depth[0, :, :, :]).to("cpu")
|
158 |
-
|
159 |
-
depth_resized = cv2.resize(
|
160 |
-
depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC
|
161 |
-
)
|
162 |
-
|
163 |
-
return depth_resized
|
164 |
-
|
165 |
-
def write_depth(path, depth, bits=1):
|
166 |
-
"""Write depth map to pfm and png file.
|
167 |
-
|
168 |
-
Args:
|
169 |
-
path (str): filepath without extension
|
170 |
-
depth (array): depth
|
171 |
-
"""
|
172 |
-
write_pfm(path + ".pfm", depth.astype(np.float32))
|
173 |
-
|
174 |
-
depth_min = depth.min()
|
175 |
-
depth_max = depth.max()
|
176 |
-
|
177 |
-
max_val = (2**(8*bits))-1
|
178 |
-
|
179 |
-
if depth_max - depth_min > np.finfo("float").eps:
|
180 |
-
out = max_val * (depth - depth_min) / (depth_max - depth_min)
|
181 |
-
else:
|
182 |
-
out = np.zeros(depth.shape, dtype=depth.type)
|
183 |
-
|
184 |
-
if bits == 1:
|
185 |
-
cv2.imwrite(path + ".png", out.astype("uint8"))
|
186 |
-
elif bits == 2:
|
187 |
-
cv2.imwrite(path + ".png", out.astype("uint16"))
|
188 |
-
|
189 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/mlsd/LICENSE
DELETED
@@ -1,201 +0,0 @@
|
|
1 |
-
Apache License
|
2 |
-
Version 2.0, January 2004
|
3 |
-
http://www.apache.org/licenses/
|
4 |
-
|
5 |
-
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
-
|
7 |
-
1. Definitions.
|
8 |
-
|
9 |
-
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
-
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
-
|
12 |
-
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
-
the copyright owner that is granting the License.
|
14 |
-
|
15 |
-
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
-
other entities that control, are controlled by, or are under common
|
17 |
-
control with that entity. For the purposes of this definition,
|
18 |
-
"control" means (i) the power, direct or indirect, to cause the
|
19 |
-
direction or management of such entity, whether by contract or
|
20 |
-
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
-
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
-
|
23 |
-
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
-
exercising permissions granted by this License.
|
25 |
-
|
26 |
-
"Source" form shall mean the preferred form for making modifications,
|
27 |
-
including but not limited to software source code, documentation
|
28 |
-
source, and configuration files.
|
29 |
-
|
30 |
-
"Object" form shall mean any form resulting from mechanical
|
31 |
-
transformation or translation of a Source form, including but
|
32 |
-
not limited to compiled object code, generated documentation,
|
33 |
-
and conversions to other media types.
|
34 |
-
|
35 |
-
"Work" shall mean the work of authorship, whether in Source or
|
36 |
-
Object form, made available under the License, as indicated by a
|
37 |
-
copyright notice that is included in or attached to the work
|
38 |
-
(an example is provided in the Appendix below).
|
39 |
-
|
40 |
-
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
-
form, that is based on (or derived from) the Work and for which the
|
42 |
-
editorial revisions, annotations, elaborations, or other modifications
|
43 |
-
represent, as a whole, an original work of authorship. For the purposes
|
44 |
-
of this License, Derivative Works shall not include works that remain
|
45 |
-
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
-
the Work and Derivative Works thereof.
|
47 |
-
|
48 |
-
"Contribution" shall mean any work of authorship, including
|
49 |
-
the original version of the Work and any modifications or additions
|
50 |
-
to that Work or Derivative Works thereof, that is intentionally
|
51 |
-
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
-
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
-
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
-
means any form of electronic, verbal, or written communication sent
|
55 |
-
to the Licensor or its representatives, including but not limited to
|
56 |
-
communication on electronic mailing lists, source code control systems,
|
57 |
-
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
-
Licensor for the purpose of discussing and improving the Work, but
|
59 |
-
excluding communication that is conspicuously marked or otherwise
|
60 |
-
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
-
|
62 |
-
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
-
on behalf of whom a Contribution has been received by Licensor and
|
64 |
-
subsequently incorporated within the Work.
|
65 |
-
|
66 |
-
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
-
this License, each Contributor hereby grants to You a perpetual,
|
68 |
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
-
copyright license to reproduce, prepare Derivative Works of,
|
70 |
-
publicly display, publicly perform, sublicense, and distribute the
|
71 |
-
Work and such Derivative Works in Source or Object form.
|
72 |
-
|
73 |
-
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
-
this License, each Contributor hereby grants to You a perpetual,
|
75 |
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
-
(except as stated in this section) patent license to make, have made,
|
77 |
-
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
-
where such license applies only to those patent claims licensable
|
79 |
-
by such Contributor that are necessarily infringed by their
|
80 |
-
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
-
with the Work to which such Contribution(s) was submitted. If You
|
82 |
-
institute patent litigation against any entity (including a
|
83 |
-
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
-
or a Contribution incorporated within the Work constitutes direct
|
85 |
-
or contributory patent infringement, then any patent licenses
|
86 |
-
granted to You under this License for that Work shall terminate
|
87 |
-
as of the date such litigation is filed.
|
88 |
-
|
89 |
-
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
-
Work or Derivative Works thereof in any medium, with or without
|
91 |
-
modifications, and in Source or Object form, provided that You
|
92 |
-
meet the following conditions:
|
93 |
-
|
94 |
-
(a) You must give any other recipients of the Work or
|
95 |
-
Derivative Works a copy of this License; and
|
96 |
-
|
97 |
-
(b) You must cause any modified files to carry prominent notices
|
98 |
-
stating that You changed the files; and
|
99 |
-
|
100 |
-
(c) You must retain, in the Source form of any Derivative Works
|
101 |
-
that You distribute, all copyright, patent, trademark, and
|
102 |
-
attribution notices from the Source form of the Work,
|
103 |
-
excluding those notices that do not pertain to any part of
|
104 |
-
the Derivative Works; and
|
105 |
-
|
106 |
-
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
-
distribution, then any Derivative Works that You distribute must
|
108 |
-
include a readable copy of the attribution notices contained
|
109 |
-
within such NOTICE file, excluding those notices that do not
|
110 |
-
pertain to any part of the Derivative Works, in at least one
|
111 |
-
of the following places: within a NOTICE text file distributed
|
112 |
-
as part of the Derivative Works; within the Source form or
|
113 |
-
documentation, if provided along with the Derivative Works; or,
|
114 |
-
within a display generated by the Derivative Works, if and
|
115 |
-
wherever such third-party notices normally appear. The contents
|
116 |
-
of the NOTICE file are for informational purposes only and
|
117 |
-
do not modify the License. You may add Your own attribution
|
118 |
-
notices within Derivative Works that You distribute, alongside
|
119 |
-
or as an addendum to the NOTICE text from the Work, provided
|
120 |
-
that such additional attribution notices cannot be construed
|
121 |
-
as modifying the License.
|
122 |
-
|
123 |
-
You may add Your own copyright statement to Your modifications and
|
124 |
-
may provide additional or different license terms and conditions
|
125 |
-
for use, reproduction, or distribution of Your modifications, or
|
126 |
-
for any such Derivative Works as a whole, provided Your use,
|
127 |
-
reproduction, and distribution of the Work otherwise complies with
|
128 |
-
the conditions stated in this License.
|
129 |
-
|
130 |
-
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
-
any Contribution intentionally submitted for inclusion in the Work
|
132 |
-
by You to the Licensor shall be under the terms and conditions of
|
133 |
-
this License, without any additional terms or conditions.
|
134 |
-
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
-
the terms of any separate license agreement you may have executed
|
136 |
-
with Licensor regarding such Contributions.
|
137 |
-
|
138 |
-
6. Trademarks. This License does not grant permission to use the trade
|
139 |
-
names, trademarks, service marks, or product names of the Licensor,
|
140 |
-
except as required for reasonable and customary use in describing the
|
141 |
-
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
-
|
143 |
-
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
-
agreed to in writing, Licensor provides the Work (and each
|
145 |
-
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
-
implied, including, without limitation, any warranties or conditions
|
148 |
-
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
-
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
-
appropriateness of using or redistributing the Work and assume any
|
151 |
-
risks associated with Your exercise of permissions under this License.
|
152 |
-
|
153 |
-
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
-
whether in tort (including negligence), contract, or otherwise,
|
155 |
-
unless required by applicable law (such as deliberate and grossly
|
156 |
-
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
-
liable to You for damages, including any direct, indirect, special,
|
158 |
-
incidental, or consequential damages of any character arising as a
|
159 |
-
result of this License or out of the use or inability to use the
|
160 |
-
Work (including but not limited to damages for loss of goodwill,
|
161 |
-
work stoppage, computer failure or malfunction, or any and all
|
162 |
-
other commercial damages or losses), even if such Contributor
|
163 |
-
has been advised of the possibility of such damages.
|
164 |
-
|
165 |
-
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
-
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
-
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
-
or other liability obligations and/or rights consistent with this
|
169 |
-
License. However, in accepting such obligations, You may act only
|
170 |
-
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
-
of any other Contributor, and only if You agree to indemnify,
|
172 |
-
defend, and hold each Contributor harmless for any liability
|
173 |
-
incurred by, or claims asserted against, such Contributor by reason
|
174 |
-
of your accepting any such warranty or additional liability.
|
175 |
-
|
176 |
-
END OF TERMS AND CONDITIONS
|
177 |
-
|
178 |
-
APPENDIX: How to apply the Apache License to your work.
|
179 |
-
|
180 |
-
To apply the Apache License to your work, attach the following
|
181 |
-
boilerplate notice, with the fields enclosed by brackets "{}"
|
182 |
-
replaced with your own identifying information. (Don't include
|
183 |
-
the brackets!) The text should be enclosed in the appropriate
|
184 |
-
comment syntax for the file format. We also recommend that a
|
185 |
-
file or class name and description of purpose be included on the
|
186 |
-
same "printed page" as the copyright notice for easier
|
187 |
-
identification within third-party archives.
|
188 |
-
|
189 |
-
Copyright 2021-present NAVER Corp.
|
190 |
-
|
191 |
-
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
-
you may not use this file except in compliance with the License.
|
193 |
-
You may obtain a copy of the License at
|
194 |
-
|
195 |
-
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
-
|
197 |
-
Unless required by applicable law or agreed to in writing, software
|
198 |
-
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
-
See the License for the specific language governing permissions and
|
201 |
-
limitations under the License.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/mlsd/__init__.py
DELETED
@@ -1,43 +0,0 @@
|
|
1 |
-
# MLSD Line Detection
|
2 |
-
# From https://github.com/navervision/mlsd
|
3 |
-
# Apache-2.0 license
|
4 |
-
|
5 |
-
import cv2
|
6 |
-
import numpy as np
|
7 |
-
import torch
|
8 |
-
import os
|
9 |
-
|
10 |
-
from einops import rearrange
|
11 |
-
from .models.mbv2_mlsd_tiny import MobileV2_MLSD_Tiny
|
12 |
-
from .models.mbv2_mlsd_large import MobileV2_MLSD_Large
|
13 |
-
from .utils import pred_lines
|
14 |
-
|
15 |
-
from annotator.util import annotator_ckpts_path
|
16 |
-
|
17 |
-
|
18 |
-
remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/mlsd_large_512_fp32.pth"
|
19 |
-
|
20 |
-
|
21 |
-
class MLSDdetector:
|
22 |
-
def __init__(self):
|
23 |
-
model_path = os.path.join(annotator_ckpts_path, "mlsd_large_512_fp32.pth")
|
24 |
-
if not os.path.exists(model_path):
|
25 |
-
from basicsr.utils.download_util import load_file_from_url
|
26 |
-
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
|
27 |
-
model = MobileV2_MLSD_Large()
|
28 |
-
model.load_state_dict(torch.load(model_path), strict=True)
|
29 |
-
self.model = model.cuda().eval()
|
30 |
-
|
31 |
-
def __call__(self, input_image, thr_v, thr_d):
|
32 |
-
assert input_image.ndim == 3
|
33 |
-
img = input_image
|
34 |
-
img_output = np.zeros_like(img)
|
35 |
-
try:
|
36 |
-
with torch.no_grad():
|
37 |
-
lines = pred_lines(img, self.model, [img.shape[0], img.shape[1]], thr_v, thr_d)
|
38 |
-
for line in lines:
|
39 |
-
x_start, y_start, x_end, y_end = [int(val) for val in line]
|
40 |
-
cv2.line(img_output, (x_start, y_start), (x_end, y_end), [255, 255, 255], 1)
|
41 |
-
except Exception as e:
|
42 |
-
pass
|
43 |
-
return img_output[:, :, 0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/mlsd/models/mbv2_mlsd_large.py
DELETED
@@ -1,292 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
import torch.utils.model_zoo as model_zoo
|
6 |
-
from torch.nn import functional as F
|
7 |
-
|
8 |
-
|
9 |
-
class BlockTypeA(nn.Module):
|
10 |
-
def __init__(self, in_c1, in_c2, out_c1, out_c2, upscale = True):
|
11 |
-
super(BlockTypeA, self).__init__()
|
12 |
-
self.conv1 = nn.Sequential(
|
13 |
-
nn.Conv2d(in_c2, out_c2, kernel_size=1),
|
14 |
-
nn.BatchNorm2d(out_c2),
|
15 |
-
nn.ReLU(inplace=True)
|
16 |
-
)
|
17 |
-
self.conv2 = nn.Sequential(
|
18 |
-
nn.Conv2d(in_c1, out_c1, kernel_size=1),
|
19 |
-
nn.BatchNorm2d(out_c1),
|
20 |
-
nn.ReLU(inplace=True)
|
21 |
-
)
|
22 |
-
self.upscale = upscale
|
23 |
-
|
24 |
-
def forward(self, a, b):
|
25 |
-
b = self.conv1(b)
|
26 |
-
a = self.conv2(a)
|
27 |
-
if self.upscale:
|
28 |
-
b = F.interpolate(b, scale_factor=2.0, mode='bilinear', align_corners=True)
|
29 |
-
return torch.cat((a, b), dim=1)
|
30 |
-
|
31 |
-
|
32 |
-
class BlockTypeB(nn.Module):
|
33 |
-
def __init__(self, in_c, out_c):
|
34 |
-
super(BlockTypeB, self).__init__()
|
35 |
-
self.conv1 = nn.Sequential(
|
36 |
-
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
|
37 |
-
nn.BatchNorm2d(in_c),
|
38 |
-
nn.ReLU()
|
39 |
-
)
|
40 |
-
self.conv2 = nn.Sequential(
|
41 |
-
nn.Conv2d(in_c, out_c, kernel_size=3, padding=1),
|
42 |
-
nn.BatchNorm2d(out_c),
|
43 |
-
nn.ReLU()
|
44 |
-
)
|
45 |
-
|
46 |
-
def forward(self, x):
|
47 |
-
x = self.conv1(x) + x
|
48 |
-
x = self.conv2(x)
|
49 |
-
return x
|
50 |
-
|
51 |
-
class BlockTypeC(nn.Module):
|
52 |
-
def __init__(self, in_c, out_c):
|
53 |
-
super(BlockTypeC, self).__init__()
|
54 |
-
self.conv1 = nn.Sequential(
|
55 |
-
nn.Conv2d(in_c, in_c, kernel_size=3, padding=5, dilation=5),
|
56 |
-
nn.BatchNorm2d(in_c),
|
57 |
-
nn.ReLU()
|
58 |
-
)
|
59 |
-
self.conv2 = nn.Sequential(
|
60 |
-
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
|
61 |
-
nn.BatchNorm2d(in_c),
|
62 |
-
nn.ReLU()
|
63 |
-
)
|
64 |
-
self.conv3 = nn.Conv2d(in_c, out_c, kernel_size=1)
|
65 |
-
|
66 |
-
def forward(self, x):
|
67 |
-
x = self.conv1(x)
|
68 |
-
x = self.conv2(x)
|
69 |
-
x = self.conv3(x)
|
70 |
-
return x
|
71 |
-
|
72 |
-
def _make_divisible(v, divisor, min_value=None):
|
73 |
-
"""
|
74 |
-
This function is taken from the original tf repo.
|
75 |
-
It ensures that all layers have a channel number that is divisible by 8
|
76 |
-
It can be seen here:
|
77 |
-
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
|
78 |
-
:param v:
|
79 |
-
:param divisor:
|
80 |
-
:param min_value:
|
81 |
-
:return:
|
82 |
-
"""
|
83 |
-
if min_value is None:
|
84 |
-
min_value = divisor
|
85 |
-
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
86 |
-
# Make sure that round down does not go down by more than 10%.
|
87 |
-
if new_v < 0.9 * v:
|
88 |
-
new_v += divisor
|
89 |
-
return new_v
|
90 |
-
|
91 |
-
|
92 |
-
class ConvBNReLU(nn.Sequential):
|
93 |
-
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
|
94 |
-
self.channel_pad = out_planes - in_planes
|
95 |
-
self.stride = stride
|
96 |
-
#padding = (kernel_size - 1) // 2
|
97 |
-
|
98 |
-
# TFLite uses slightly different padding than PyTorch
|
99 |
-
if stride == 2:
|
100 |
-
padding = 0
|
101 |
-
else:
|
102 |
-
padding = (kernel_size - 1) // 2
|
103 |
-
|
104 |
-
super(ConvBNReLU, self).__init__(
|
105 |
-
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
|
106 |
-
nn.BatchNorm2d(out_planes),
|
107 |
-
nn.ReLU6(inplace=True)
|
108 |
-
)
|
109 |
-
self.max_pool = nn.MaxPool2d(kernel_size=stride, stride=stride)
|
110 |
-
|
111 |
-
|
112 |
-
def forward(self, x):
|
113 |
-
# TFLite uses different padding
|
114 |
-
if self.stride == 2:
|
115 |
-
x = F.pad(x, (0, 1, 0, 1), "constant", 0)
|
116 |
-
#print(x.shape)
|
117 |
-
|
118 |
-
for module in self:
|
119 |
-
if not isinstance(module, nn.MaxPool2d):
|
120 |
-
x = module(x)
|
121 |
-
return x
|
122 |
-
|
123 |
-
|
124 |
-
class InvertedResidual(nn.Module):
|
125 |
-
def __init__(self, inp, oup, stride, expand_ratio):
|
126 |
-
super(InvertedResidual, self).__init__()
|
127 |
-
self.stride = stride
|
128 |
-
assert stride in [1, 2]
|
129 |
-
|
130 |
-
hidden_dim = int(round(inp * expand_ratio))
|
131 |
-
self.use_res_connect = self.stride == 1 and inp == oup
|
132 |
-
|
133 |
-
layers = []
|
134 |
-
if expand_ratio != 1:
|
135 |
-
# pw
|
136 |
-
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
|
137 |
-
layers.extend([
|
138 |
-
# dw
|
139 |
-
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
|
140 |
-
# pw-linear
|
141 |
-
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
142 |
-
nn.BatchNorm2d(oup),
|
143 |
-
])
|
144 |
-
self.conv = nn.Sequential(*layers)
|
145 |
-
|
146 |
-
def forward(self, x):
|
147 |
-
if self.use_res_connect:
|
148 |
-
return x + self.conv(x)
|
149 |
-
else:
|
150 |
-
return self.conv(x)
|
151 |
-
|
152 |
-
|
153 |
-
class MobileNetV2(nn.Module):
|
154 |
-
def __init__(self, pretrained=True):
|
155 |
-
"""
|
156 |
-
MobileNet V2 main class
|
157 |
-
Args:
|
158 |
-
num_classes (int): Number of classes
|
159 |
-
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
|
160 |
-
inverted_residual_setting: Network structure
|
161 |
-
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
|
162 |
-
Set to 1 to turn off rounding
|
163 |
-
block: Module specifying inverted residual building block for mobilenet
|
164 |
-
"""
|
165 |
-
super(MobileNetV2, self).__init__()
|
166 |
-
|
167 |
-
block = InvertedResidual
|
168 |
-
input_channel = 32
|
169 |
-
last_channel = 1280
|
170 |
-
width_mult = 1.0
|
171 |
-
round_nearest = 8
|
172 |
-
|
173 |
-
inverted_residual_setting = [
|
174 |
-
# t, c, n, s
|
175 |
-
[1, 16, 1, 1],
|
176 |
-
[6, 24, 2, 2],
|
177 |
-
[6, 32, 3, 2],
|
178 |
-
[6, 64, 4, 2],
|
179 |
-
[6, 96, 3, 1],
|
180 |
-
#[6, 160, 3, 2],
|
181 |
-
#[6, 320, 1, 1],
|
182 |
-
]
|
183 |
-
|
184 |
-
# only check the first element, assuming user knows t,c,n,s are required
|
185 |
-
if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
|
186 |
-
raise ValueError("inverted_residual_setting should be non-empty "
|
187 |
-
"or a 4-element list, got {}".format(inverted_residual_setting))
|
188 |
-
|
189 |
-
# building first layer
|
190 |
-
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
|
191 |
-
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
|
192 |
-
features = [ConvBNReLU(4, input_channel, stride=2)]
|
193 |
-
# building inverted residual blocks
|
194 |
-
for t, c, n, s in inverted_residual_setting:
|
195 |
-
output_channel = _make_divisible(c * width_mult, round_nearest)
|
196 |
-
for i in range(n):
|
197 |
-
stride = s if i == 0 else 1
|
198 |
-
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
|
199 |
-
input_channel = output_channel
|
200 |
-
|
201 |
-
self.features = nn.Sequential(*features)
|
202 |
-
self.fpn_selected = [1, 3, 6, 10, 13]
|
203 |
-
# weight initialization
|
204 |
-
for m in self.modules():
|
205 |
-
if isinstance(m, nn.Conv2d):
|
206 |
-
nn.init.kaiming_normal_(m.weight, mode='fan_out')
|
207 |
-
if m.bias is not None:
|
208 |
-
nn.init.zeros_(m.bias)
|
209 |
-
elif isinstance(m, nn.BatchNorm2d):
|
210 |
-
nn.init.ones_(m.weight)
|
211 |
-
nn.init.zeros_(m.bias)
|
212 |
-
elif isinstance(m, nn.Linear):
|
213 |
-
nn.init.normal_(m.weight, 0, 0.01)
|
214 |
-
nn.init.zeros_(m.bias)
|
215 |
-
if pretrained:
|
216 |
-
self._load_pretrained_model()
|
217 |
-
|
218 |
-
def _forward_impl(self, x):
|
219 |
-
# This exists since TorchScript doesn't support inheritance, so the superclass method
|
220 |
-
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
|
221 |
-
fpn_features = []
|
222 |
-
for i, f in enumerate(self.features):
|
223 |
-
if i > self.fpn_selected[-1]:
|
224 |
-
break
|
225 |
-
x = f(x)
|
226 |
-
if i in self.fpn_selected:
|
227 |
-
fpn_features.append(x)
|
228 |
-
|
229 |
-
c1, c2, c3, c4, c5 = fpn_features
|
230 |
-
return c1, c2, c3, c4, c5
|
231 |
-
|
232 |
-
|
233 |
-
def forward(self, x):
|
234 |
-
return self._forward_impl(x)
|
235 |
-
|
236 |
-
def _load_pretrained_model(self):
|
237 |
-
pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/mobilenet_v2-b0353104.pth')
|
238 |
-
model_dict = {}
|
239 |
-
state_dict = self.state_dict()
|
240 |
-
for k, v in pretrain_dict.items():
|
241 |
-
if k in state_dict:
|
242 |
-
model_dict[k] = v
|
243 |
-
state_dict.update(model_dict)
|
244 |
-
self.load_state_dict(state_dict)
|
245 |
-
|
246 |
-
|
247 |
-
class MobileV2_MLSD_Large(nn.Module):
|
248 |
-
def __init__(self):
|
249 |
-
super(MobileV2_MLSD_Large, self).__init__()
|
250 |
-
|
251 |
-
self.backbone = MobileNetV2(pretrained=False)
|
252 |
-
## A, B
|
253 |
-
self.block15 = BlockTypeA(in_c1= 64, in_c2= 96,
|
254 |
-
out_c1= 64, out_c2=64,
|
255 |
-
upscale=False)
|
256 |
-
self.block16 = BlockTypeB(128, 64)
|
257 |
-
|
258 |
-
## A, B
|
259 |
-
self.block17 = BlockTypeA(in_c1 = 32, in_c2 = 64,
|
260 |
-
out_c1= 64, out_c2= 64)
|
261 |
-
self.block18 = BlockTypeB(128, 64)
|
262 |
-
|
263 |
-
## A, B
|
264 |
-
self.block19 = BlockTypeA(in_c1=24, in_c2=64,
|
265 |
-
out_c1=64, out_c2=64)
|
266 |
-
self.block20 = BlockTypeB(128, 64)
|
267 |
-
|
268 |
-
## A, B, C
|
269 |
-
self.block21 = BlockTypeA(in_c1=16, in_c2=64,
|
270 |
-
out_c1=64, out_c2=64)
|
271 |
-
self.block22 = BlockTypeB(128, 64)
|
272 |
-
|
273 |
-
self.block23 = BlockTypeC(64, 16)
|
274 |
-
|
275 |
-
def forward(self, x):
|
276 |
-
c1, c2, c3, c4, c5 = self.backbone(x)
|
277 |
-
|
278 |
-
x = self.block15(c4, c5)
|
279 |
-
x = self.block16(x)
|
280 |
-
|
281 |
-
x = self.block17(c3, x)
|
282 |
-
x = self.block18(x)
|
283 |
-
|
284 |
-
x = self.block19(c2, x)
|
285 |
-
x = self.block20(x)
|
286 |
-
|
287 |
-
x = self.block21(c1, x)
|
288 |
-
x = self.block22(x)
|
289 |
-
x = self.block23(x)
|
290 |
-
x = x[:, 7:, :, :]
|
291 |
-
|
292 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/mlsd/models/mbv2_mlsd_tiny.py
DELETED
@@ -1,275 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
import torch.utils.model_zoo as model_zoo
|
6 |
-
from torch.nn import functional as F
|
7 |
-
|
8 |
-
|
9 |
-
class BlockTypeA(nn.Module):
|
10 |
-
def __init__(self, in_c1, in_c2, out_c1, out_c2, upscale = True):
|
11 |
-
super(BlockTypeA, self).__init__()
|
12 |
-
self.conv1 = nn.Sequential(
|
13 |
-
nn.Conv2d(in_c2, out_c2, kernel_size=1),
|
14 |
-
nn.BatchNorm2d(out_c2),
|
15 |
-
nn.ReLU(inplace=True)
|
16 |
-
)
|
17 |
-
self.conv2 = nn.Sequential(
|
18 |
-
nn.Conv2d(in_c1, out_c1, kernel_size=1),
|
19 |
-
nn.BatchNorm2d(out_c1),
|
20 |
-
nn.ReLU(inplace=True)
|
21 |
-
)
|
22 |
-
self.upscale = upscale
|
23 |
-
|
24 |
-
def forward(self, a, b):
|
25 |
-
b = self.conv1(b)
|
26 |
-
a = self.conv2(a)
|
27 |
-
b = F.interpolate(b, scale_factor=2.0, mode='bilinear', align_corners=True)
|
28 |
-
return torch.cat((a, b), dim=1)
|
29 |
-
|
30 |
-
|
31 |
-
class BlockTypeB(nn.Module):
|
32 |
-
def __init__(self, in_c, out_c):
|
33 |
-
super(BlockTypeB, self).__init__()
|
34 |
-
self.conv1 = nn.Sequential(
|
35 |
-
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
|
36 |
-
nn.BatchNorm2d(in_c),
|
37 |
-
nn.ReLU()
|
38 |
-
)
|
39 |
-
self.conv2 = nn.Sequential(
|
40 |
-
nn.Conv2d(in_c, out_c, kernel_size=3, padding=1),
|
41 |
-
nn.BatchNorm2d(out_c),
|
42 |
-
nn.ReLU()
|
43 |
-
)
|
44 |
-
|
45 |
-
def forward(self, x):
|
46 |
-
x = self.conv1(x) + x
|
47 |
-
x = self.conv2(x)
|
48 |
-
return x
|
49 |
-
|
50 |
-
class BlockTypeC(nn.Module):
|
51 |
-
def __init__(self, in_c, out_c):
|
52 |
-
super(BlockTypeC, self).__init__()
|
53 |
-
self.conv1 = nn.Sequential(
|
54 |
-
nn.Conv2d(in_c, in_c, kernel_size=3, padding=5, dilation=5),
|
55 |
-
nn.BatchNorm2d(in_c),
|
56 |
-
nn.ReLU()
|
57 |
-
)
|
58 |
-
self.conv2 = nn.Sequential(
|
59 |
-
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
|
60 |
-
nn.BatchNorm2d(in_c),
|
61 |
-
nn.ReLU()
|
62 |
-
)
|
63 |
-
self.conv3 = nn.Conv2d(in_c, out_c, kernel_size=1)
|
64 |
-
|
65 |
-
def forward(self, x):
|
66 |
-
x = self.conv1(x)
|
67 |
-
x = self.conv2(x)
|
68 |
-
x = self.conv3(x)
|
69 |
-
return x
|
70 |
-
|
71 |
-
def _make_divisible(v, divisor, min_value=None):
|
72 |
-
"""
|
73 |
-
This function is taken from the original tf repo.
|
74 |
-
It ensures that all layers have a channel number that is divisible by 8
|
75 |
-
It can be seen here:
|
76 |
-
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
|
77 |
-
:param v:
|
78 |
-
:param divisor:
|
79 |
-
:param min_value:
|
80 |
-
:return:
|
81 |
-
"""
|
82 |
-
if min_value is None:
|
83 |
-
min_value = divisor
|
84 |
-
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
85 |
-
# Make sure that round down does not go down by more than 10%.
|
86 |
-
if new_v < 0.9 * v:
|
87 |
-
new_v += divisor
|
88 |
-
return new_v
|
89 |
-
|
90 |
-
|
91 |
-
class ConvBNReLU(nn.Sequential):
|
92 |
-
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
|
93 |
-
self.channel_pad = out_planes - in_planes
|
94 |
-
self.stride = stride
|
95 |
-
#padding = (kernel_size - 1) // 2
|
96 |
-
|
97 |
-
# TFLite uses slightly different padding than PyTorch
|
98 |
-
if stride == 2:
|
99 |
-
padding = 0
|
100 |
-
else:
|
101 |
-
padding = (kernel_size - 1) // 2
|
102 |
-
|
103 |
-
super(ConvBNReLU, self).__init__(
|
104 |
-
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
|
105 |
-
nn.BatchNorm2d(out_planes),
|
106 |
-
nn.ReLU6(inplace=True)
|
107 |
-
)
|
108 |
-
self.max_pool = nn.MaxPool2d(kernel_size=stride, stride=stride)
|
109 |
-
|
110 |
-
|
111 |
-
def forward(self, x):
|
112 |
-
# TFLite uses different padding
|
113 |
-
if self.stride == 2:
|
114 |
-
x = F.pad(x, (0, 1, 0, 1), "constant", 0)
|
115 |
-
#print(x.shape)
|
116 |
-
|
117 |
-
for module in self:
|
118 |
-
if not isinstance(module, nn.MaxPool2d):
|
119 |
-
x = module(x)
|
120 |
-
return x
|
121 |
-
|
122 |
-
|
123 |
-
class InvertedResidual(nn.Module):
|
124 |
-
def __init__(self, inp, oup, stride, expand_ratio):
|
125 |
-
super(InvertedResidual, self).__init__()
|
126 |
-
self.stride = stride
|
127 |
-
assert stride in [1, 2]
|
128 |
-
|
129 |
-
hidden_dim = int(round(inp * expand_ratio))
|
130 |
-
self.use_res_connect = self.stride == 1 and inp == oup
|
131 |
-
|
132 |
-
layers = []
|
133 |
-
if expand_ratio != 1:
|
134 |
-
# pw
|
135 |
-
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
|
136 |
-
layers.extend([
|
137 |
-
# dw
|
138 |
-
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
|
139 |
-
# pw-linear
|
140 |
-
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
141 |
-
nn.BatchNorm2d(oup),
|
142 |
-
])
|
143 |
-
self.conv = nn.Sequential(*layers)
|
144 |
-
|
145 |
-
def forward(self, x):
|
146 |
-
if self.use_res_connect:
|
147 |
-
return x + self.conv(x)
|
148 |
-
else:
|
149 |
-
return self.conv(x)
|
150 |
-
|
151 |
-
|
152 |
-
class MobileNetV2(nn.Module):
|
153 |
-
def __init__(self, pretrained=True):
|
154 |
-
"""
|
155 |
-
MobileNet V2 main class
|
156 |
-
Args:
|
157 |
-
num_classes (int): Number of classes
|
158 |
-
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
|
159 |
-
inverted_residual_setting: Network structure
|
160 |
-
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
|
161 |
-
Set to 1 to turn off rounding
|
162 |
-
block: Module specifying inverted residual building block for mobilenet
|
163 |
-
"""
|
164 |
-
super(MobileNetV2, self).__init__()
|
165 |
-
|
166 |
-
block = InvertedResidual
|
167 |
-
input_channel = 32
|
168 |
-
last_channel = 1280
|
169 |
-
width_mult = 1.0
|
170 |
-
round_nearest = 8
|
171 |
-
|
172 |
-
inverted_residual_setting = [
|
173 |
-
# t, c, n, s
|
174 |
-
[1, 16, 1, 1],
|
175 |
-
[6, 24, 2, 2],
|
176 |
-
[6, 32, 3, 2],
|
177 |
-
[6, 64, 4, 2],
|
178 |
-
#[6, 96, 3, 1],
|
179 |
-
#[6, 160, 3, 2],
|
180 |
-
#[6, 320, 1, 1],
|
181 |
-
]
|
182 |
-
|
183 |
-
# only check the first element, assuming user knows t,c,n,s are required
|
184 |
-
if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
|
185 |
-
raise ValueError("inverted_residual_setting should be non-empty "
|
186 |
-
"or a 4-element list, got {}".format(inverted_residual_setting))
|
187 |
-
|
188 |
-
# building first layer
|
189 |
-
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
|
190 |
-
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
|
191 |
-
features = [ConvBNReLU(4, input_channel, stride=2)]
|
192 |
-
# building inverted residual blocks
|
193 |
-
for t, c, n, s in inverted_residual_setting:
|
194 |
-
output_channel = _make_divisible(c * width_mult, round_nearest)
|
195 |
-
for i in range(n):
|
196 |
-
stride = s if i == 0 else 1
|
197 |
-
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
|
198 |
-
input_channel = output_channel
|
199 |
-
self.features = nn.Sequential(*features)
|
200 |
-
|
201 |
-
self.fpn_selected = [3, 6, 10]
|
202 |
-
# weight initialization
|
203 |
-
for m in self.modules():
|
204 |
-
if isinstance(m, nn.Conv2d):
|
205 |
-
nn.init.kaiming_normal_(m.weight, mode='fan_out')
|
206 |
-
if m.bias is not None:
|
207 |
-
nn.init.zeros_(m.bias)
|
208 |
-
elif isinstance(m, nn.BatchNorm2d):
|
209 |
-
nn.init.ones_(m.weight)
|
210 |
-
nn.init.zeros_(m.bias)
|
211 |
-
elif isinstance(m, nn.Linear):
|
212 |
-
nn.init.normal_(m.weight, 0, 0.01)
|
213 |
-
nn.init.zeros_(m.bias)
|
214 |
-
|
215 |
-
#if pretrained:
|
216 |
-
# self._load_pretrained_model()
|
217 |
-
|
218 |
-
def _forward_impl(self, x):
|
219 |
-
# This exists since TorchScript doesn't support inheritance, so the superclass method
|
220 |
-
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
|
221 |
-
fpn_features = []
|
222 |
-
for i, f in enumerate(self.features):
|
223 |
-
if i > self.fpn_selected[-1]:
|
224 |
-
break
|
225 |
-
x = f(x)
|
226 |
-
if i in self.fpn_selected:
|
227 |
-
fpn_features.append(x)
|
228 |
-
|
229 |
-
c2, c3, c4 = fpn_features
|
230 |
-
return c2, c3, c4
|
231 |
-
|
232 |
-
|
233 |
-
def forward(self, x):
|
234 |
-
return self._forward_impl(x)
|
235 |
-
|
236 |
-
def _load_pretrained_model(self):
|
237 |
-
pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/mobilenet_v2-b0353104.pth')
|
238 |
-
model_dict = {}
|
239 |
-
state_dict = self.state_dict()
|
240 |
-
for k, v in pretrain_dict.items():
|
241 |
-
if k in state_dict:
|
242 |
-
model_dict[k] = v
|
243 |
-
state_dict.update(model_dict)
|
244 |
-
self.load_state_dict(state_dict)
|
245 |
-
|
246 |
-
|
247 |
-
class MobileV2_MLSD_Tiny(nn.Module):
|
248 |
-
def __init__(self):
|
249 |
-
super(MobileV2_MLSD_Tiny, self).__init__()
|
250 |
-
|
251 |
-
self.backbone = MobileNetV2(pretrained=True)
|
252 |
-
|
253 |
-
self.block12 = BlockTypeA(in_c1= 32, in_c2= 64,
|
254 |
-
out_c1= 64, out_c2=64)
|
255 |
-
self.block13 = BlockTypeB(128, 64)
|
256 |
-
|
257 |
-
self.block14 = BlockTypeA(in_c1 = 24, in_c2 = 64,
|
258 |
-
out_c1= 32, out_c2= 32)
|
259 |
-
self.block15 = BlockTypeB(64, 64)
|
260 |
-
|
261 |
-
self.block16 = BlockTypeC(64, 16)
|
262 |
-
|
263 |
-
def forward(self, x):
|
264 |
-
c2, c3, c4 = self.backbone(x)
|
265 |
-
|
266 |
-
x = self.block12(c3, c4)
|
267 |
-
x = self.block13(x)
|
268 |
-
x = self.block14(c2, x)
|
269 |
-
x = self.block15(x)
|
270 |
-
x = self.block16(x)
|
271 |
-
x = x[:, 7:, :, :]
|
272 |
-
#print(x.shape)
|
273 |
-
x = F.interpolate(x, scale_factor=2.0, mode='bilinear', align_corners=True)
|
274 |
-
|
275 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/mlsd/utils.py
DELETED
@@ -1,580 +0,0 @@
|
|
1 |
-
'''
|
2 |
-
modified by lihaoweicv
|
3 |
-
pytorch version
|
4 |
-
'''
|
5 |
-
|
6 |
-
'''
|
7 |
-
M-LSD
|
8 |
-
Copyright 2021-present NAVER Corp.
|
9 |
-
Apache License v2.0
|
10 |
-
'''
|
11 |
-
|
12 |
-
import os
|
13 |
-
import numpy as np
|
14 |
-
import cv2
|
15 |
-
import torch
|
16 |
-
from torch.nn import functional as F
|
17 |
-
|
18 |
-
|
19 |
-
def deccode_output_score_and_ptss(tpMap, topk_n = 200, ksize = 5):
|
20 |
-
'''
|
21 |
-
tpMap:
|
22 |
-
center: tpMap[1, 0, :, :]
|
23 |
-
displacement: tpMap[1, 1:5, :, :]
|
24 |
-
'''
|
25 |
-
b, c, h, w = tpMap.shape
|
26 |
-
assert b==1, 'only support bsize==1'
|
27 |
-
displacement = tpMap[:, 1:5, :, :][0]
|
28 |
-
center = tpMap[:, 0, :, :]
|
29 |
-
heat = torch.sigmoid(center)
|
30 |
-
hmax = F.max_pool2d( heat, (ksize, ksize), stride=1, padding=(ksize-1)//2)
|
31 |
-
keep = (hmax == heat).float()
|
32 |
-
heat = heat * keep
|
33 |
-
heat = heat.reshape(-1, )
|
34 |
-
|
35 |
-
scores, indices = torch.topk(heat, topk_n, dim=-1, largest=True)
|
36 |
-
yy = torch.floor_divide(indices, w).unsqueeze(-1)
|
37 |
-
xx = torch.fmod(indices, w).unsqueeze(-1)
|
38 |
-
ptss = torch.cat((yy, xx),dim=-1)
|
39 |
-
|
40 |
-
ptss = ptss.detach().cpu().numpy()
|
41 |
-
scores = scores.detach().cpu().numpy()
|
42 |
-
displacement = displacement.detach().cpu().numpy()
|
43 |
-
displacement = displacement.transpose((1,2,0))
|
44 |
-
return ptss, scores, displacement
|
45 |
-
|
46 |
-
|
47 |
-
def pred_lines(image, model,
|
48 |
-
input_shape=[512, 512],
|
49 |
-
score_thr=0.10,
|
50 |
-
dist_thr=20.0):
|
51 |
-
h, w, _ = image.shape
|
52 |
-
h_ratio, w_ratio = [h / input_shape[0], w / input_shape[1]]
|
53 |
-
|
54 |
-
resized_image = np.concatenate([cv2.resize(image, (input_shape[1], input_shape[0]), interpolation=cv2.INTER_AREA),
|
55 |
-
np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
|
56 |
-
|
57 |
-
resized_image = resized_image.transpose((2,0,1))
|
58 |
-
batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
|
59 |
-
batch_image = (batch_image / 127.5) - 1.0
|
60 |
-
|
61 |
-
batch_image = torch.from_numpy(batch_image).float().cuda()
|
62 |
-
outputs = model(batch_image)
|
63 |
-
pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3)
|
64 |
-
start = vmap[:, :, :2]
|
65 |
-
end = vmap[:, :, 2:]
|
66 |
-
dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))
|
67 |
-
|
68 |
-
segments_list = []
|
69 |
-
for center, score in zip(pts, pts_score):
|
70 |
-
y, x = center
|
71 |
-
distance = dist_map[y, x]
|
72 |
-
if score > score_thr and distance > dist_thr:
|
73 |
-
disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
|
74 |
-
x_start = x + disp_x_start
|
75 |
-
y_start = y + disp_y_start
|
76 |
-
x_end = x + disp_x_end
|
77 |
-
y_end = y + disp_y_end
|
78 |
-
segments_list.append([x_start, y_start, x_end, y_end])
|
79 |
-
|
80 |
-
lines = 2 * np.array(segments_list) # 256 > 512
|
81 |
-
lines[:, 0] = lines[:, 0] * w_ratio
|
82 |
-
lines[:, 1] = lines[:, 1] * h_ratio
|
83 |
-
lines[:, 2] = lines[:, 2] * w_ratio
|
84 |
-
lines[:, 3] = lines[:, 3] * h_ratio
|
85 |
-
|
86 |
-
return lines
|
87 |
-
|
88 |
-
|
89 |
-
def pred_squares(image,
|
90 |
-
model,
|
91 |
-
input_shape=[512, 512],
|
92 |
-
params={'score': 0.06,
|
93 |
-
'outside_ratio': 0.28,
|
94 |
-
'inside_ratio': 0.45,
|
95 |
-
'w_overlap': 0.0,
|
96 |
-
'w_degree': 1.95,
|
97 |
-
'w_length': 0.0,
|
98 |
-
'w_area': 1.86,
|
99 |
-
'w_center': 0.14}):
|
100 |
-
'''
|
101 |
-
shape = [height, width]
|
102 |
-
'''
|
103 |
-
h, w, _ = image.shape
|
104 |
-
original_shape = [h, w]
|
105 |
-
|
106 |
-
resized_image = np.concatenate([cv2.resize(image, (input_shape[0], input_shape[1]), interpolation=cv2.INTER_AREA),
|
107 |
-
np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
|
108 |
-
resized_image = resized_image.transpose((2, 0, 1))
|
109 |
-
batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
|
110 |
-
batch_image = (batch_image / 127.5) - 1.0
|
111 |
-
|
112 |
-
batch_image = torch.from_numpy(batch_image).float().cuda()
|
113 |
-
outputs = model(batch_image)
|
114 |
-
|
115 |
-
pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3)
|
116 |
-
start = vmap[:, :, :2] # (x, y)
|
117 |
-
end = vmap[:, :, 2:] # (x, y)
|
118 |
-
dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))
|
119 |
-
|
120 |
-
junc_list = []
|
121 |
-
segments_list = []
|
122 |
-
for junc, score in zip(pts, pts_score):
|
123 |
-
y, x = junc
|
124 |
-
distance = dist_map[y, x]
|
125 |
-
if score > params['score'] and distance > 20.0:
|
126 |
-
junc_list.append([x, y])
|
127 |
-
disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
|
128 |
-
d_arrow = 1.0
|
129 |
-
x_start = x + d_arrow * disp_x_start
|
130 |
-
y_start = y + d_arrow * disp_y_start
|
131 |
-
x_end = x + d_arrow * disp_x_end
|
132 |
-
y_end = y + d_arrow * disp_y_end
|
133 |
-
segments_list.append([x_start, y_start, x_end, y_end])
|
134 |
-
|
135 |
-
segments = np.array(segments_list)
|
136 |
-
|
137 |
-
####### post processing for squares
|
138 |
-
# 1. get unique lines
|
139 |
-
point = np.array([[0, 0]])
|
140 |
-
point = point[0]
|
141 |
-
start = segments[:, :2]
|
142 |
-
end = segments[:, 2:]
|
143 |
-
diff = start - end
|
144 |
-
a = diff[:, 1]
|
145 |
-
b = -diff[:, 0]
|
146 |
-
c = a * start[:, 0] + b * start[:, 1]
|
147 |
-
|
148 |
-
d = np.abs(a * point[0] + b * point[1] - c) / np.sqrt(a ** 2 + b ** 2 + 1e-10)
|
149 |
-
theta = np.arctan2(diff[:, 0], diff[:, 1]) * 180 / np.pi
|
150 |
-
theta[theta < 0.0] += 180
|
151 |
-
hough = np.concatenate([d[:, None], theta[:, None]], axis=-1)
|
152 |
-
|
153 |
-
d_quant = 1
|
154 |
-
theta_quant = 2
|
155 |
-
hough[:, 0] //= d_quant
|
156 |
-
hough[:, 1] //= theta_quant
|
157 |
-
_, indices, counts = np.unique(hough, axis=0, return_index=True, return_counts=True)
|
158 |
-
|
159 |
-
acc_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='float32')
|
160 |
-
idx_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='int32') - 1
|
161 |
-
yx_indices = hough[indices, :].astype('int32')
|
162 |
-
acc_map[yx_indices[:, 0], yx_indices[:, 1]] = counts
|
163 |
-
idx_map[yx_indices[:, 0], yx_indices[:, 1]] = indices
|
164 |
-
|
165 |
-
acc_map_np = acc_map
|
166 |
-
# acc_map = acc_map[None, :, :, None]
|
167 |
-
#
|
168 |
-
# ### fast suppression using tensorflow op
|
169 |
-
# acc_map = tf.constant(acc_map, dtype=tf.float32)
|
170 |
-
# max_acc_map = tf.keras.layers.MaxPool2D(pool_size=(5, 5), strides=1, padding='same')(acc_map)
|
171 |
-
# acc_map = acc_map * tf.cast(tf.math.equal(acc_map, max_acc_map), tf.float32)
|
172 |
-
# flatten_acc_map = tf.reshape(acc_map, [1, -1])
|
173 |
-
# topk_values, topk_indices = tf.math.top_k(flatten_acc_map, k=len(pts))
|
174 |
-
# _, h, w, _ = acc_map.shape
|
175 |
-
# y = tf.expand_dims(topk_indices // w, axis=-1)
|
176 |
-
# x = tf.expand_dims(topk_indices % w, axis=-1)
|
177 |
-
# yx = tf.concat([y, x], axis=-1)
|
178 |
-
|
179 |
-
### fast suppression using pytorch op
|
180 |
-
acc_map = torch.from_numpy(acc_map_np).unsqueeze(0).unsqueeze(0)
|
181 |
-
_,_, h, w = acc_map.shape
|
182 |
-
max_acc_map = F.max_pool2d(acc_map,kernel_size=5, stride=1, padding=2)
|
183 |
-
acc_map = acc_map * ( (acc_map == max_acc_map).float() )
|
184 |
-
flatten_acc_map = acc_map.reshape([-1, ])
|
185 |
-
|
186 |
-
scores, indices = torch.topk(flatten_acc_map, len(pts), dim=-1, largest=True)
|
187 |
-
yy = torch.div(indices, w, rounding_mode='floor').unsqueeze(-1)
|
188 |
-
xx = torch.fmod(indices, w).unsqueeze(-1)
|
189 |
-
yx = torch.cat((yy, xx), dim=-1)
|
190 |
-
|
191 |
-
yx = yx.detach().cpu().numpy()
|
192 |
-
|
193 |
-
topk_values = scores.detach().cpu().numpy()
|
194 |
-
indices = idx_map[yx[:, 0], yx[:, 1]]
|
195 |
-
basis = 5 // 2
|
196 |
-
|
197 |
-
merged_segments = []
|
198 |
-
for yx_pt, max_indice, value in zip(yx, indices, topk_values):
|
199 |
-
y, x = yx_pt
|
200 |
-
if max_indice == -1 or value == 0:
|
201 |
-
continue
|
202 |
-
segment_list = []
|
203 |
-
for y_offset in range(-basis, basis + 1):
|
204 |
-
for x_offset in range(-basis, basis + 1):
|
205 |
-
indice = idx_map[y + y_offset, x + x_offset]
|
206 |
-
cnt = int(acc_map_np[y + y_offset, x + x_offset])
|
207 |
-
if indice != -1:
|
208 |
-
segment_list.append(segments[indice])
|
209 |
-
if cnt > 1:
|
210 |
-
check_cnt = 1
|
211 |
-
current_hough = hough[indice]
|
212 |
-
for new_indice, new_hough in enumerate(hough):
|
213 |
-
if (current_hough == new_hough).all() and indice != new_indice:
|
214 |
-
segment_list.append(segments[new_indice])
|
215 |
-
check_cnt += 1
|
216 |
-
if check_cnt == cnt:
|
217 |
-
break
|
218 |
-
group_segments = np.array(segment_list).reshape([-1, 2])
|
219 |
-
sorted_group_segments = np.sort(group_segments, axis=0)
|
220 |
-
x_min, y_min = sorted_group_segments[0, :]
|
221 |
-
x_max, y_max = sorted_group_segments[-1, :]
|
222 |
-
|
223 |
-
deg = theta[max_indice]
|
224 |
-
if deg >= 90:
|
225 |
-
merged_segments.append([x_min, y_max, x_max, y_min])
|
226 |
-
else:
|
227 |
-
merged_segments.append([x_min, y_min, x_max, y_max])
|
228 |
-
|
229 |
-
# 2. get intersections
|
230 |
-
new_segments = np.array(merged_segments) # (x1, y1, x2, y2)
|
231 |
-
start = new_segments[:, :2] # (x1, y1)
|
232 |
-
end = new_segments[:, 2:] # (x2, y2)
|
233 |
-
new_centers = (start + end) / 2.0
|
234 |
-
diff = start - end
|
235 |
-
dist_segments = np.sqrt(np.sum(diff ** 2, axis=-1))
|
236 |
-
|
237 |
-
# ax + by = c
|
238 |
-
a = diff[:, 1]
|
239 |
-
b = -diff[:, 0]
|
240 |
-
c = a * start[:, 0] + b * start[:, 1]
|
241 |
-
pre_det = a[:, None] * b[None, :]
|
242 |
-
det = pre_det - np.transpose(pre_det)
|
243 |
-
|
244 |
-
pre_inter_y = a[:, None] * c[None, :]
|
245 |
-
inter_y = (pre_inter_y - np.transpose(pre_inter_y)) / (det + 1e-10)
|
246 |
-
pre_inter_x = c[:, None] * b[None, :]
|
247 |
-
inter_x = (pre_inter_x - np.transpose(pre_inter_x)) / (det + 1e-10)
|
248 |
-
inter_pts = np.concatenate([inter_x[:, :, None], inter_y[:, :, None]], axis=-1).astype('int32')
|
249 |
-
|
250 |
-
# 3. get corner information
|
251 |
-
# 3.1 get distance
|
252 |
-
'''
|
253 |
-
dist_segments:
|
254 |
-
| dist(0), dist(1), dist(2), ...|
|
255 |
-
dist_inter_to_segment1:
|
256 |
-
| dist(inter,0), dist(inter,0), dist(inter,0), ... |
|
257 |
-
| dist(inter,1), dist(inter,1), dist(inter,1), ... |
|
258 |
-
...
|
259 |
-
dist_inter_to_semgnet2:
|
260 |
-
| dist(inter,0), dist(inter,1), dist(inter,2), ... |
|
261 |
-
| dist(inter,0), dist(inter,1), dist(inter,2), ... |
|
262 |
-
...
|
263 |
-
'''
|
264 |
-
|
265 |
-
dist_inter_to_segment1_start = np.sqrt(
|
266 |
-
np.sum(((inter_pts - start[:, None, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
|
267 |
-
dist_inter_to_segment1_end = np.sqrt(
|
268 |
-
np.sum(((inter_pts - end[:, None, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
|
269 |
-
dist_inter_to_segment2_start = np.sqrt(
|
270 |
-
np.sum(((inter_pts - start[None, :, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
|
271 |
-
dist_inter_to_segment2_end = np.sqrt(
|
272 |
-
np.sum(((inter_pts - end[None, :, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
|
273 |
-
|
274 |
-
# sort ascending
|
275 |
-
dist_inter_to_segment1 = np.sort(
|
276 |
-
np.concatenate([dist_inter_to_segment1_start, dist_inter_to_segment1_end], axis=-1),
|
277 |
-
axis=-1) # [n_batch, n_batch, 2]
|
278 |
-
dist_inter_to_segment2 = np.sort(
|
279 |
-
np.concatenate([dist_inter_to_segment2_start, dist_inter_to_segment2_end], axis=-1),
|
280 |
-
axis=-1) # [n_batch, n_batch, 2]
|
281 |
-
|
282 |
-
# 3.2 get degree
|
283 |
-
inter_to_start = new_centers[:, None, :] - inter_pts
|
284 |
-
deg_inter_to_start = np.arctan2(inter_to_start[:, :, 1], inter_to_start[:, :, 0]) * 180 / np.pi
|
285 |
-
deg_inter_to_start[deg_inter_to_start < 0.0] += 360
|
286 |
-
inter_to_end = new_centers[None, :, :] - inter_pts
|
287 |
-
deg_inter_to_end = np.arctan2(inter_to_end[:, :, 1], inter_to_end[:, :, 0]) * 180 / np.pi
|
288 |
-
deg_inter_to_end[deg_inter_to_end < 0.0] += 360
|
289 |
-
|
290 |
-
'''
|
291 |
-
B -- G
|
292 |
-
| |
|
293 |
-
C -- R
|
294 |
-
B : blue / G: green / C: cyan / R: red
|
295 |
-
|
296 |
-
0 -- 1
|
297 |
-
| |
|
298 |
-
3 -- 2
|
299 |
-
'''
|
300 |
-
# rename variables
|
301 |
-
deg1_map, deg2_map = deg_inter_to_start, deg_inter_to_end
|
302 |
-
# sort deg ascending
|
303 |
-
deg_sort = np.sort(np.concatenate([deg1_map[:, :, None], deg2_map[:, :, None]], axis=-1), axis=-1)
|
304 |
-
|
305 |
-
deg_diff_map = np.abs(deg1_map - deg2_map)
|
306 |
-
# we only consider the smallest degree of intersect
|
307 |
-
deg_diff_map[deg_diff_map > 180] = 360 - deg_diff_map[deg_diff_map > 180]
|
308 |
-
|
309 |
-
# define available degree range
|
310 |
-
deg_range = [60, 120]
|
311 |
-
|
312 |
-
corner_dict = {corner_info: [] for corner_info in range(4)}
|
313 |
-
inter_points = []
|
314 |
-
for i in range(inter_pts.shape[0]):
|
315 |
-
for j in range(i + 1, inter_pts.shape[1]):
|
316 |
-
# i, j > line index, always i < j
|
317 |
-
x, y = inter_pts[i, j, :]
|
318 |
-
deg1, deg2 = deg_sort[i, j, :]
|
319 |
-
deg_diff = deg_diff_map[i, j]
|
320 |
-
|
321 |
-
check_degree = deg_diff > deg_range[0] and deg_diff < deg_range[1]
|
322 |
-
|
323 |
-
outside_ratio = params['outside_ratio'] # over ratio >>> drop it!
|
324 |
-
inside_ratio = params['inside_ratio'] # over ratio >>> drop it!
|
325 |
-
check_distance = ((dist_inter_to_segment1[i, j, 1] >= dist_segments[i] and \
|
326 |
-
dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * outside_ratio) or \
|
327 |
-
(dist_inter_to_segment1[i, j, 1] <= dist_segments[i] and \
|
328 |
-
dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * inside_ratio)) and \
|
329 |
-
((dist_inter_to_segment2[i, j, 1] >= dist_segments[j] and \
|
330 |
-
dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * outside_ratio) or \
|
331 |
-
(dist_inter_to_segment2[i, j, 1] <= dist_segments[j] and \
|
332 |
-
dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * inside_ratio))
|
333 |
-
|
334 |
-
if check_degree and check_distance:
|
335 |
-
corner_info = None
|
336 |
-
|
337 |
-
if (deg1 >= 0 and deg1 <= 45 and deg2 >= 45 and deg2 <= 120) or \
|
338 |
-
(deg2 >= 315 and deg1 >= 45 and deg1 <= 120):
|
339 |
-
corner_info, color_info = 0, 'blue'
|
340 |
-
elif (deg1 >= 45 and deg1 <= 125 and deg2 >= 125 and deg2 <= 225):
|
341 |
-
corner_info, color_info = 1, 'green'
|
342 |
-
elif (deg1 >= 125 and deg1 <= 225 and deg2 >= 225 and deg2 <= 315):
|
343 |
-
corner_info, color_info = 2, 'black'
|
344 |
-
elif (deg1 >= 0 and deg1 <= 45 and deg2 >= 225 and deg2 <= 315) or \
|
345 |
-
(deg2 >= 315 and deg1 >= 225 and deg1 <= 315):
|
346 |
-
corner_info, color_info = 3, 'cyan'
|
347 |
-
else:
|
348 |
-
corner_info, color_info = 4, 'red' # we don't use it
|
349 |
-
continue
|
350 |
-
|
351 |
-
corner_dict[corner_info].append([x, y, i, j])
|
352 |
-
inter_points.append([x, y])
|
353 |
-
|
354 |
-
square_list = []
|
355 |
-
connect_list = []
|
356 |
-
segments_list = []
|
357 |
-
for corner0 in corner_dict[0]:
|
358 |
-
for corner1 in corner_dict[1]:
|
359 |
-
connect01 = False
|
360 |
-
for corner0_line in corner0[2:]:
|
361 |
-
if corner0_line in corner1[2:]:
|
362 |
-
connect01 = True
|
363 |
-
break
|
364 |
-
if connect01:
|
365 |
-
for corner2 in corner_dict[2]:
|
366 |
-
connect12 = False
|
367 |
-
for corner1_line in corner1[2:]:
|
368 |
-
if corner1_line in corner2[2:]:
|
369 |
-
connect12 = True
|
370 |
-
break
|
371 |
-
if connect12:
|
372 |
-
for corner3 in corner_dict[3]:
|
373 |
-
connect23 = False
|
374 |
-
for corner2_line in corner2[2:]:
|
375 |
-
if corner2_line in corner3[2:]:
|
376 |
-
connect23 = True
|
377 |
-
break
|
378 |
-
if connect23:
|
379 |
-
for corner3_line in corner3[2:]:
|
380 |
-
if corner3_line in corner0[2:]:
|
381 |
-
# SQUARE!!!
|
382 |
-
'''
|
383 |
-
0 -- 1
|
384 |
-
| |
|
385 |
-
3 -- 2
|
386 |
-
square_list:
|
387 |
-
order: 0 > 1 > 2 > 3
|
388 |
-
| x0, y0, x1, y1, x2, y2, x3, y3 |
|
389 |
-
| x0, y0, x1, y1, x2, y2, x3, y3 |
|
390 |
-
...
|
391 |
-
connect_list:
|
392 |
-
order: 01 > 12 > 23 > 30
|
393 |
-
| line_idx01, line_idx12, line_idx23, line_idx30 |
|
394 |
-
| line_idx01, line_idx12, line_idx23, line_idx30 |
|
395 |
-
...
|
396 |
-
segments_list:
|
397 |
-
order: 0 > 1 > 2 > 3
|
398 |
-
| line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |
|
399 |
-
| line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |
|
400 |
-
...
|
401 |
-
'''
|
402 |
-
square_list.append(corner0[:2] + corner1[:2] + corner2[:2] + corner3[:2])
|
403 |
-
connect_list.append([corner0_line, corner1_line, corner2_line, corner3_line])
|
404 |
-
segments_list.append(corner0[2:] + corner1[2:] + corner2[2:] + corner3[2:])
|
405 |
-
|
406 |
-
def check_outside_inside(segments_info, connect_idx):
|
407 |
-
# return 'outside or inside', min distance, cover_param, peri_param
|
408 |
-
if connect_idx == segments_info[0]:
|
409 |
-
check_dist_mat = dist_inter_to_segment1
|
410 |
-
else:
|
411 |
-
check_dist_mat = dist_inter_to_segment2
|
412 |
-
|
413 |
-
i, j = segments_info
|
414 |
-
min_dist, max_dist = check_dist_mat[i, j, :]
|
415 |
-
connect_dist = dist_segments[connect_idx]
|
416 |
-
if max_dist > connect_dist:
|
417 |
-
return 'outside', min_dist, 0, 1
|
418 |
-
else:
|
419 |
-
return 'inside', min_dist, -1, -1
|
420 |
-
|
421 |
-
top_square = None
|
422 |
-
|
423 |
-
try:
|
424 |
-
map_size = input_shape[0] / 2
|
425 |
-
squares = np.array(square_list).reshape([-1, 4, 2])
|
426 |
-
score_array = []
|
427 |
-
connect_array = np.array(connect_list)
|
428 |
-
segments_array = np.array(segments_list).reshape([-1, 4, 2])
|
429 |
-
|
430 |
-
# get degree of corners:
|
431 |
-
squares_rollup = np.roll(squares, 1, axis=1)
|
432 |
-
squares_rolldown = np.roll(squares, -1, axis=1)
|
433 |
-
vec1 = squares_rollup - squares
|
434 |
-
normalized_vec1 = vec1 / (np.linalg.norm(vec1, axis=-1, keepdims=True) + 1e-10)
|
435 |
-
vec2 = squares_rolldown - squares
|
436 |
-
normalized_vec2 = vec2 / (np.linalg.norm(vec2, axis=-1, keepdims=True) + 1e-10)
|
437 |
-
inner_products = np.sum(normalized_vec1 * normalized_vec2, axis=-1) # [n_squares, 4]
|
438 |
-
squares_degree = np.arccos(inner_products) * 180 / np.pi # [n_squares, 4]
|
439 |
-
|
440 |
-
# get square score
|
441 |
-
overlap_scores = []
|
442 |
-
degree_scores = []
|
443 |
-
length_scores = []
|
444 |
-
|
445 |
-
for connects, segments, square, degree in zip(connect_array, segments_array, squares, squares_degree):
|
446 |
-
'''
|
447 |
-
0 -- 1
|
448 |
-
| |
|
449 |
-
3 -- 2
|
450 |
-
|
451 |
-
# segments: [4, 2]
|
452 |
-
# connects: [4]
|
453 |
-
'''
|
454 |
-
|
455 |
-
###################################### OVERLAP SCORES
|
456 |
-
cover = 0
|
457 |
-
perimeter = 0
|
458 |
-
# check 0 > 1 > 2 > 3
|
459 |
-
square_length = []
|
460 |
-
|
461 |
-
for start_idx in range(4):
|
462 |
-
end_idx = (start_idx + 1) % 4
|
463 |
-
|
464 |
-
connect_idx = connects[start_idx] # segment idx of segment01
|
465 |
-
start_segments = segments[start_idx]
|
466 |
-
end_segments = segments[end_idx]
|
467 |
-
|
468 |
-
start_point = square[start_idx]
|
469 |
-
end_point = square[end_idx]
|
470 |
-
|
471 |
-
# check whether outside or inside
|
472 |
-
start_position, start_min, start_cover_param, start_peri_param = check_outside_inside(start_segments,
|
473 |
-
connect_idx)
|
474 |
-
end_position, end_min, end_cover_param, end_peri_param = check_outside_inside(end_segments, connect_idx)
|
475 |
-
|
476 |
-
cover += dist_segments[connect_idx] + start_cover_param * start_min + end_cover_param * end_min
|
477 |
-
perimeter += dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min
|
478 |
-
|
479 |
-
square_length.append(
|
480 |
-
dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min)
|
481 |
-
|
482 |
-
overlap_scores.append(cover / perimeter)
|
483 |
-
######################################
|
484 |
-
###################################### DEGREE SCORES
|
485 |
-
'''
|
486 |
-
deg0 vs deg2
|
487 |
-
deg1 vs deg3
|
488 |
-
'''
|
489 |
-
deg0, deg1, deg2, deg3 = degree
|
490 |
-
deg_ratio1 = deg0 / deg2
|
491 |
-
if deg_ratio1 > 1.0:
|
492 |
-
deg_ratio1 = 1 / deg_ratio1
|
493 |
-
deg_ratio2 = deg1 / deg3
|
494 |
-
if deg_ratio2 > 1.0:
|
495 |
-
deg_ratio2 = 1 / deg_ratio2
|
496 |
-
degree_scores.append((deg_ratio1 + deg_ratio2) / 2)
|
497 |
-
######################################
|
498 |
-
###################################### LENGTH SCORES
|
499 |
-
'''
|
500 |
-
len0 vs len2
|
501 |
-
len1 vs len3
|
502 |
-
'''
|
503 |
-
len0, len1, len2, len3 = square_length
|
504 |
-
len_ratio1 = len0 / len2 if len2 > len0 else len2 / len0
|
505 |
-
len_ratio2 = len1 / len3 if len3 > len1 else len3 / len1
|
506 |
-
length_scores.append((len_ratio1 + len_ratio2) / 2)
|
507 |
-
|
508 |
-
######################################
|
509 |
-
|
510 |
-
overlap_scores = np.array(overlap_scores)
|
511 |
-
overlap_scores /= np.max(overlap_scores)
|
512 |
-
|
513 |
-
degree_scores = np.array(degree_scores)
|
514 |
-
# degree_scores /= np.max(degree_scores)
|
515 |
-
|
516 |
-
length_scores = np.array(length_scores)
|
517 |
-
|
518 |
-
###################################### AREA SCORES
|
519 |
-
area_scores = np.reshape(squares, [-1, 4, 2])
|
520 |
-
area_x = area_scores[:, :, 0]
|
521 |
-
area_y = area_scores[:, :, 1]
|
522 |
-
correction = area_x[:, -1] * area_y[:, 0] - area_y[:, -1] * area_x[:, 0]
|
523 |
-
area_scores = np.sum(area_x[:, :-1] * area_y[:, 1:], axis=-1) - np.sum(area_y[:, :-1] * area_x[:, 1:], axis=-1)
|
524 |
-
area_scores = 0.5 * np.abs(area_scores + correction)
|
525 |
-
area_scores /= (map_size * map_size) # np.max(area_scores)
|
526 |
-
######################################
|
527 |
-
|
528 |
-
###################################### CENTER SCORES
|
529 |
-
centers = np.array([[256 // 2, 256 // 2]], dtype='float32') # [1, 2]
|
530 |
-
# squares: [n, 4, 2]
|
531 |
-
square_centers = np.mean(squares, axis=1) # [n, 2]
|
532 |
-
center2center = np.sqrt(np.sum((centers - square_centers) ** 2))
|
533 |
-
center_scores = center2center / (map_size / np.sqrt(2.0))
|
534 |
-
|
535 |
-
'''
|
536 |
-
score_w = [overlap, degree, area, center, length]
|
537 |
-
'''
|
538 |
-
score_w = [0.0, 1.0, 10.0, 0.5, 1.0]
|
539 |
-
score_array = params['w_overlap'] * overlap_scores \
|
540 |
-
+ params['w_degree'] * degree_scores \
|
541 |
-
+ params['w_area'] * area_scores \
|
542 |
-
- params['w_center'] * center_scores \
|
543 |
-
+ params['w_length'] * length_scores
|
544 |
-
|
545 |
-
best_square = []
|
546 |
-
|
547 |
-
sorted_idx = np.argsort(score_array)[::-1]
|
548 |
-
score_array = score_array[sorted_idx]
|
549 |
-
squares = squares[sorted_idx]
|
550 |
-
|
551 |
-
except Exception as e:
|
552 |
-
pass
|
553 |
-
|
554 |
-
'''return list
|
555 |
-
merged_lines, squares, scores
|
556 |
-
'''
|
557 |
-
|
558 |
-
try:
|
559 |
-
new_segments[:, 0] = new_segments[:, 0] * 2 / input_shape[1] * original_shape[1]
|
560 |
-
new_segments[:, 1] = new_segments[:, 1] * 2 / input_shape[0] * original_shape[0]
|
561 |
-
new_segments[:, 2] = new_segments[:, 2] * 2 / input_shape[1] * original_shape[1]
|
562 |
-
new_segments[:, 3] = new_segments[:, 3] * 2 / input_shape[0] * original_shape[0]
|
563 |
-
except:
|
564 |
-
new_segments = []
|
565 |
-
|
566 |
-
try:
|
567 |
-
squares[:, :, 0] = squares[:, :, 0] * 2 / input_shape[1] * original_shape[1]
|
568 |
-
squares[:, :, 1] = squares[:, :, 1] * 2 / input_shape[0] * original_shape[0]
|
569 |
-
except:
|
570 |
-
squares = []
|
571 |
-
score_array = []
|
572 |
-
|
573 |
-
try:
|
574 |
-
inter_points = np.array(inter_points)
|
575 |
-
inter_points[:, 0] = inter_points[:, 0] * 2 / input_shape[1] * original_shape[1]
|
576 |
-
inter_points[:, 1] = inter_points[:, 1] * 2 / input_shape[0] * original_shape[0]
|
577 |
-
except:
|
578 |
-
inter_points = []
|
579 |
-
|
580 |
-
return new_segments, squares, score_array, inter_points
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/openpose/LICENSE
DELETED
@@ -1,108 +0,0 @@
|
|
1 |
-
OPENPOSE: MULTIPERSON KEYPOINT DETECTION
|
2 |
-
SOFTWARE LICENSE AGREEMENT
|
3 |
-
ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
|
4 |
-
|
5 |
-
BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT. IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
|
6 |
-
|
7 |
-
This is a license agreement ("Agreement") between your academic institution or non-profit organization or self (called "Licensee" or "You" in this Agreement) and Carnegie Mellon University (called "Licensor" in this Agreement). All rights not specifically granted to you in this Agreement are reserved for Licensor.
|
8 |
-
|
9 |
-
RESERVATION OF OWNERSHIP AND GRANT OF LICENSE:
|
10 |
-
Licensor retains exclusive ownership of any copy of the Software (as defined below) licensed under this Agreement and hereby grants to Licensee a personal, non-exclusive,
|
11 |
-
non-transferable license to use the Software for noncommercial research purposes, without the right to sublicense, pursuant to the terms and conditions of this Agreement. As used in this Agreement, the term "Software" means (i) the actual copy of all or any portion of code for program routines made accessible to Licensee by Licensor pursuant to this Agreement, inclusive of backups, updates, and/or merged copies permitted hereunder or subsequently supplied by Licensor, including all or any file structures, programming instructions, user interfaces and screen formats and sequences as well as any and all documentation and instructions related to it, and (ii) all or any derivatives and/or modifications created or made by You to any of the items specified in (i).
|
12 |
-
|
13 |
-
CONFIDENTIALITY: Licensee acknowledges that the Software is proprietary to Licensor, and as such, Licensee agrees to receive all such materials in confidence and use the Software only in accordance with the terms of this Agreement. Licensee agrees to use reasonable effort to protect the Software from unauthorized use, reproduction, distribution, or publication.
|
14 |
-
|
15 |
-
COPYRIGHT: The Software is owned by Licensor and is protected by United
|
16 |
-
States copyright laws and applicable international treaties and/or conventions.
|
17 |
-
|
18 |
-
PERMITTED USES: The Software may be used for your own noncommercial internal research purposes. You understand and agree that Licensor is not obligated to implement any suggestions and/or feedback you might provide regarding the Software, but to the extent Licensor does so, you are not entitled to any compensation related thereto.
|
19 |
-
|
20 |
-
DERIVATIVES: You may create derivatives of or make modifications to the Software, however, You agree that all and any such derivatives and modifications will be owned by Licensor and become a part of the Software licensed to You under this Agreement. You may only use such derivatives and modifications for your own noncommercial internal research purposes, and you may not otherwise use, distribute or copy such derivatives and modifications in violation of this Agreement.
|
21 |
-
|
22 |
-
BACKUPS: If Licensee is an organization, it may make that number of copies of the Software necessary for internal noncommercial use at a single site within its organization provided that all information appearing in or on the original labels, including the copyright and trademark notices are copied onto the labels of the copies.
|
23 |
-
|
24 |
-
USES NOT PERMITTED: You may not distribute, copy or use the Software except as explicitly permitted herein. Licensee has not been granted any trademark license as part of this Agreement and may not use the name or mark “OpenPose", "Carnegie Mellon" or any renditions thereof without the prior written permission of Licensor.
|
25 |
-
|
26 |
-
You may not sell, rent, lease, sublicense, lend, time-share or transfer, in whole or in part, or provide third parties access to prior or present versions (or any parts thereof) of the Software.
|
27 |
-
|
28 |
-
ASSIGNMENT: You may not assign this Agreement or your rights hereunder without the prior written consent of Licensor. Any attempted assignment without such consent shall be null and void.
|
29 |
-
|
30 |
-
TERM: The term of the license granted by this Agreement is from Licensee's acceptance of this Agreement by downloading the Software or by using the Software until terminated as provided below.
|
31 |
-
|
32 |
-
The Agreement automatically terminates without notice if you fail to comply with any provision of this Agreement. Licensee may terminate this Agreement by ceasing using the Software. Upon any termination of this Agreement, Licensee will delete any and all copies of the Software. You agree that all provisions which operate to protect the proprietary rights of Licensor shall remain in force should breach occur and that the obligation of confidentiality described in this Agreement is binding in perpetuity and, as such, survives the term of the Agreement.
|
33 |
-
|
34 |
-
FEE: Provided Licensee abides completely by the terms and conditions of this Agreement, there is no fee due to Licensor for Licensee's use of the Software in accordance with this Agreement.
|
35 |
-
|
36 |
-
DISCLAIMER OF WARRANTIES: THE SOFTWARE IS PROVIDED "AS-IS" WITHOUT WARRANTY OF ANY KIND INCLUDING ANY WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE OR OF NON-INFRINGEMENT. LICENSEE BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF THE SOFTWARE AND RELATED MATERIALS.
|
37 |
-
|
38 |
-
SUPPORT AND MAINTENANCE: No Software support or training by the Licensor is provided as part of this Agreement.
|
39 |
-
|
40 |
-
EXCLUSIVE REMEDY AND LIMITATION OF LIABILITY: To the maximum extent permitted under applicable law, Licensor shall not be liable for direct, indirect, special, incidental, or consequential damages or lost profits related to Licensee's use of and/or inability to use the Software, even if Licensor is advised of the possibility of such damage.
|
41 |
-
|
42 |
-
EXPORT REGULATION: Licensee agrees to comply with any and all applicable
|
43 |
-
U.S. export control laws, regulations, and/or other laws related to embargoes and sanction programs administered by the Office of Foreign Assets Control.
|
44 |
-
|
45 |
-
SEVERABILITY: If any provision(s) of this Agreement shall be held to be invalid, illegal, or unenforceable by a court or other tribunal of competent jurisdiction, the validity, legality and enforceability of the remaining provisions shall not in any way be affected or impaired thereby.
|
46 |
-
|
47 |
-
NO IMPLIED WAIVERS: No failure or delay by Licensor in enforcing any right or remedy under this Agreement shall be construed as a waiver of any future or other exercise of such right or remedy by Licensor.
|
48 |
-
|
49 |
-
GOVERNING LAW: This Agreement shall be construed and enforced in accordance with the laws of the Commonwealth of Pennsylvania without reference to conflict of laws principles. You consent to the personal jurisdiction of the courts of this County and waive their rights to venue outside of Allegheny County, Pennsylvania.
|
50 |
-
|
51 |
-
ENTIRE AGREEMENT AND AMENDMENTS: This Agreement constitutes the sole and entire agreement between Licensee and Licensor as to the matter set forth herein and supersedes any previous agreements, understandings, and arrangements between the parties relating hereto.
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
************************************************************************
|
56 |
-
|
57 |
-
THIRD-PARTY SOFTWARE NOTICES AND INFORMATION
|
58 |
-
|
59 |
-
This project incorporates material from the project(s) listed below (collectively, "Third Party Code"). This Third Party Code is licensed to you under their original license terms set forth below. We reserves all other rights not expressly granted, whether by implication, estoppel or otherwise.
|
60 |
-
|
61 |
-
1. Caffe, version 1.0.0, (https://github.com/BVLC/caffe/)
|
62 |
-
|
63 |
-
COPYRIGHT
|
64 |
-
|
65 |
-
All contributions by the University of California:
|
66 |
-
Copyright (c) 2014-2017 The Regents of the University of California (Regents)
|
67 |
-
All rights reserved.
|
68 |
-
|
69 |
-
All other contributions:
|
70 |
-
Copyright (c) 2014-2017, the respective contributors
|
71 |
-
All rights reserved.
|
72 |
-
|
73 |
-
Caffe uses a shared copyright model: each contributor holds copyright over
|
74 |
-
their contributions to Caffe. The project versioning records all such
|
75 |
-
contribution and copyright details. If a contributor wants to further mark
|
76 |
-
their specific copyright on a particular contribution, they should indicate
|
77 |
-
their copyright solely in the commit message of the change when it is
|
78 |
-
committed.
|
79 |
-
|
80 |
-
LICENSE
|
81 |
-
|
82 |
-
Redistribution and use in source and binary forms, with or without
|
83 |
-
modification, are permitted provided that the following conditions are met:
|
84 |
-
|
85 |
-
1. Redistributions of source code must retain the above copyright notice, this
|
86 |
-
list of conditions and the following disclaimer.
|
87 |
-
2. Redistributions in binary form must reproduce the above copyright notice,
|
88 |
-
this list of conditions and the following disclaimer in the documentation
|
89 |
-
and/or other materials provided with the distribution.
|
90 |
-
|
91 |
-
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
92 |
-
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
93 |
-
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
94 |
-
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
95 |
-
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
96 |
-
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
97 |
-
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
98 |
-
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
99 |
-
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
100 |
-
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
101 |
-
|
102 |
-
CONTRIBUTION AGREEMENT
|
103 |
-
|
104 |
-
By contributing to the BVLC/caffe repository through pull-request, comment,
|
105 |
-
or otherwise, the contributor releases their content to the
|
106 |
-
license and copyright terms herein.
|
107 |
-
|
108 |
-
************END OF THIRD-PARTY SOFTWARE NOTICES AND INFORMATION**********
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/openpose/__init__.py
DELETED
@@ -1,49 +0,0 @@
|
|
1 |
-
# Openpose
|
2 |
-
# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose
|
3 |
-
# 2nd Edited by https://github.com/Hzzone/pytorch-openpose
|
4 |
-
# 3rd Edited by ControlNet
|
5 |
-
|
6 |
-
import os
|
7 |
-
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
|
8 |
-
|
9 |
-
import torch
|
10 |
-
import numpy as np
|
11 |
-
from . import util
|
12 |
-
from .body import Body
|
13 |
-
from .hand import Hand
|
14 |
-
from annotator.util import annotator_ckpts_path
|
15 |
-
|
16 |
-
|
17 |
-
body_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/body_pose_model.pth"
|
18 |
-
hand_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/hand_pose_model.pth"
|
19 |
-
|
20 |
-
|
21 |
-
class OpenposeDetector:
|
22 |
-
def __init__(self):
|
23 |
-
body_modelpath = os.path.join(annotator_ckpts_path, "body_pose_model.pth")
|
24 |
-
hand_modelpath = os.path.join(annotator_ckpts_path, "hand_pose_model.pth")
|
25 |
-
|
26 |
-
if not os.path.exists(hand_modelpath):
|
27 |
-
from basicsr.utils.download_util import load_file_from_url
|
28 |
-
load_file_from_url(body_model_path, model_dir=annotator_ckpts_path)
|
29 |
-
load_file_from_url(hand_model_path, model_dir=annotator_ckpts_path)
|
30 |
-
|
31 |
-
self.body_estimation = Body(body_modelpath)
|
32 |
-
self.hand_estimation = Hand(hand_modelpath)
|
33 |
-
|
34 |
-
def __call__(self, oriImg, hand=False):
|
35 |
-
oriImg = oriImg[:, :, ::-1].copy()
|
36 |
-
with torch.no_grad():
|
37 |
-
candidate, subset = self.body_estimation(oriImg)
|
38 |
-
canvas = np.zeros_like(oriImg)
|
39 |
-
canvas = util.draw_bodypose(canvas, candidate, subset)
|
40 |
-
if hand:
|
41 |
-
hands_list = util.handDetect(candidate, subset, oriImg)
|
42 |
-
all_hand_peaks = []
|
43 |
-
for x, y, w, is_left in hands_list:
|
44 |
-
peaks = self.hand_estimation(oriImg[y:y+w, x:x+w, :])
|
45 |
-
peaks[:, 0] = np.where(peaks[:, 0] == 0, peaks[:, 0], peaks[:, 0] + x)
|
46 |
-
peaks[:, 1] = np.where(peaks[:, 1] == 0, peaks[:, 1], peaks[:, 1] + y)
|
47 |
-
all_hand_peaks.append(peaks)
|
48 |
-
canvas = util.draw_handpose(canvas, all_hand_peaks)
|
49 |
-
return canvas, dict(candidate=candidate.tolist(), subset=subset.tolist())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/openpose/body.py
DELETED
@@ -1,219 +0,0 @@
|
|
1 |
-
import cv2
|
2 |
-
import numpy as np
|
3 |
-
import math
|
4 |
-
import time
|
5 |
-
from scipy.ndimage.filters import gaussian_filter
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
-
import matplotlib
|
8 |
-
import torch
|
9 |
-
from torchvision import transforms
|
10 |
-
|
11 |
-
from . import util
|
12 |
-
from .model import bodypose_model
|
13 |
-
|
14 |
-
class Body(object):
|
15 |
-
def __init__(self, model_path):
|
16 |
-
self.model = bodypose_model()
|
17 |
-
if torch.cuda.is_available():
|
18 |
-
self.model = self.model.cuda()
|
19 |
-
print('cuda')
|
20 |
-
model_dict = util.transfer(self.model, torch.load(model_path))
|
21 |
-
self.model.load_state_dict(model_dict)
|
22 |
-
self.model.eval()
|
23 |
-
|
24 |
-
def __call__(self, oriImg):
|
25 |
-
# scale_search = [0.5, 1.0, 1.5, 2.0]
|
26 |
-
scale_search = [0.5]
|
27 |
-
boxsize = 368
|
28 |
-
stride = 8
|
29 |
-
padValue = 128
|
30 |
-
thre1 = 0.1
|
31 |
-
thre2 = 0.05
|
32 |
-
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
|
33 |
-
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
|
34 |
-
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
|
35 |
-
|
36 |
-
for m in range(len(multiplier)):
|
37 |
-
scale = multiplier[m]
|
38 |
-
imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
|
39 |
-
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue)
|
40 |
-
im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
|
41 |
-
im = np.ascontiguousarray(im)
|
42 |
-
|
43 |
-
data = torch.from_numpy(im).float()
|
44 |
-
if torch.cuda.is_available():
|
45 |
-
data = data.cuda()
|
46 |
-
# data = data.permute([2, 0, 1]).unsqueeze(0).float()
|
47 |
-
with torch.no_grad():
|
48 |
-
Mconv7_stage6_L1, Mconv7_stage6_L2 = self.model(data)
|
49 |
-
Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy()
|
50 |
-
Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy()
|
51 |
-
|
52 |
-
# extract outputs, resize, and remove padding
|
53 |
-
# heatmap = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[1]].data), (1, 2, 0)) # output 1 is heatmaps
|
54 |
-
heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), (1, 2, 0)) # output 1 is heatmaps
|
55 |
-
heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
|
56 |
-
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
|
57 |
-
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
|
58 |
-
|
59 |
-
# paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1, 2, 0)) # output 0 is PAFs
|
60 |
-
paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0)) # output 0 is PAFs
|
61 |
-
paf = cv2.resize(paf, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
|
62 |
-
paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
|
63 |
-
paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
|
64 |
-
|
65 |
-
heatmap_avg += heatmap_avg + heatmap / len(multiplier)
|
66 |
-
paf_avg += + paf / len(multiplier)
|
67 |
-
|
68 |
-
all_peaks = []
|
69 |
-
peak_counter = 0
|
70 |
-
|
71 |
-
for part in range(18):
|
72 |
-
map_ori = heatmap_avg[:, :, part]
|
73 |
-
one_heatmap = gaussian_filter(map_ori, sigma=3)
|
74 |
-
|
75 |
-
map_left = np.zeros(one_heatmap.shape)
|
76 |
-
map_left[1:, :] = one_heatmap[:-1, :]
|
77 |
-
map_right = np.zeros(one_heatmap.shape)
|
78 |
-
map_right[:-1, :] = one_heatmap[1:, :]
|
79 |
-
map_up = np.zeros(one_heatmap.shape)
|
80 |
-
map_up[:, 1:] = one_heatmap[:, :-1]
|
81 |
-
map_down = np.zeros(one_heatmap.shape)
|
82 |
-
map_down[:, :-1] = one_heatmap[:, 1:]
|
83 |
-
|
84 |
-
peaks_binary = np.logical_and.reduce(
|
85 |
-
(one_heatmap >= map_left, one_heatmap >= map_right, one_heatmap >= map_up, one_heatmap >= map_down, one_heatmap > thre1))
|
86 |
-
peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) # note reverse
|
87 |
-
peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks]
|
88 |
-
peak_id = range(peak_counter, peak_counter + len(peaks))
|
89 |
-
peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i],) for i in range(len(peak_id))]
|
90 |
-
|
91 |
-
all_peaks.append(peaks_with_score_and_id)
|
92 |
-
peak_counter += len(peaks)
|
93 |
-
|
94 |
-
# find connection in the specified sequence, center 29 is in the position 15
|
95 |
-
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
|
96 |
-
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
|
97 |
-
[1, 16], [16, 18], [3, 17], [6, 18]]
|
98 |
-
# the middle joints heatmap correpondence
|
99 |
-
mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], \
|
100 |
-
[23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], \
|
101 |
-
[55, 56], [37, 38], [45, 46]]
|
102 |
-
|
103 |
-
connection_all = []
|
104 |
-
special_k = []
|
105 |
-
mid_num = 10
|
106 |
-
|
107 |
-
for k in range(len(mapIdx)):
|
108 |
-
score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]]
|
109 |
-
candA = all_peaks[limbSeq[k][0] - 1]
|
110 |
-
candB = all_peaks[limbSeq[k][1] - 1]
|
111 |
-
nA = len(candA)
|
112 |
-
nB = len(candB)
|
113 |
-
indexA, indexB = limbSeq[k]
|
114 |
-
if (nA != 0 and nB != 0):
|
115 |
-
connection_candidate = []
|
116 |
-
for i in range(nA):
|
117 |
-
for j in range(nB):
|
118 |
-
vec = np.subtract(candB[j][:2], candA[i][:2])
|
119 |
-
norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
|
120 |
-
norm = max(0.001, norm)
|
121 |
-
vec = np.divide(vec, norm)
|
122 |
-
|
123 |
-
startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \
|
124 |
-
np.linspace(candA[i][1], candB[j][1], num=mid_num)))
|
125 |
-
|
126 |
-
vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \
|
127 |
-
for I in range(len(startend))])
|
128 |
-
vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \
|
129 |
-
for I in range(len(startend))])
|
130 |
-
|
131 |
-
score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
|
132 |
-
score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min(
|
133 |
-
0.5 * oriImg.shape[0] / norm - 1, 0)
|
134 |
-
criterion1 = len(np.nonzero(score_midpts > thre2)[0]) > 0.8 * len(score_midpts)
|
135 |
-
criterion2 = score_with_dist_prior > 0
|
136 |
-
if criterion1 and criterion2:
|
137 |
-
connection_candidate.append(
|
138 |
-
[i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]])
|
139 |
-
|
140 |
-
connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
|
141 |
-
connection = np.zeros((0, 5))
|
142 |
-
for c in range(len(connection_candidate)):
|
143 |
-
i, j, s = connection_candidate[c][0:3]
|
144 |
-
if (i not in connection[:, 3] and j not in connection[:, 4]):
|
145 |
-
connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
|
146 |
-
if (len(connection) >= min(nA, nB)):
|
147 |
-
break
|
148 |
-
|
149 |
-
connection_all.append(connection)
|
150 |
-
else:
|
151 |
-
special_k.append(k)
|
152 |
-
connection_all.append([])
|
153 |
-
|
154 |
-
# last number in each row is the total parts number of that person
|
155 |
-
# the second last number in each row is the score of the overall configuration
|
156 |
-
subset = -1 * np.ones((0, 20))
|
157 |
-
candidate = np.array([item for sublist in all_peaks for item in sublist])
|
158 |
-
|
159 |
-
for k in range(len(mapIdx)):
|
160 |
-
if k not in special_k:
|
161 |
-
partAs = connection_all[k][:, 0]
|
162 |
-
partBs = connection_all[k][:, 1]
|
163 |
-
indexA, indexB = np.array(limbSeq[k]) - 1
|
164 |
-
|
165 |
-
for i in range(len(connection_all[k])): # = 1:size(temp,1)
|
166 |
-
found = 0
|
167 |
-
subset_idx = [-1, -1]
|
168 |
-
for j in range(len(subset)): # 1:size(subset,1):
|
169 |
-
if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
|
170 |
-
subset_idx[found] = j
|
171 |
-
found += 1
|
172 |
-
|
173 |
-
if found == 1:
|
174 |
-
j = subset_idx[0]
|
175 |
-
if subset[j][indexB] != partBs[i]:
|
176 |
-
subset[j][indexB] = partBs[i]
|
177 |
-
subset[j][-1] += 1
|
178 |
-
subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
|
179 |
-
elif found == 2: # if found 2 and disjoint, merge them
|
180 |
-
j1, j2 = subset_idx
|
181 |
-
membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2]
|
182 |
-
if len(np.nonzero(membership == 2)[0]) == 0: # merge
|
183 |
-
subset[j1][:-2] += (subset[j2][:-2] + 1)
|
184 |
-
subset[j1][-2:] += subset[j2][-2:]
|
185 |
-
subset[j1][-2] += connection_all[k][i][2]
|
186 |
-
subset = np.delete(subset, j2, 0)
|
187 |
-
else: # as like found == 1
|
188 |
-
subset[j1][indexB] = partBs[i]
|
189 |
-
subset[j1][-1] += 1
|
190 |
-
subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
|
191 |
-
|
192 |
-
# if find no partA in the subset, create a new subset
|
193 |
-
elif not found and k < 17:
|
194 |
-
row = -1 * np.ones(20)
|
195 |
-
row[indexA] = partAs[i]
|
196 |
-
row[indexB] = partBs[i]
|
197 |
-
row[-1] = 2
|
198 |
-
row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2]
|
199 |
-
subset = np.vstack([subset, row])
|
200 |
-
# delete some rows of subset which has few parts occur
|
201 |
-
deleteIdx = []
|
202 |
-
for i in range(len(subset)):
|
203 |
-
if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
|
204 |
-
deleteIdx.append(i)
|
205 |
-
subset = np.delete(subset, deleteIdx, axis=0)
|
206 |
-
|
207 |
-
# subset: n*20 array, 0-17 is the index in candidate, 18 is the total score, 19 is the total parts
|
208 |
-
# candidate: x, y, score, id
|
209 |
-
return candidate, subset
|
210 |
-
|
211 |
-
if __name__ == "__main__":
|
212 |
-
body_estimation = Body('../model/body_pose_model.pth')
|
213 |
-
|
214 |
-
test_image = '../images/ski.jpg'
|
215 |
-
oriImg = cv2.imread(test_image) # B,G,R order
|
216 |
-
candidate, subset = body_estimation(oriImg)
|
217 |
-
canvas = util.draw_bodypose(oriImg, candidate, subset)
|
218 |
-
plt.imshow(canvas[:, :, [2, 1, 0]])
|
219 |
-
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/openpose/hand.py
DELETED
@@ -1,86 +0,0 @@
|
|
1 |
-
import cv2
|
2 |
-
import json
|
3 |
-
import numpy as np
|
4 |
-
import math
|
5 |
-
import time
|
6 |
-
from scipy.ndimage.filters import gaussian_filter
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
-
import matplotlib
|
9 |
-
import torch
|
10 |
-
from skimage.measure import label
|
11 |
-
|
12 |
-
from .model import handpose_model
|
13 |
-
from . import util
|
14 |
-
|
15 |
-
class Hand(object):
|
16 |
-
def __init__(self, model_path):
|
17 |
-
self.model = handpose_model()
|
18 |
-
if torch.cuda.is_available():
|
19 |
-
self.model = self.model.cuda()
|
20 |
-
print('cuda')
|
21 |
-
model_dict = util.transfer(self.model, torch.load(model_path))
|
22 |
-
self.model.load_state_dict(model_dict)
|
23 |
-
self.model.eval()
|
24 |
-
|
25 |
-
def __call__(self, oriImg):
|
26 |
-
scale_search = [0.5, 1.0, 1.5, 2.0]
|
27 |
-
# scale_search = [0.5]
|
28 |
-
boxsize = 368
|
29 |
-
stride = 8
|
30 |
-
padValue = 128
|
31 |
-
thre = 0.05
|
32 |
-
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
|
33 |
-
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 22))
|
34 |
-
# paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
|
35 |
-
|
36 |
-
for m in range(len(multiplier)):
|
37 |
-
scale = multiplier[m]
|
38 |
-
imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
|
39 |
-
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue)
|
40 |
-
im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
|
41 |
-
im = np.ascontiguousarray(im)
|
42 |
-
|
43 |
-
data = torch.from_numpy(im).float()
|
44 |
-
if torch.cuda.is_available():
|
45 |
-
data = data.cuda()
|
46 |
-
# data = data.permute([2, 0, 1]).unsqueeze(0).float()
|
47 |
-
with torch.no_grad():
|
48 |
-
output = self.model(data).cpu().numpy()
|
49 |
-
# output = self.model(data).numpy()q
|
50 |
-
|
51 |
-
# extract outputs, resize, and remove padding
|
52 |
-
heatmap = np.transpose(np.squeeze(output), (1, 2, 0)) # output 1 is heatmaps
|
53 |
-
heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
|
54 |
-
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
|
55 |
-
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
|
56 |
-
|
57 |
-
heatmap_avg += heatmap / len(multiplier)
|
58 |
-
|
59 |
-
all_peaks = []
|
60 |
-
for part in range(21):
|
61 |
-
map_ori = heatmap_avg[:, :, part]
|
62 |
-
one_heatmap = gaussian_filter(map_ori, sigma=3)
|
63 |
-
binary = np.ascontiguousarray(one_heatmap > thre, dtype=np.uint8)
|
64 |
-
# 全部小于阈值
|
65 |
-
if np.sum(binary) == 0:
|
66 |
-
all_peaks.append([0, 0])
|
67 |
-
continue
|
68 |
-
label_img, label_numbers = label(binary, return_num=True, connectivity=binary.ndim)
|
69 |
-
max_index = np.argmax([np.sum(map_ori[label_img == i]) for i in range(1, label_numbers + 1)]) + 1
|
70 |
-
label_img[label_img != max_index] = 0
|
71 |
-
map_ori[label_img == 0] = 0
|
72 |
-
|
73 |
-
y, x = util.npmax(map_ori)
|
74 |
-
all_peaks.append([x, y])
|
75 |
-
return np.array(all_peaks)
|
76 |
-
|
77 |
-
if __name__ == "__main__":
|
78 |
-
hand_estimation = Hand('../model/hand_pose_model.pth')
|
79 |
-
|
80 |
-
# test_image = '../images/hand.jpg'
|
81 |
-
test_image = '../images/hand.jpg'
|
82 |
-
oriImg = cv2.imread(test_image) # B,G,R order
|
83 |
-
peaks = hand_estimation(oriImg)
|
84 |
-
canvas = util.draw_handpose(oriImg, peaks, True)
|
85 |
-
cv2.imshow('', canvas)
|
86 |
-
cv2.waitKey(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/openpose/model.py
DELETED
@@ -1,219 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from collections import OrderedDict
|
3 |
-
|
4 |
-
import torch
|
5 |
-
import torch.nn as nn
|
6 |
-
|
7 |
-
def make_layers(block, no_relu_layers):
|
8 |
-
layers = []
|
9 |
-
for layer_name, v in block.items():
|
10 |
-
if 'pool' in layer_name:
|
11 |
-
layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1],
|
12 |
-
padding=v[2])
|
13 |
-
layers.append((layer_name, layer))
|
14 |
-
else:
|
15 |
-
conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1],
|
16 |
-
kernel_size=v[2], stride=v[3],
|
17 |
-
padding=v[4])
|
18 |
-
layers.append((layer_name, conv2d))
|
19 |
-
if layer_name not in no_relu_layers:
|
20 |
-
layers.append(('relu_'+layer_name, nn.ReLU(inplace=True)))
|
21 |
-
|
22 |
-
return nn.Sequential(OrderedDict(layers))
|
23 |
-
|
24 |
-
class bodypose_model(nn.Module):
|
25 |
-
def __init__(self):
|
26 |
-
super(bodypose_model, self).__init__()
|
27 |
-
|
28 |
-
# these layers have no relu layer
|
29 |
-
no_relu_layers = ['conv5_5_CPM_L1', 'conv5_5_CPM_L2', 'Mconv7_stage2_L1',\
|
30 |
-
'Mconv7_stage2_L2', 'Mconv7_stage3_L1', 'Mconv7_stage3_L2',\
|
31 |
-
'Mconv7_stage4_L1', 'Mconv7_stage4_L2', 'Mconv7_stage5_L1',\
|
32 |
-
'Mconv7_stage5_L2', 'Mconv7_stage6_L1', 'Mconv7_stage6_L1']
|
33 |
-
blocks = {}
|
34 |
-
block0 = OrderedDict([
|
35 |
-
('conv1_1', [3, 64, 3, 1, 1]),
|
36 |
-
('conv1_2', [64, 64, 3, 1, 1]),
|
37 |
-
('pool1_stage1', [2, 2, 0]),
|
38 |
-
('conv2_1', [64, 128, 3, 1, 1]),
|
39 |
-
('conv2_2', [128, 128, 3, 1, 1]),
|
40 |
-
('pool2_stage1', [2, 2, 0]),
|
41 |
-
('conv3_1', [128, 256, 3, 1, 1]),
|
42 |
-
('conv3_2', [256, 256, 3, 1, 1]),
|
43 |
-
('conv3_3', [256, 256, 3, 1, 1]),
|
44 |
-
('conv3_4', [256, 256, 3, 1, 1]),
|
45 |
-
('pool3_stage1', [2, 2, 0]),
|
46 |
-
('conv4_1', [256, 512, 3, 1, 1]),
|
47 |
-
('conv4_2', [512, 512, 3, 1, 1]),
|
48 |
-
('conv4_3_CPM', [512, 256, 3, 1, 1]),
|
49 |
-
('conv4_4_CPM', [256, 128, 3, 1, 1])
|
50 |
-
])
|
51 |
-
|
52 |
-
|
53 |
-
# Stage 1
|
54 |
-
block1_1 = OrderedDict([
|
55 |
-
('conv5_1_CPM_L1', [128, 128, 3, 1, 1]),
|
56 |
-
('conv5_2_CPM_L1', [128, 128, 3, 1, 1]),
|
57 |
-
('conv5_3_CPM_L1', [128, 128, 3, 1, 1]),
|
58 |
-
('conv5_4_CPM_L1', [128, 512, 1, 1, 0]),
|
59 |
-
('conv5_5_CPM_L1', [512, 38, 1, 1, 0])
|
60 |
-
])
|
61 |
-
|
62 |
-
block1_2 = OrderedDict([
|
63 |
-
('conv5_1_CPM_L2', [128, 128, 3, 1, 1]),
|
64 |
-
('conv5_2_CPM_L2', [128, 128, 3, 1, 1]),
|
65 |
-
('conv5_3_CPM_L2', [128, 128, 3, 1, 1]),
|
66 |
-
('conv5_4_CPM_L2', [128, 512, 1, 1, 0]),
|
67 |
-
('conv5_5_CPM_L2', [512, 19, 1, 1, 0])
|
68 |
-
])
|
69 |
-
blocks['block1_1'] = block1_1
|
70 |
-
blocks['block1_2'] = block1_2
|
71 |
-
|
72 |
-
self.model0 = make_layers(block0, no_relu_layers)
|
73 |
-
|
74 |
-
# Stages 2 - 6
|
75 |
-
for i in range(2, 7):
|
76 |
-
blocks['block%d_1' % i] = OrderedDict([
|
77 |
-
('Mconv1_stage%d_L1' % i, [185, 128, 7, 1, 3]),
|
78 |
-
('Mconv2_stage%d_L1' % i, [128, 128, 7, 1, 3]),
|
79 |
-
('Mconv3_stage%d_L1' % i, [128, 128, 7, 1, 3]),
|
80 |
-
('Mconv4_stage%d_L1' % i, [128, 128, 7, 1, 3]),
|
81 |
-
('Mconv5_stage%d_L1' % i, [128, 128, 7, 1, 3]),
|
82 |
-
('Mconv6_stage%d_L1' % i, [128, 128, 1, 1, 0]),
|
83 |
-
('Mconv7_stage%d_L1' % i, [128, 38, 1, 1, 0])
|
84 |
-
])
|
85 |
-
|
86 |
-
blocks['block%d_2' % i] = OrderedDict([
|
87 |
-
('Mconv1_stage%d_L2' % i, [185, 128, 7, 1, 3]),
|
88 |
-
('Mconv2_stage%d_L2' % i, [128, 128, 7, 1, 3]),
|
89 |
-
('Mconv3_stage%d_L2' % i, [128, 128, 7, 1, 3]),
|
90 |
-
('Mconv4_stage%d_L2' % i, [128, 128, 7, 1, 3]),
|
91 |
-
('Mconv5_stage%d_L2' % i, [128, 128, 7, 1, 3]),
|
92 |
-
('Mconv6_stage%d_L2' % i, [128, 128, 1, 1, 0]),
|
93 |
-
('Mconv7_stage%d_L2' % i, [128, 19, 1, 1, 0])
|
94 |
-
])
|
95 |
-
|
96 |
-
for k in blocks.keys():
|
97 |
-
blocks[k] = make_layers(blocks[k], no_relu_layers)
|
98 |
-
|
99 |
-
self.model1_1 = blocks['block1_1']
|
100 |
-
self.model2_1 = blocks['block2_1']
|
101 |
-
self.model3_1 = blocks['block3_1']
|
102 |
-
self.model4_1 = blocks['block4_1']
|
103 |
-
self.model5_1 = blocks['block5_1']
|
104 |
-
self.model6_1 = blocks['block6_1']
|
105 |
-
|
106 |
-
self.model1_2 = blocks['block1_2']
|
107 |
-
self.model2_2 = blocks['block2_2']
|
108 |
-
self.model3_2 = blocks['block3_2']
|
109 |
-
self.model4_2 = blocks['block4_2']
|
110 |
-
self.model5_2 = blocks['block5_2']
|
111 |
-
self.model6_2 = blocks['block6_2']
|
112 |
-
|
113 |
-
|
114 |
-
def forward(self, x):
|
115 |
-
|
116 |
-
out1 = self.model0(x)
|
117 |
-
|
118 |
-
out1_1 = self.model1_1(out1)
|
119 |
-
out1_2 = self.model1_2(out1)
|
120 |
-
out2 = torch.cat([out1_1, out1_2, out1], 1)
|
121 |
-
|
122 |
-
out2_1 = self.model2_1(out2)
|
123 |
-
out2_2 = self.model2_2(out2)
|
124 |
-
out3 = torch.cat([out2_1, out2_2, out1], 1)
|
125 |
-
|
126 |
-
out3_1 = self.model3_1(out3)
|
127 |
-
out3_2 = self.model3_2(out3)
|
128 |
-
out4 = torch.cat([out3_1, out3_2, out1], 1)
|
129 |
-
|
130 |
-
out4_1 = self.model4_1(out4)
|
131 |
-
out4_2 = self.model4_2(out4)
|
132 |
-
out5 = torch.cat([out4_1, out4_2, out1], 1)
|
133 |
-
|
134 |
-
out5_1 = self.model5_1(out5)
|
135 |
-
out5_2 = self.model5_2(out5)
|
136 |
-
out6 = torch.cat([out5_1, out5_2, out1], 1)
|
137 |
-
|
138 |
-
out6_1 = self.model6_1(out6)
|
139 |
-
out6_2 = self.model6_2(out6)
|
140 |
-
|
141 |
-
return out6_1, out6_2
|
142 |
-
|
143 |
-
class handpose_model(nn.Module):
|
144 |
-
def __init__(self):
|
145 |
-
super(handpose_model, self).__init__()
|
146 |
-
|
147 |
-
# these layers have no relu layer
|
148 |
-
no_relu_layers = ['conv6_2_CPM', 'Mconv7_stage2', 'Mconv7_stage3',\
|
149 |
-
'Mconv7_stage4', 'Mconv7_stage5', 'Mconv7_stage6']
|
150 |
-
# stage 1
|
151 |
-
block1_0 = OrderedDict([
|
152 |
-
('conv1_1', [3, 64, 3, 1, 1]),
|
153 |
-
('conv1_2', [64, 64, 3, 1, 1]),
|
154 |
-
('pool1_stage1', [2, 2, 0]),
|
155 |
-
('conv2_1', [64, 128, 3, 1, 1]),
|
156 |
-
('conv2_2', [128, 128, 3, 1, 1]),
|
157 |
-
('pool2_stage1', [2, 2, 0]),
|
158 |
-
('conv3_1', [128, 256, 3, 1, 1]),
|
159 |
-
('conv3_2', [256, 256, 3, 1, 1]),
|
160 |
-
('conv3_3', [256, 256, 3, 1, 1]),
|
161 |
-
('conv3_4', [256, 256, 3, 1, 1]),
|
162 |
-
('pool3_stage1', [2, 2, 0]),
|
163 |
-
('conv4_1', [256, 512, 3, 1, 1]),
|
164 |
-
('conv4_2', [512, 512, 3, 1, 1]),
|
165 |
-
('conv4_3', [512, 512, 3, 1, 1]),
|
166 |
-
('conv4_4', [512, 512, 3, 1, 1]),
|
167 |
-
('conv5_1', [512, 512, 3, 1, 1]),
|
168 |
-
('conv5_2', [512, 512, 3, 1, 1]),
|
169 |
-
('conv5_3_CPM', [512, 128, 3, 1, 1])
|
170 |
-
])
|
171 |
-
|
172 |
-
block1_1 = OrderedDict([
|
173 |
-
('conv6_1_CPM', [128, 512, 1, 1, 0]),
|
174 |
-
('conv6_2_CPM', [512, 22, 1, 1, 0])
|
175 |
-
])
|
176 |
-
|
177 |
-
blocks = {}
|
178 |
-
blocks['block1_0'] = block1_0
|
179 |
-
blocks['block1_1'] = block1_1
|
180 |
-
|
181 |
-
# stage 2-6
|
182 |
-
for i in range(2, 7):
|
183 |
-
blocks['block%d' % i] = OrderedDict([
|
184 |
-
('Mconv1_stage%d' % i, [150, 128, 7, 1, 3]),
|
185 |
-
('Mconv2_stage%d' % i, [128, 128, 7, 1, 3]),
|
186 |
-
('Mconv3_stage%d' % i, [128, 128, 7, 1, 3]),
|
187 |
-
('Mconv4_stage%d' % i, [128, 128, 7, 1, 3]),
|
188 |
-
('Mconv5_stage%d' % i, [128, 128, 7, 1, 3]),
|
189 |
-
('Mconv6_stage%d' % i, [128, 128, 1, 1, 0]),
|
190 |
-
('Mconv7_stage%d' % i, [128, 22, 1, 1, 0])
|
191 |
-
])
|
192 |
-
|
193 |
-
for k in blocks.keys():
|
194 |
-
blocks[k] = make_layers(blocks[k], no_relu_layers)
|
195 |
-
|
196 |
-
self.model1_0 = blocks['block1_0']
|
197 |
-
self.model1_1 = blocks['block1_1']
|
198 |
-
self.model2 = blocks['block2']
|
199 |
-
self.model3 = blocks['block3']
|
200 |
-
self.model4 = blocks['block4']
|
201 |
-
self.model5 = blocks['block5']
|
202 |
-
self.model6 = blocks['block6']
|
203 |
-
|
204 |
-
def forward(self, x):
|
205 |
-
out1_0 = self.model1_0(x)
|
206 |
-
out1_1 = self.model1_1(out1_0)
|
207 |
-
concat_stage2 = torch.cat([out1_1, out1_0], 1)
|
208 |
-
out_stage2 = self.model2(concat_stage2)
|
209 |
-
concat_stage3 = torch.cat([out_stage2, out1_0], 1)
|
210 |
-
out_stage3 = self.model3(concat_stage3)
|
211 |
-
concat_stage4 = torch.cat([out_stage3, out1_0], 1)
|
212 |
-
out_stage4 = self.model4(concat_stage4)
|
213 |
-
concat_stage5 = torch.cat([out_stage4, out1_0], 1)
|
214 |
-
out_stage5 = self.model5(concat_stage5)
|
215 |
-
concat_stage6 = torch.cat([out_stage5, out1_0], 1)
|
216 |
-
out_stage6 = self.model6(concat_stage6)
|
217 |
-
return out_stage6
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/openpose/util.py
DELETED
@@ -1,164 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import numpy as np
|
3 |
-
import matplotlib
|
4 |
-
import cv2
|
5 |
-
|
6 |
-
|
7 |
-
def padRightDownCorner(img, stride, padValue):
|
8 |
-
h = img.shape[0]
|
9 |
-
w = img.shape[1]
|
10 |
-
|
11 |
-
pad = 4 * [None]
|
12 |
-
pad[0] = 0 # up
|
13 |
-
pad[1] = 0 # left
|
14 |
-
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
|
15 |
-
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
|
16 |
-
|
17 |
-
img_padded = img
|
18 |
-
pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1))
|
19 |
-
img_padded = np.concatenate((pad_up, img_padded), axis=0)
|
20 |
-
pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1))
|
21 |
-
img_padded = np.concatenate((pad_left, img_padded), axis=1)
|
22 |
-
pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1))
|
23 |
-
img_padded = np.concatenate((img_padded, pad_down), axis=0)
|
24 |
-
pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1))
|
25 |
-
img_padded = np.concatenate((img_padded, pad_right), axis=1)
|
26 |
-
|
27 |
-
return img_padded, pad
|
28 |
-
|
29 |
-
# transfer caffe model to pytorch which will match the layer name
|
30 |
-
def transfer(model, model_weights):
|
31 |
-
transfered_model_weights = {}
|
32 |
-
for weights_name in model.state_dict().keys():
|
33 |
-
transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])]
|
34 |
-
return transfered_model_weights
|
35 |
-
|
36 |
-
# draw the body keypoint and lims
|
37 |
-
def draw_bodypose(canvas, candidate, subset):
|
38 |
-
stickwidth = 4
|
39 |
-
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
|
40 |
-
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
|
41 |
-
[1, 16], [16, 18], [3, 17], [6, 18]]
|
42 |
-
|
43 |
-
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
|
44 |
-
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
|
45 |
-
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
|
46 |
-
for i in range(18):
|
47 |
-
for n in range(len(subset)):
|
48 |
-
index = int(subset[n][i])
|
49 |
-
if index == -1:
|
50 |
-
continue
|
51 |
-
x, y = candidate[index][0:2]
|
52 |
-
cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
|
53 |
-
for i in range(17):
|
54 |
-
for n in range(len(subset)):
|
55 |
-
index = subset[n][np.array(limbSeq[i]) - 1]
|
56 |
-
if -1 in index:
|
57 |
-
continue
|
58 |
-
cur_canvas = canvas.copy()
|
59 |
-
Y = candidate[index.astype(int), 0]
|
60 |
-
X = candidate[index.astype(int), 1]
|
61 |
-
mX = np.mean(X)
|
62 |
-
mY = np.mean(Y)
|
63 |
-
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
|
64 |
-
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
|
65 |
-
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
|
66 |
-
cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
|
67 |
-
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
|
68 |
-
# plt.imsave("preview.jpg", canvas[:, :, [2, 1, 0]])
|
69 |
-
# plt.imshow(canvas[:, :, [2, 1, 0]])
|
70 |
-
return canvas
|
71 |
-
|
72 |
-
|
73 |
-
# image drawed by opencv is not good.
|
74 |
-
def draw_handpose(canvas, all_hand_peaks, show_number=False):
|
75 |
-
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
|
76 |
-
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
|
77 |
-
|
78 |
-
for peaks in all_hand_peaks:
|
79 |
-
for ie, e in enumerate(edges):
|
80 |
-
if np.sum(np.all(peaks[e], axis=1)==0)==0:
|
81 |
-
x1, y1 = peaks[e[0]]
|
82 |
-
x2, y2 = peaks[e[1]]
|
83 |
-
cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie/float(len(edges)), 1.0, 1.0])*255, thickness=2)
|
84 |
-
|
85 |
-
for i, keyponit in enumerate(peaks):
|
86 |
-
x, y = keyponit
|
87 |
-
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
|
88 |
-
if show_number:
|
89 |
-
cv2.putText(canvas, str(i), (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 0), lineType=cv2.LINE_AA)
|
90 |
-
return canvas
|
91 |
-
|
92 |
-
# detect hand according to body pose keypoints
|
93 |
-
# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
|
94 |
-
def handDetect(candidate, subset, oriImg):
|
95 |
-
# right hand: wrist 4, elbow 3, shoulder 2
|
96 |
-
# left hand: wrist 7, elbow 6, shoulder 5
|
97 |
-
ratioWristElbow = 0.33
|
98 |
-
detect_result = []
|
99 |
-
image_height, image_width = oriImg.shape[0:2]
|
100 |
-
for person in subset.astype(int):
|
101 |
-
# if any of three not detected
|
102 |
-
has_left = np.sum(person[[5, 6, 7]] == -1) == 0
|
103 |
-
has_right = np.sum(person[[2, 3, 4]] == -1) == 0
|
104 |
-
if not (has_left or has_right):
|
105 |
-
continue
|
106 |
-
hands = []
|
107 |
-
#left hand
|
108 |
-
if has_left:
|
109 |
-
left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]]
|
110 |
-
x1, y1 = candidate[left_shoulder_index][:2]
|
111 |
-
x2, y2 = candidate[left_elbow_index][:2]
|
112 |
-
x3, y3 = candidate[left_wrist_index][:2]
|
113 |
-
hands.append([x1, y1, x2, y2, x3, y3, True])
|
114 |
-
# right hand
|
115 |
-
if has_right:
|
116 |
-
right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]]
|
117 |
-
x1, y1 = candidate[right_shoulder_index][:2]
|
118 |
-
x2, y2 = candidate[right_elbow_index][:2]
|
119 |
-
x3, y3 = candidate[right_wrist_index][:2]
|
120 |
-
hands.append([x1, y1, x2, y2, x3, y3, False])
|
121 |
-
|
122 |
-
for x1, y1, x2, y2, x3, y3, is_left in hands:
|
123 |
-
# pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox
|
124 |
-
# handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]);
|
125 |
-
# handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]);
|
126 |
-
# const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow);
|
127 |
-
# const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder);
|
128 |
-
# handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder);
|
129 |
-
x = x3 + ratioWristElbow * (x3 - x2)
|
130 |
-
y = y3 + ratioWristElbow * (y3 - y2)
|
131 |
-
distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
|
132 |
-
distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
|
133 |
-
width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
|
134 |
-
# x-y refers to the center --> offset to topLeft point
|
135 |
-
# handRectangle.x -= handRectangle.width / 2.f;
|
136 |
-
# handRectangle.y -= handRectangle.height / 2.f;
|
137 |
-
x -= width / 2
|
138 |
-
y -= width / 2 # width = height
|
139 |
-
# overflow the image
|
140 |
-
if x < 0: x = 0
|
141 |
-
if y < 0: y = 0
|
142 |
-
width1 = width
|
143 |
-
width2 = width
|
144 |
-
if x + width > image_width: width1 = image_width - x
|
145 |
-
if y + width > image_height: width2 = image_height - y
|
146 |
-
width = min(width1, width2)
|
147 |
-
# the max hand box value is 20 pixels
|
148 |
-
if width >= 20:
|
149 |
-
detect_result.append([int(x), int(y), int(width), is_left])
|
150 |
-
|
151 |
-
'''
|
152 |
-
return value: [[x, y, w, True if left hand else False]].
|
153 |
-
width=height since the network require squared input.
|
154 |
-
x, y is the coordinate of top left
|
155 |
-
'''
|
156 |
-
return detect_result
|
157 |
-
|
158 |
-
# get max index of 2d array
|
159 |
-
def npmax(array):
|
160 |
-
arrayindex = array.argmax(1)
|
161 |
-
arrayvalue = array.max(1)
|
162 |
-
i = arrayvalue.argmax()
|
163 |
-
j = arrayindex[i]
|
164 |
-
return i, j
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/uniformer/LICENSE
DELETED
@@ -1,203 +0,0 @@
|
|
1 |
-
Copyright 2022 SenseTime X-Lab. All rights reserved.
|
2 |
-
|
3 |
-
Apache License
|
4 |
-
Version 2.0, January 2004
|
5 |
-
http://www.apache.org/licenses/
|
6 |
-
|
7 |
-
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
8 |
-
|
9 |
-
1. Definitions.
|
10 |
-
|
11 |
-
"License" shall mean the terms and conditions for use, reproduction,
|
12 |
-
and distribution as defined by Sections 1 through 9 of this document.
|
13 |
-
|
14 |
-
"Licensor" shall mean the copyright owner or entity authorized by
|
15 |
-
the copyright owner that is granting the License.
|
16 |
-
|
17 |
-
"Legal Entity" shall mean the union of the acting entity and all
|
18 |
-
other entities that control, are controlled by, or are under common
|
19 |
-
control with that entity. For the purposes of this definition,
|
20 |
-
"control" means (i) the power, direct or indirect, to cause the
|
21 |
-
direction or management of such entity, whether by contract or
|
22 |
-
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
23 |
-
outstanding shares, or (iii) beneficial ownership of such entity.
|
24 |
-
|
25 |
-
"You" (or "Your") shall mean an individual or Legal Entity
|
26 |
-
exercising permissions granted by this License.
|
27 |
-
|
28 |
-
"Source" form shall mean the preferred form for making modifications,
|
29 |
-
including but not limited to software source code, documentation
|
30 |
-
source, and configuration files.
|
31 |
-
|
32 |
-
"Object" form shall mean any form resulting from mechanical
|
33 |
-
transformation or translation of a Source form, including but
|
34 |
-
not limited to compiled object code, generated documentation,
|
35 |
-
and conversions to other media types.
|
36 |
-
|
37 |
-
"Work" shall mean the work of authorship, whether in Source or
|
38 |
-
Object form, made available under the License, as indicated by a
|
39 |
-
copyright notice that is included in or attached to the work
|
40 |
-
(an example is provided in the Appendix below).
|
41 |
-
|
42 |
-
"Derivative Works" shall mean any work, whether in Source or Object
|
43 |
-
form, that is based on (or derived from) the Work and for which the
|
44 |
-
editorial revisions, annotations, elaborations, or other modifications
|
45 |
-
represent, as a whole, an original work of authorship. For the purposes
|
46 |
-
of this License, Derivative Works shall not include works that remain
|
47 |
-
separable from, or merely link (or bind by name) to the interfaces of,
|
48 |
-
the Work and Derivative Works thereof.
|
49 |
-
|
50 |
-
"Contribution" shall mean any work of authorship, including
|
51 |
-
the original version of the Work and any modifications or additions
|
52 |
-
to that Work or Derivative Works thereof, that is intentionally
|
53 |
-
submitted to Licensor for inclusion in the Work by the copyright owner
|
54 |
-
or by an individual or Legal Entity authorized to submit on behalf of
|
55 |
-
the copyright owner. For the purposes of this definition, "submitted"
|
56 |
-
means any form of electronic, verbal, or written communication sent
|
57 |
-
to the Licensor or its representatives, including but not limited to
|
58 |
-
communication on electronic mailing lists, source code control systems,
|
59 |
-
and issue tracking systems that are managed by, or on behalf of, the
|
60 |
-
Licensor for the purpose of discussing and improving the Work, but
|
61 |
-
excluding communication that is conspicuously marked or otherwise
|
62 |
-
designated in writing by the copyright owner as "Not a Contribution."
|
63 |
-
|
64 |
-
"Contributor" shall mean Licensor and any individual or Legal Entity
|
65 |
-
on behalf of whom a Contribution has been received by Licensor and
|
66 |
-
subsequently incorporated within the Work.
|
67 |
-
|
68 |
-
2. Grant of Copyright License. Subject to the terms and conditions of
|
69 |
-
this License, each Contributor hereby grants to You a perpetual,
|
70 |
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
71 |
-
copyright license to reproduce, prepare Derivative Works of,
|
72 |
-
publicly display, publicly perform, sublicense, and distribute the
|
73 |
-
Work and such Derivative Works in Source or Object form.
|
74 |
-
|
75 |
-
3. Grant of Patent License. Subject to the terms and conditions of
|
76 |
-
this License, each Contributor hereby grants to You a perpetual,
|
77 |
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
78 |
-
(except as stated in this section) patent license to make, have made,
|
79 |
-
use, offer to sell, sell, import, and otherwise transfer the Work,
|
80 |
-
where such license applies only to those patent claims licensable
|
81 |
-
by such Contributor that are necessarily infringed by their
|
82 |
-
Contribution(s) alone or by combination of their Contribution(s)
|
83 |
-
with the Work to which such Contribution(s) was submitted. If You
|
84 |
-
institute patent litigation against any entity (including a
|
85 |
-
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
86 |
-
or a Contribution incorporated within the Work constitutes direct
|
87 |
-
or contributory patent infringement, then any patent licenses
|
88 |
-
granted to You under this License for that Work shall terminate
|
89 |
-
as of the date such litigation is filed.
|
90 |
-
|
91 |
-
4. Redistribution. You may reproduce and distribute copies of the
|
92 |
-
Work or Derivative Works thereof in any medium, with or without
|
93 |
-
modifications, and in Source or Object form, provided that You
|
94 |
-
meet the following conditions:
|
95 |
-
|
96 |
-
(a) You must give any other recipients of the Work or
|
97 |
-
Derivative Works a copy of this License; and
|
98 |
-
|
99 |
-
(b) You must cause any modified files to carry prominent notices
|
100 |
-
stating that You changed the files; and
|
101 |
-
|
102 |
-
(c) You must retain, in the Source form of any Derivative Works
|
103 |
-
that You distribute, all copyright, patent, trademark, and
|
104 |
-
attribution notices from the Source form of the Work,
|
105 |
-
excluding those notices that do not pertain to any part of
|
106 |
-
the Derivative Works; and
|
107 |
-
|
108 |
-
(d) If the Work includes a "NOTICE" text file as part of its
|
109 |
-
distribution, then any Derivative Works that You distribute must
|
110 |
-
include a readable copy of the attribution notices contained
|
111 |
-
within such NOTICE file, excluding those notices that do not
|
112 |
-
pertain to any part of the Derivative Works, in at least one
|
113 |
-
of the following places: within a NOTICE text file distributed
|
114 |
-
as part of the Derivative Works; within the Source form or
|
115 |
-
documentation, if provided along with the Derivative Works; or,
|
116 |
-
within a display generated by the Derivative Works, if and
|
117 |
-
wherever such third-party notices normally appear. The contents
|
118 |
-
of the NOTICE file are for informational purposes only and
|
119 |
-
do not modify the License. You may add Your own attribution
|
120 |
-
notices within Derivative Works that You distribute, alongside
|
121 |
-
or as an addendum to the NOTICE text from the Work, provided
|
122 |
-
that such additional attribution notices cannot be construed
|
123 |
-
as modifying the License.
|
124 |
-
|
125 |
-
You may add Your own copyright statement to Your modifications and
|
126 |
-
may provide additional or different license terms and conditions
|
127 |
-
for use, reproduction, or distribution of Your modifications, or
|
128 |
-
for any such Derivative Works as a whole, provided Your use,
|
129 |
-
reproduction, and distribution of the Work otherwise complies with
|
130 |
-
the conditions stated in this License.
|
131 |
-
|
132 |
-
5. Submission of Contributions. Unless You explicitly state otherwise,
|
133 |
-
any Contribution intentionally submitted for inclusion in the Work
|
134 |
-
by You to the Licensor shall be under the terms and conditions of
|
135 |
-
this License, without any additional terms or conditions.
|
136 |
-
Notwithstanding the above, nothing herein shall supersede or modify
|
137 |
-
the terms of any separate license agreement you may have executed
|
138 |
-
with Licensor regarding such Contributions.
|
139 |
-
|
140 |
-
6. Trademarks. This License does not grant permission to use the trade
|
141 |
-
names, trademarks, service marks, or product names of the Licensor,
|
142 |
-
except as required for reasonable and customary use in describing the
|
143 |
-
origin of the Work and reproducing the content of the NOTICE file.
|
144 |
-
|
145 |
-
7. Disclaimer of Warranty. Unless required by applicable law or
|
146 |
-
agreed to in writing, Licensor provides the Work (and each
|
147 |
-
Contributor provides its Contributions) on an "AS IS" BASIS,
|
148 |
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
149 |
-
implied, including, without limitation, any warranties or conditions
|
150 |
-
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
151 |
-
PARTICULAR PURPOSE. You are solely responsible for determining the
|
152 |
-
appropriateness of using or redistributing the Work and assume any
|
153 |
-
risks associated with Your exercise of permissions under this License.
|
154 |
-
|
155 |
-
8. Limitation of Liability. In no event and under no legal theory,
|
156 |
-
whether in tort (including negligence), contract, or otherwise,
|
157 |
-
unless required by applicable law (such as deliberate and grossly
|
158 |
-
negligent acts) or agreed to in writing, shall any Contributor be
|
159 |
-
liable to You for damages, including any direct, indirect, special,
|
160 |
-
incidental, or consequential damages of any character arising as a
|
161 |
-
result of this License or out of the use or inability to use the
|
162 |
-
Work (including but not limited to damages for loss of goodwill,
|
163 |
-
work stoppage, computer failure or malfunction, or any and all
|
164 |
-
other commercial damages or losses), even if such Contributor
|
165 |
-
has been advised of the possibility of such damages.
|
166 |
-
|
167 |
-
9. Accepting Warranty or Additional Liability. While redistributing
|
168 |
-
the Work or Derivative Works thereof, You may choose to offer,
|
169 |
-
and charge a fee for, acceptance of support, warranty, indemnity,
|
170 |
-
or other liability obligations and/or rights consistent with this
|
171 |
-
License. However, in accepting such obligations, You may act only
|
172 |
-
on Your own behalf and on Your sole responsibility, not on behalf
|
173 |
-
of any other Contributor, and only if You agree to indemnify,
|
174 |
-
defend, and hold each Contributor harmless for any liability
|
175 |
-
incurred by, or claims asserted against, such Contributor by reason
|
176 |
-
of your accepting any such warranty or additional liability.
|
177 |
-
|
178 |
-
END OF TERMS AND CONDITIONS
|
179 |
-
|
180 |
-
APPENDIX: How to apply the Apache License to your work.
|
181 |
-
|
182 |
-
To apply the Apache License to your work, attach the following
|
183 |
-
boilerplate notice, with the fields enclosed by brackets "[]"
|
184 |
-
replaced with your own identifying information. (Don't include
|
185 |
-
the brackets!) The text should be enclosed in the appropriate
|
186 |
-
comment syntax for the file format. We also recommend that a
|
187 |
-
file or class name and description of purpose be included on the
|
188 |
-
same "printed page" as the copyright notice for easier
|
189 |
-
identification within third-party archives.
|
190 |
-
|
191 |
-
Copyright 2022 SenseTime X-Lab.
|
192 |
-
|
193 |
-
Licensed under the Apache License, Version 2.0 (the "License");
|
194 |
-
you may not use this file except in compliance with the License.
|
195 |
-
You may obtain a copy of the License at
|
196 |
-
|
197 |
-
http://www.apache.org/licenses/LICENSE-2.0
|
198 |
-
|
199 |
-
Unless required by applicable law or agreed to in writing, software
|
200 |
-
distributed under the License is distributed on an "AS IS" BASIS,
|
201 |
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
202 |
-
See the License for the specific language governing permissions and
|
203 |
-
limitations under the License.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/uniformer/__init__.py
DELETED
@@ -1,27 +0,0 @@
|
|
1 |
-
# Uniformer
|
2 |
-
# From https://github.com/Sense-X/UniFormer
|
3 |
-
# # Apache-2.0 license
|
4 |
-
|
5 |
-
import os
|
6 |
-
|
7 |
-
from annotator.uniformer.mmseg.apis import init_segmentor, inference_segmentor, show_result_pyplot
|
8 |
-
from annotator.uniformer.mmseg.core.evaluation import get_palette
|
9 |
-
from annotator.util import annotator_ckpts_path
|
10 |
-
|
11 |
-
|
12 |
-
checkpoint_file = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/upernet_global_small.pth"
|
13 |
-
|
14 |
-
|
15 |
-
class UniformerDetector:
|
16 |
-
def __init__(self):
|
17 |
-
modelpath = os.path.join(annotator_ckpts_path, "upernet_global_small.pth")
|
18 |
-
if not os.path.exists(modelpath):
|
19 |
-
from basicsr.utils.download_util import load_file_from_url
|
20 |
-
load_file_from_url(checkpoint_file, model_dir=annotator_ckpts_path)
|
21 |
-
config_file = os.path.join(os.path.dirname(annotator_ckpts_path), "uniformer", "exp", "upernet_global_small", "config.py")
|
22 |
-
self.model = init_segmentor(config_file, modelpath).cuda()
|
23 |
-
|
24 |
-
def __call__(self, img):
|
25 |
-
result = inference_segmentor(self.model, img)
|
26 |
-
res_img = show_result_pyplot(self.model, img, result, get_palette('ade'), opacity=1)
|
27 |
-
return res_img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/uniformer/configs/_base_/default_runtime.py
DELETED
@@ -1,14 +0,0 @@
|
|
1 |
-
# yapf:disable
|
2 |
-
log_config = dict(
|
3 |
-
interval=50,
|
4 |
-
hooks=[
|
5 |
-
dict(type='TextLoggerHook', by_epoch=False),
|
6 |
-
# dict(type='TensorboardLoggerHook')
|
7 |
-
])
|
8 |
-
# yapf:enable
|
9 |
-
dist_params = dict(backend='nccl')
|
10 |
-
log_level = 'INFO'
|
11 |
-
load_from = None
|
12 |
-
resume_from = None
|
13 |
-
workflow = [('train', 1)]
|
14 |
-
cudnn_benchmark = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/uniformer/configs/_base_/models/ann_r50-d8.py
DELETED
@@ -1,46 +0,0 @@
|
|
1 |
-
# model settings
|
2 |
-
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
-
model = dict(
|
4 |
-
type='EncoderDecoder',
|
5 |
-
pretrained='open-mmlab://resnet50_v1c',
|
6 |
-
backbone=dict(
|
7 |
-
type='ResNetV1c',
|
8 |
-
depth=50,
|
9 |
-
num_stages=4,
|
10 |
-
out_indices=(0, 1, 2, 3),
|
11 |
-
dilations=(1, 1, 2, 4),
|
12 |
-
strides=(1, 2, 1, 1),
|
13 |
-
norm_cfg=norm_cfg,
|
14 |
-
norm_eval=False,
|
15 |
-
style='pytorch',
|
16 |
-
contract_dilation=True),
|
17 |
-
decode_head=dict(
|
18 |
-
type='ANNHead',
|
19 |
-
in_channels=[1024, 2048],
|
20 |
-
in_index=[2, 3],
|
21 |
-
channels=512,
|
22 |
-
project_channels=256,
|
23 |
-
query_scales=(1, ),
|
24 |
-
key_pool_scales=(1, 3, 6, 8),
|
25 |
-
dropout_ratio=0.1,
|
26 |
-
num_classes=19,
|
27 |
-
norm_cfg=norm_cfg,
|
28 |
-
align_corners=False,
|
29 |
-
loss_decode=dict(
|
30 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
31 |
-
auxiliary_head=dict(
|
32 |
-
type='FCNHead',
|
33 |
-
in_channels=1024,
|
34 |
-
in_index=2,
|
35 |
-
channels=256,
|
36 |
-
num_convs=1,
|
37 |
-
concat_input=False,
|
38 |
-
dropout_ratio=0.1,
|
39 |
-
num_classes=19,
|
40 |
-
norm_cfg=norm_cfg,
|
41 |
-
align_corners=False,
|
42 |
-
loss_decode=dict(
|
43 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
44 |
-
# model training and testing settings
|
45 |
-
train_cfg=dict(),
|
46 |
-
test_cfg=dict(mode='whole'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/uniformer/configs/_base_/models/apcnet_r50-d8.py
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
# model settings
|
2 |
-
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
-
model = dict(
|
4 |
-
type='EncoderDecoder',
|
5 |
-
pretrained='open-mmlab://resnet50_v1c',
|
6 |
-
backbone=dict(
|
7 |
-
type='ResNetV1c',
|
8 |
-
depth=50,
|
9 |
-
num_stages=4,
|
10 |
-
out_indices=(0, 1, 2, 3),
|
11 |
-
dilations=(1, 1, 2, 4),
|
12 |
-
strides=(1, 2, 1, 1),
|
13 |
-
norm_cfg=norm_cfg,
|
14 |
-
norm_eval=False,
|
15 |
-
style='pytorch',
|
16 |
-
contract_dilation=True),
|
17 |
-
decode_head=dict(
|
18 |
-
type='APCHead',
|
19 |
-
in_channels=2048,
|
20 |
-
in_index=3,
|
21 |
-
channels=512,
|
22 |
-
pool_scales=(1, 2, 3, 6),
|
23 |
-
dropout_ratio=0.1,
|
24 |
-
num_classes=19,
|
25 |
-
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
26 |
-
align_corners=False,
|
27 |
-
loss_decode=dict(
|
28 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
29 |
-
auxiliary_head=dict(
|
30 |
-
type='FCNHead',
|
31 |
-
in_channels=1024,
|
32 |
-
in_index=2,
|
33 |
-
channels=256,
|
34 |
-
num_convs=1,
|
35 |
-
concat_input=False,
|
36 |
-
dropout_ratio=0.1,
|
37 |
-
num_classes=19,
|
38 |
-
norm_cfg=norm_cfg,
|
39 |
-
align_corners=False,
|
40 |
-
loss_decode=dict(
|
41 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
42 |
-
# model training and testing settings
|
43 |
-
train_cfg=dict(),
|
44 |
-
test_cfg=dict(mode='whole'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/uniformer/configs/_base_/models/ccnet_r50-d8.py
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
# model settings
|
2 |
-
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
-
model = dict(
|
4 |
-
type='EncoderDecoder',
|
5 |
-
pretrained='open-mmlab://resnet50_v1c',
|
6 |
-
backbone=dict(
|
7 |
-
type='ResNetV1c',
|
8 |
-
depth=50,
|
9 |
-
num_stages=4,
|
10 |
-
out_indices=(0, 1, 2, 3),
|
11 |
-
dilations=(1, 1, 2, 4),
|
12 |
-
strides=(1, 2, 1, 1),
|
13 |
-
norm_cfg=norm_cfg,
|
14 |
-
norm_eval=False,
|
15 |
-
style='pytorch',
|
16 |
-
contract_dilation=True),
|
17 |
-
decode_head=dict(
|
18 |
-
type='CCHead',
|
19 |
-
in_channels=2048,
|
20 |
-
in_index=3,
|
21 |
-
channels=512,
|
22 |
-
recurrence=2,
|
23 |
-
dropout_ratio=0.1,
|
24 |
-
num_classes=19,
|
25 |
-
norm_cfg=norm_cfg,
|
26 |
-
align_corners=False,
|
27 |
-
loss_decode=dict(
|
28 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
29 |
-
auxiliary_head=dict(
|
30 |
-
type='FCNHead',
|
31 |
-
in_channels=1024,
|
32 |
-
in_index=2,
|
33 |
-
channels=256,
|
34 |
-
num_convs=1,
|
35 |
-
concat_input=False,
|
36 |
-
dropout_ratio=0.1,
|
37 |
-
num_classes=19,
|
38 |
-
norm_cfg=norm_cfg,
|
39 |
-
align_corners=False,
|
40 |
-
loss_decode=dict(
|
41 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
42 |
-
# model training and testing settings
|
43 |
-
train_cfg=dict(),
|
44 |
-
test_cfg=dict(mode='whole'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/uniformer/configs/_base_/models/cgnet.py
DELETED
@@ -1,35 +0,0 @@
|
|
1 |
-
# model settings
|
2 |
-
norm_cfg = dict(type='SyncBN', eps=1e-03, requires_grad=True)
|
3 |
-
model = dict(
|
4 |
-
type='EncoderDecoder',
|
5 |
-
backbone=dict(
|
6 |
-
type='CGNet',
|
7 |
-
norm_cfg=norm_cfg,
|
8 |
-
in_channels=3,
|
9 |
-
num_channels=(32, 64, 128),
|
10 |
-
num_blocks=(3, 21),
|
11 |
-
dilations=(2, 4),
|
12 |
-
reductions=(8, 16)),
|
13 |
-
decode_head=dict(
|
14 |
-
type='FCNHead',
|
15 |
-
in_channels=256,
|
16 |
-
in_index=2,
|
17 |
-
channels=256,
|
18 |
-
num_convs=0,
|
19 |
-
concat_input=False,
|
20 |
-
dropout_ratio=0,
|
21 |
-
num_classes=19,
|
22 |
-
norm_cfg=norm_cfg,
|
23 |
-
loss_decode=dict(
|
24 |
-
type='CrossEntropyLoss',
|
25 |
-
use_sigmoid=False,
|
26 |
-
loss_weight=1.0,
|
27 |
-
class_weight=[
|
28 |
-
2.5959933, 6.7415504, 3.5354059, 9.8663225, 9.690899, 9.369352,
|
29 |
-
10.289121, 9.953208, 4.3097677, 9.490387, 7.674431, 9.396905,
|
30 |
-
10.347791, 6.3927646, 10.226669, 10.241062, 10.280587,
|
31 |
-
10.396974, 10.055647
|
32 |
-
])),
|
33 |
-
# model training and testing settings
|
34 |
-
train_cfg=dict(sampler=None),
|
35 |
-
test_cfg=dict(mode='whole'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/uniformer/configs/_base_/models/danet_r50-d8.py
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
# model settings
|
2 |
-
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
-
model = dict(
|
4 |
-
type='EncoderDecoder',
|
5 |
-
pretrained='open-mmlab://resnet50_v1c',
|
6 |
-
backbone=dict(
|
7 |
-
type='ResNetV1c',
|
8 |
-
depth=50,
|
9 |
-
num_stages=4,
|
10 |
-
out_indices=(0, 1, 2, 3),
|
11 |
-
dilations=(1, 1, 2, 4),
|
12 |
-
strides=(1, 2, 1, 1),
|
13 |
-
norm_cfg=norm_cfg,
|
14 |
-
norm_eval=False,
|
15 |
-
style='pytorch',
|
16 |
-
contract_dilation=True),
|
17 |
-
decode_head=dict(
|
18 |
-
type='DAHead',
|
19 |
-
in_channels=2048,
|
20 |
-
in_index=3,
|
21 |
-
channels=512,
|
22 |
-
pam_channels=64,
|
23 |
-
dropout_ratio=0.1,
|
24 |
-
num_classes=19,
|
25 |
-
norm_cfg=norm_cfg,
|
26 |
-
align_corners=False,
|
27 |
-
loss_decode=dict(
|
28 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
29 |
-
auxiliary_head=dict(
|
30 |
-
type='FCNHead',
|
31 |
-
in_channels=1024,
|
32 |
-
in_index=2,
|
33 |
-
channels=256,
|
34 |
-
num_convs=1,
|
35 |
-
concat_input=False,
|
36 |
-
dropout_ratio=0.1,
|
37 |
-
num_classes=19,
|
38 |
-
norm_cfg=norm_cfg,
|
39 |
-
align_corners=False,
|
40 |
-
loss_decode=dict(
|
41 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
42 |
-
# model training and testing settings
|
43 |
-
train_cfg=dict(),
|
44 |
-
test_cfg=dict(mode='whole'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/uniformer/configs/_base_/models/deeplabv3_r50-d8.py
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
# model settings
|
2 |
-
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
-
model = dict(
|
4 |
-
type='EncoderDecoder',
|
5 |
-
pretrained='open-mmlab://resnet50_v1c',
|
6 |
-
backbone=dict(
|
7 |
-
type='ResNetV1c',
|
8 |
-
depth=50,
|
9 |
-
num_stages=4,
|
10 |
-
out_indices=(0, 1, 2, 3),
|
11 |
-
dilations=(1, 1, 2, 4),
|
12 |
-
strides=(1, 2, 1, 1),
|
13 |
-
norm_cfg=norm_cfg,
|
14 |
-
norm_eval=False,
|
15 |
-
style='pytorch',
|
16 |
-
contract_dilation=True),
|
17 |
-
decode_head=dict(
|
18 |
-
type='ASPPHead',
|
19 |
-
in_channels=2048,
|
20 |
-
in_index=3,
|
21 |
-
channels=512,
|
22 |
-
dilations=(1, 12, 24, 36),
|
23 |
-
dropout_ratio=0.1,
|
24 |
-
num_classes=19,
|
25 |
-
norm_cfg=norm_cfg,
|
26 |
-
align_corners=False,
|
27 |
-
loss_decode=dict(
|
28 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
29 |
-
auxiliary_head=dict(
|
30 |
-
type='FCNHead',
|
31 |
-
in_channels=1024,
|
32 |
-
in_index=2,
|
33 |
-
channels=256,
|
34 |
-
num_convs=1,
|
35 |
-
concat_input=False,
|
36 |
-
dropout_ratio=0.1,
|
37 |
-
num_classes=19,
|
38 |
-
norm_cfg=norm_cfg,
|
39 |
-
align_corners=False,
|
40 |
-
loss_decode=dict(
|
41 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
42 |
-
# model training and testing settings
|
43 |
-
train_cfg=dict(),
|
44 |
-
test_cfg=dict(mode='whole'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/uniformer/configs/_base_/models/deeplabv3_unet_s5-d16.py
DELETED
@@ -1,50 +0,0 @@
|
|
1 |
-
# model settings
|
2 |
-
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
-
model = dict(
|
4 |
-
type='EncoderDecoder',
|
5 |
-
pretrained=None,
|
6 |
-
backbone=dict(
|
7 |
-
type='UNet',
|
8 |
-
in_channels=3,
|
9 |
-
base_channels=64,
|
10 |
-
num_stages=5,
|
11 |
-
strides=(1, 1, 1, 1, 1),
|
12 |
-
enc_num_convs=(2, 2, 2, 2, 2),
|
13 |
-
dec_num_convs=(2, 2, 2, 2),
|
14 |
-
downsamples=(True, True, True, True),
|
15 |
-
enc_dilations=(1, 1, 1, 1, 1),
|
16 |
-
dec_dilations=(1, 1, 1, 1),
|
17 |
-
with_cp=False,
|
18 |
-
conv_cfg=None,
|
19 |
-
norm_cfg=norm_cfg,
|
20 |
-
act_cfg=dict(type='ReLU'),
|
21 |
-
upsample_cfg=dict(type='InterpConv'),
|
22 |
-
norm_eval=False),
|
23 |
-
decode_head=dict(
|
24 |
-
type='ASPPHead',
|
25 |
-
in_channels=64,
|
26 |
-
in_index=4,
|
27 |
-
channels=16,
|
28 |
-
dilations=(1, 12, 24, 36),
|
29 |
-
dropout_ratio=0.1,
|
30 |
-
num_classes=2,
|
31 |
-
norm_cfg=norm_cfg,
|
32 |
-
align_corners=False,
|
33 |
-
loss_decode=dict(
|
34 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
35 |
-
auxiliary_head=dict(
|
36 |
-
type='FCNHead',
|
37 |
-
in_channels=128,
|
38 |
-
in_index=3,
|
39 |
-
channels=64,
|
40 |
-
num_convs=1,
|
41 |
-
concat_input=False,
|
42 |
-
dropout_ratio=0.1,
|
43 |
-
num_classes=2,
|
44 |
-
norm_cfg=norm_cfg,
|
45 |
-
align_corners=False,
|
46 |
-
loss_decode=dict(
|
47 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
48 |
-
# model training and testing settings
|
49 |
-
train_cfg=dict(),
|
50 |
-
test_cfg=dict(mode='slide', crop_size=256, stride=170))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/uniformer/configs/_base_/models/deeplabv3plus_r50-d8.py
DELETED
@@ -1,46 +0,0 @@
|
|
1 |
-
# model settings
|
2 |
-
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
-
model = dict(
|
4 |
-
type='EncoderDecoder',
|
5 |
-
pretrained='open-mmlab://resnet50_v1c',
|
6 |
-
backbone=dict(
|
7 |
-
type='ResNetV1c',
|
8 |
-
depth=50,
|
9 |
-
num_stages=4,
|
10 |
-
out_indices=(0, 1, 2, 3),
|
11 |
-
dilations=(1, 1, 2, 4),
|
12 |
-
strides=(1, 2, 1, 1),
|
13 |
-
norm_cfg=norm_cfg,
|
14 |
-
norm_eval=False,
|
15 |
-
style='pytorch',
|
16 |
-
contract_dilation=True),
|
17 |
-
decode_head=dict(
|
18 |
-
type='DepthwiseSeparableASPPHead',
|
19 |
-
in_channels=2048,
|
20 |
-
in_index=3,
|
21 |
-
channels=512,
|
22 |
-
dilations=(1, 12, 24, 36),
|
23 |
-
c1_in_channels=256,
|
24 |
-
c1_channels=48,
|
25 |
-
dropout_ratio=0.1,
|
26 |
-
num_classes=19,
|
27 |
-
norm_cfg=norm_cfg,
|
28 |
-
align_corners=False,
|
29 |
-
loss_decode=dict(
|
30 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
31 |
-
auxiliary_head=dict(
|
32 |
-
type='FCNHead',
|
33 |
-
in_channels=1024,
|
34 |
-
in_index=2,
|
35 |
-
channels=256,
|
36 |
-
num_convs=1,
|
37 |
-
concat_input=False,
|
38 |
-
dropout_ratio=0.1,
|
39 |
-
num_classes=19,
|
40 |
-
norm_cfg=norm_cfg,
|
41 |
-
align_corners=False,
|
42 |
-
loss_decode=dict(
|
43 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
44 |
-
# model training and testing settings
|
45 |
-
train_cfg=dict(),
|
46 |
-
test_cfg=dict(mode='whole'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/uniformer/configs/_base_/models/dmnet_r50-d8.py
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
# model settings
|
2 |
-
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
-
model = dict(
|
4 |
-
type='EncoderDecoder',
|
5 |
-
pretrained='open-mmlab://resnet50_v1c',
|
6 |
-
backbone=dict(
|
7 |
-
type='ResNetV1c',
|
8 |
-
depth=50,
|
9 |
-
num_stages=4,
|
10 |
-
out_indices=(0, 1, 2, 3),
|
11 |
-
dilations=(1, 1, 2, 4),
|
12 |
-
strides=(1, 2, 1, 1),
|
13 |
-
norm_cfg=norm_cfg,
|
14 |
-
norm_eval=False,
|
15 |
-
style='pytorch',
|
16 |
-
contract_dilation=True),
|
17 |
-
decode_head=dict(
|
18 |
-
type='DMHead',
|
19 |
-
in_channels=2048,
|
20 |
-
in_index=3,
|
21 |
-
channels=512,
|
22 |
-
filter_sizes=(1, 3, 5, 7),
|
23 |
-
dropout_ratio=0.1,
|
24 |
-
num_classes=19,
|
25 |
-
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
26 |
-
align_corners=False,
|
27 |
-
loss_decode=dict(
|
28 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
29 |
-
auxiliary_head=dict(
|
30 |
-
type='FCNHead',
|
31 |
-
in_channels=1024,
|
32 |
-
in_index=2,
|
33 |
-
channels=256,
|
34 |
-
num_convs=1,
|
35 |
-
concat_input=False,
|
36 |
-
dropout_ratio=0.1,
|
37 |
-
num_classes=19,
|
38 |
-
norm_cfg=norm_cfg,
|
39 |
-
align_corners=False,
|
40 |
-
loss_decode=dict(
|
41 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
42 |
-
# model training and testing settings
|
43 |
-
train_cfg=dict(),
|
44 |
-
test_cfg=dict(mode='whole'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/uniformer/configs/_base_/models/dnl_r50-d8.py
DELETED
@@ -1,46 +0,0 @@
|
|
1 |
-
# model settings
|
2 |
-
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
-
model = dict(
|
4 |
-
type='EncoderDecoder',
|
5 |
-
pretrained='open-mmlab://resnet50_v1c',
|
6 |
-
backbone=dict(
|
7 |
-
type='ResNetV1c',
|
8 |
-
depth=50,
|
9 |
-
num_stages=4,
|
10 |
-
out_indices=(0, 1, 2, 3),
|
11 |
-
dilations=(1, 1, 2, 4),
|
12 |
-
strides=(1, 2, 1, 1),
|
13 |
-
norm_cfg=norm_cfg,
|
14 |
-
norm_eval=False,
|
15 |
-
style='pytorch',
|
16 |
-
contract_dilation=True),
|
17 |
-
decode_head=dict(
|
18 |
-
type='DNLHead',
|
19 |
-
in_channels=2048,
|
20 |
-
in_index=3,
|
21 |
-
channels=512,
|
22 |
-
dropout_ratio=0.1,
|
23 |
-
reduction=2,
|
24 |
-
use_scale=True,
|
25 |
-
mode='embedded_gaussian',
|
26 |
-
num_classes=19,
|
27 |
-
norm_cfg=norm_cfg,
|
28 |
-
align_corners=False,
|
29 |
-
loss_decode=dict(
|
30 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
31 |
-
auxiliary_head=dict(
|
32 |
-
type='FCNHead',
|
33 |
-
in_channels=1024,
|
34 |
-
in_index=2,
|
35 |
-
channels=256,
|
36 |
-
num_convs=1,
|
37 |
-
concat_input=False,
|
38 |
-
dropout_ratio=0.1,
|
39 |
-
num_classes=19,
|
40 |
-
norm_cfg=norm_cfg,
|
41 |
-
align_corners=False,
|
42 |
-
loss_decode=dict(
|
43 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
44 |
-
# model training and testing settings
|
45 |
-
train_cfg=dict(),
|
46 |
-
test_cfg=dict(mode='whole'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/uniformer/configs/_base_/models/emanet_r50-d8.py
DELETED
@@ -1,47 +0,0 @@
|
|
1 |
-
# model settings
|
2 |
-
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
-
model = dict(
|
4 |
-
type='EncoderDecoder',
|
5 |
-
pretrained='open-mmlab://resnet50_v1c',
|
6 |
-
backbone=dict(
|
7 |
-
type='ResNetV1c',
|
8 |
-
depth=50,
|
9 |
-
num_stages=4,
|
10 |
-
out_indices=(0, 1, 2, 3),
|
11 |
-
dilations=(1, 1, 2, 4),
|
12 |
-
strides=(1, 2, 1, 1),
|
13 |
-
norm_cfg=norm_cfg,
|
14 |
-
norm_eval=False,
|
15 |
-
style='pytorch',
|
16 |
-
contract_dilation=True),
|
17 |
-
decode_head=dict(
|
18 |
-
type='EMAHead',
|
19 |
-
in_channels=2048,
|
20 |
-
in_index=3,
|
21 |
-
channels=256,
|
22 |
-
ema_channels=512,
|
23 |
-
num_bases=64,
|
24 |
-
num_stages=3,
|
25 |
-
momentum=0.1,
|
26 |
-
dropout_ratio=0.1,
|
27 |
-
num_classes=19,
|
28 |
-
norm_cfg=norm_cfg,
|
29 |
-
align_corners=False,
|
30 |
-
loss_decode=dict(
|
31 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
32 |
-
auxiliary_head=dict(
|
33 |
-
type='FCNHead',
|
34 |
-
in_channels=1024,
|
35 |
-
in_index=2,
|
36 |
-
channels=256,
|
37 |
-
num_convs=1,
|
38 |
-
concat_input=False,
|
39 |
-
dropout_ratio=0.1,
|
40 |
-
num_classes=19,
|
41 |
-
norm_cfg=norm_cfg,
|
42 |
-
align_corners=False,
|
43 |
-
loss_decode=dict(
|
44 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
45 |
-
# model training and testing settings
|
46 |
-
train_cfg=dict(),
|
47 |
-
test_cfg=dict(mode='whole'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/uniformer/configs/_base_/models/encnet_r50-d8.py
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
# model settings
|
2 |
-
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
-
model = dict(
|
4 |
-
type='EncoderDecoder',
|
5 |
-
pretrained='open-mmlab://resnet50_v1c',
|
6 |
-
backbone=dict(
|
7 |
-
type='ResNetV1c',
|
8 |
-
depth=50,
|
9 |
-
num_stages=4,
|
10 |
-
out_indices=(0, 1, 2, 3),
|
11 |
-
dilations=(1, 1, 2, 4),
|
12 |
-
strides=(1, 2, 1, 1),
|
13 |
-
norm_cfg=norm_cfg,
|
14 |
-
norm_eval=False,
|
15 |
-
style='pytorch',
|
16 |
-
contract_dilation=True),
|
17 |
-
decode_head=dict(
|
18 |
-
type='EncHead',
|
19 |
-
in_channels=[512, 1024, 2048],
|
20 |
-
in_index=(1, 2, 3),
|
21 |
-
channels=512,
|
22 |
-
num_codes=32,
|
23 |
-
use_se_loss=True,
|
24 |
-
add_lateral=False,
|
25 |
-
dropout_ratio=0.1,
|
26 |
-
num_classes=19,
|
27 |
-
norm_cfg=norm_cfg,
|
28 |
-
align_corners=False,
|
29 |
-
loss_decode=dict(
|
30 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
31 |
-
loss_se_decode=dict(
|
32 |
-
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.2)),
|
33 |
-
auxiliary_head=dict(
|
34 |
-
type='FCNHead',
|
35 |
-
in_channels=1024,
|
36 |
-
in_index=2,
|
37 |
-
channels=256,
|
38 |
-
num_convs=1,
|
39 |
-
concat_input=False,
|
40 |
-
dropout_ratio=0.1,
|
41 |
-
num_classes=19,
|
42 |
-
norm_cfg=norm_cfg,
|
43 |
-
align_corners=False,
|
44 |
-
loss_decode=dict(
|
45 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
46 |
-
# model training and testing settings
|
47 |
-
train_cfg=dict(),
|
48 |
-
test_cfg=dict(mode='whole'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/uniformer/configs/_base_/models/fast_scnn.py
DELETED
@@ -1,57 +0,0 @@
|
|
1 |
-
# model settings
|
2 |
-
norm_cfg = dict(type='SyncBN', requires_grad=True, momentum=0.01)
|
3 |
-
model = dict(
|
4 |
-
type='EncoderDecoder',
|
5 |
-
backbone=dict(
|
6 |
-
type='FastSCNN',
|
7 |
-
downsample_dw_channels=(32, 48),
|
8 |
-
global_in_channels=64,
|
9 |
-
global_block_channels=(64, 96, 128),
|
10 |
-
global_block_strides=(2, 2, 1),
|
11 |
-
global_out_channels=128,
|
12 |
-
higher_in_channels=64,
|
13 |
-
lower_in_channels=128,
|
14 |
-
fusion_out_channels=128,
|
15 |
-
out_indices=(0, 1, 2),
|
16 |
-
norm_cfg=norm_cfg,
|
17 |
-
align_corners=False),
|
18 |
-
decode_head=dict(
|
19 |
-
type='DepthwiseSeparableFCNHead',
|
20 |
-
in_channels=128,
|
21 |
-
channels=128,
|
22 |
-
concat_input=False,
|
23 |
-
num_classes=19,
|
24 |
-
in_index=-1,
|
25 |
-
norm_cfg=norm_cfg,
|
26 |
-
align_corners=False,
|
27 |
-
loss_decode=dict(
|
28 |
-
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.4)),
|
29 |
-
auxiliary_head=[
|
30 |
-
dict(
|
31 |
-
type='FCNHead',
|
32 |
-
in_channels=128,
|
33 |
-
channels=32,
|
34 |
-
num_convs=1,
|
35 |
-
num_classes=19,
|
36 |
-
in_index=-2,
|
37 |
-
norm_cfg=norm_cfg,
|
38 |
-
concat_input=False,
|
39 |
-
align_corners=False,
|
40 |
-
loss_decode=dict(
|
41 |
-
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.4)),
|
42 |
-
dict(
|
43 |
-
type='FCNHead',
|
44 |
-
in_channels=64,
|
45 |
-
channels=32,
|
46 |
-
num_convs=1,
|
47 |
-
num_classes=19,
|
48 |
-
in_index=-3,
|
49 |
-
norm_cfg=norm_cfg,
|
50 |
-
concat_input=False,
|
51 |
-
align_corners=False,
|
52 |
-
loss_decode=dict(
|
53 |
-
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.4)),
|
54 |
-
],
|
55 |
-
# model training and testing settings
|
56 |
-
train_cfg=dict(),
|
57 |
-
test_cfg=dict(mode='whole'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/uniformer/configs/_base_/models/fcn_hr18.py
DELETED
@@ -1,52 +0,0 @@
|
|
1 |
-
# model settings
|
2 |
-
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
-
model = dict(
|
4 |
-
type='EncoderDecoder',
|
5 |
-
pretrained='open-mmlab://msra/hrnetv2_w18',
|
6 |
-
backbone=dict(
|
7 |
-
type='HRNet',
|
8 |
-
norm_cfg=norm_cfg,
|
9 |
-
norm_eval=False,
|
10 |
-
extra=dict(
|
11 |
-
stage1=dict(
|
12 |
-
num_modules=1,
|
13 |
-
num_branches=1,
|
14 |
-
block='BOTTLENECK',
|
15 |
-
num_blocks=(4, ),
|
16 |
-
num_channels=(64, )),
|
17 |
-
stage2=dict(
|
18 |
-
num_modules=1,
|
19 |
-
num_branches=2,
|
20 |
-
block='BASIC',
|
21 |
-
num_blocks=(4, 4),
|
22 |
-
num_channels=(18, 36)),
|
23 |
-
stage3=dict(
|
24 |
-
num_modules=4,
|
25 |
-
num_branches=3,
|
26 |
-
block='BASIC',
|
27 |
-
num_blocks=(4, 4, 4),
|
28 |
-
num_channels=(18, 36, 72)),
|
29 |
-
stage4=dict(
|
30 |
-
num_modules=3,
|
31 |
-
num_branches=4,
|
32 |
-
block='BASIC',
|
33 |
-
num_blocks=(4, 4, 4, 4),
|
34 |
-
num_channels=(18, 36, 72, 144)))),
|
35 |
-
decode_head=dict(
|
36 |
-
type='FCNHead',
|
37 |
-
in_channels=[18, 36, 72, 144],
|
38 |
-
in_index=(0, 1, 2, 3),
|
39 |
-
channels=sum([18, 36, 72, 144]),
|
40 |
-
input_transform='resize_concat',
|
41 |
-
kernel_size=1,
|
42 |
-
num_convs=1,
|
43 |
-
concat_input=False,
|
44 |
-
dropout_ratio=-1,
|
45 |
-
num_classes=19,
|
46 |
-
norm_cfg=norm_cfg,
|
47 |
-
align_corners=False,
|
48 |
-
loss_decode=dict(
|
49 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
50 |
-
# model training and testing settings
|
51 |
-
train_cfg=dict(),
|
52 |
-
test_cfg=dict(mode='whole'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/uniformer/configs/_base_/models/fcn_r50-d8.py
DELETED
@@ -1,45 +0,0 @@
|
|
1 |
-
# model settings
|
2 |
-
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
-
model = dict(
|
4 |
-
type='EncoderDecoder',
|
5 |
-
pretrained='open-mmlab://resnet50_v1c',
|
6 |
-
backbone=dict(
|
7 |
-
type='ResNetV1c',
|
8 |
-
depth=50,
|
9 |
-
num_stages=4,
|
10 |
-
out_indices=(0, 1, 2, 3),
|
11 |
-
dilations=(1, 1, 2, 4),
|
12 |
-
strides=(1, 2, 1, 1),
|
13 |
-
norm_cfg=norm_cfg,
|
14 |
-
norm_eval=False,
|
15 |
-
style='pytorch',
|
16 |
-
contract_dilation=True),
|
17 |
-
decode_head=dict(
|
18 |
-
type='FCNHead',
|
19 |
-
in_channels=2048,
|
20 |
-
in_index=3,
|
21 |
-
channels=512,
|
22 |
-
num_convs=2,
|
23 |
-
concat_input=True,
|
24 |
-
dropout_ratio=0.1,
|
25 |
-
num_classes=19,
|
26 |
-
norm_cfg=norm_cfg,
|
27 |
-
align_corners=False,
|
28 |
-
loss_decode=dict(
|
29 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
30 |
-
auxiliary_head=dict(
|
31 |
-
type='FCNHead',
|
32 |
-
in_channels=1024,
|
33 |
-
in_index=2,
|
34 |
-
channels=256,
|
35 |
-
num_convs=1,
|
36 |
-
concat_input=False,
|
37 |
-
dropout_ratio=0.1,
|
38 |
-
num_classes=19,
|
39 |
-
norm_cfg=norm_cfg,
|
40 |
-
align_corners=False,
|
41 |
-
loss_decode=dict(
|
42 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
43 |
-
# model training and testing settings
|
44 |
-
train_cfg=dict(),
|
45 |
-
test_cfg=dict(mode='whole'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/uniformer/configs/_base_/models/fcn_unet_s5-d16.py
DELETED
@@ -1,51 +0,0 @@
|
|
1 |
-
# model settings
|
2 |
-
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
-
model = dict(
|
4 |
-
type='EncoderDecoder',
|
5 |
-
pretrained=None,
|
6 |
-
backbone=dict(
|
7 |
-
type='UNet',
|
8 |
-
in_channels=3,
|
9 |
-
base_channels=64,
|
10 |
-
num_stages=5,
|
11 |
-
strides=(1, 1, 1, 1, 1),
|
12 |
-
enc_num_convs=(2, 2, 2, 2, 2),
|
13 |
-
dec_num_convs=(2, 2, 2, 2),
|
14 |
-
downsamples=(True, True, True, True),
|
15 |
-
enc_dilations=(1, 1, 1, 1, 1),
|
16 |
-
dec_dilations=(1, 1, 1, 1),
|
17 |
-
with_cp=False,
|
18 |
-
conv_cfg=None,
|
19 |
-
norm_cfg=norm_cfg,
|
20 |
-
act_cfg=dict(type='ReLU'),
|
21 |
-
upsample_cfg=dict(type='InterpConv'),
|
22 |
-
norm_eval=False),
|
23 |
-
decode_head=dict(
|
24 |
-
type='FCNHead',
|
25 |
-
in_channels=64,
|
26 |
-
in_index=4,
|
27 |
-
channels=64,
|
28 |
-
num_convs=1,
|
29 |
-
concat_input=False,
|
30 |
-
dropout_ratio=0.1,
|
31 |
-
num_classes=2,
|
32 |
-
norm_cfg=norm_cfg,
|
33 |
-
align_corners=False,
|
34 |
-
loss_decode=dict(
|
35 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
36 |
-
auxiliary_head=dict(
|
37 |
-
type='FCNHead',
|
38 |
-
in_channels=128,
|
39 |
-
in_index=3,
|
40 |
-
channels=64,
|
41 |
-
num_convs=1,
|
42 |
-
concat_input=False,
|
43 |
-
dropout_ratio=0.1,
|
44 |
-
num_classes=2,
|
45 |
-
norm_cfg=norm_cfg,
|
46 |
-
align_corners=False,
|
47 |
-
loss_decode=dict(
|
48 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
49 |
-
# model training and testing settings
|
50 |
-
train_cfg=dict(),
|
51 |
-
test_cfg=dict(mode='slide', crop_size=256, stride=170))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/uniformer/configs/_base_/models/fpn_r50.py
DELETED
@@ -1,36 +0,0 @@
|
|
1 |
-
# model settings
|
2 |
-
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
-
model = dict(
|
4 |
-
type='EncoderDecoder',
|
5 |
-
pretrained='open-mmlab://resnet50_v1c',
|
6 |
-
backbone=dict(
|
7 |
-
type='ResNetV1c',
|
8 |
-
depth=50,
|
9 |
-
num_stages=4,
|
10 |
-
out_indices=(0, 1, 2, 3),
|
11 |
-
dilations=(1, 1, 1, 1),
|
12 |
-
strides=(1, 2, 2, 2),
|
13 |
-
norm_cfg=norm_cfg,
|
14 |
-
norm_eval=False,
|
15 |
-
style='pytorch',
|
16 |
-
contract_dilation=True),
|
17 |
-
neck=dict(
|
18 |
-
type='FPN',
|
19 |
-
in_channels=[256, 512, 1024, 2048],
|
20 |
-
out_channels=256,
|
21 |
-
num_outs=4),
|
22 |
-
decode_head=dict(
|
23 |
-
type='FPNHead',
|
24 |
-
in_channels=[256, 256, 256, 256],
|
25 |
-
in_index=[0, 1, 2, 3],
|
26 |
-
feature_strides=[4, 8, 16, 32],
|
27 |
-
channels=128,
|
28 |
-
dropout_ratio=0.1,
|
29 |
-
num_classes=19,
|
30 |
-
norm_cfg=norm_cfg,
|
31 |
-
align_corners=False,
|
32 |
-
loss_decode=dict(
|
33 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
34 |
-
# model training and testing settings
|
35 |
-
train_cfg=dict(),
|
36 |
-
test_cfg=dict(mode='whole'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/uniformer/configs/_base_/models/fpn_uniformer.py
DELETED
@@ -1,35 +0,0 @@
|
|
1 |
-
# model settings
|
2 |
-
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
-
model = dict(
|
4 |
-
type='EncoderDecoder',
|
5 |
-
backbone=dict(
|
6 |
-
type='UniFormer',
|
7 |
-
embed_dim=[64, 128, 320, 512],
|
8 |
-
layers=[3, 4, 8, 3],
|
9 |
-
head_dim=64,
|
10 |
-
mlp_ratio=4.,
|
11 |
-
qkv_bias=True,
|
12 |
-
drop_rate=0.,
|
13 |
-
attn_drop_rate=0.,
|
14 |
-
drop_path_rate=0.1),
|
15 |
-
neck=dict(
|
16 |
-
type='FPN',
|
17 |
-
in_channels=[64, 128, 320, 512],
|
18 |
-
out_channels=256,
|
19 |
-
num_outs=4),
|
20 |
-
decode_head=dict(
|
21 |
-
type='FPNHead',
|
22 |
-
in_channels=[256, 256, 256, 256],
|
23 |
-
in_index=[0, 1, 2, 3],
|
24 |
-
feature_strides=[4, 8, 16, 32],
|
25 |
-
channels=128,
|
26 |
-
dropout_ratio=0.1,
|
27 |
-
num_classes=150,
|
28 |
-
norm_cfg=norm_cfg,
|
29 |
-
align_corners=False,
|
30 |
-
loss_decode=dict(
|
31 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
32 |
-
# model training and testing settings
|
33 |
-
train_cfg=dict(),
|
34 |
-
test_cfg=dict(mode='whole')
|
35 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ControlNet/annotator/uniformer/configs/_base_/models/gcnet_r50-d8.py
DELETED
@@ -1,46 +0,0 @@
|
|
1 |
-
# model settings
|
2 |
-
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
-
model = dict(
|
4 |
-
type='EncoderDecoder',
|
5 |
-
pretrained='open-mmlab://resnet50_v1c',
|
6 |
-
backbone=dict(
|
7 |
-
type='ResNetV1c',
|
8 |
-
depth=50,
|
9 |
-
num_stages=4,
|
10 |
-
out_indices=(0, 1, 2, 3),
|
11 |
-
dilations=(1, 1, 2, 4),
|
12 |
-
strides=(1, 2, 1, 1),
|
13 |
-
norm_cfg=norm_cfg,
|
14 |
-
norm_eval=False,
|
15 |
-
style='pytorch',
|
16 |
-
contract_dilation=True),
|
17 |
-
decode_head=dict(
|
18 |
-
type='GCHead',
|
19 |
-
in_channels=2048,
|
20 |
-
in_index=3,
|
21 |
-
channels=512,
|
22 |
-
ratio=1 / 4.,
|
23 |
-
pooling_type='att',
|
24 |
-
fusion_types=('channel_add', ),
|
25 |
-
dropout_ratio=0.1,
|
26 |
-
num_classes=19,
|
27 |
-
norm_cfg=norm_cfg,
|
28 |
-
align_corners=False,
|
29 |
-
loss_decode=dict(
|
30 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
31 |
-
auxiliary_head=dict(
|
32 |
-
type='FCNHead',
|
33 |
-
in_channels=1024,
|
34 |
-
in_index=2,
|
35 |
-
channels=256,
|
36 |
-
num_convs=1,
|
37 |
-
concat_input=False,
|
38 |
-
dropout_ratio=0.1,
|
39 |
-
num_classes=19,
|
40 |
-
norm_cfg=norm_cfg,
|
41 |
-
align_corners=False,
|
42 |
-
loss_decode=dict(
|
43 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
44 |
-
# model training and testing settings
|
45 |
-
train_cfg=dict(),
|
46 |
-
test_cfg=dict(mode='whole'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|