# MIT License # Copyright (c) 2022 Intelligent Systems Lab Org # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # File author: Shariq Farooq Bhat # This file is partly inspired from BTS (https://github.com/cleinc/bts/blob/master/pytorch/bts_dataloader.py); author: Jin Han Lee # This file may include modifications from author Zhenyu Li import itertools import os import random import numpy as np import cv2 import torch import torch.nn as nn import torch.utils.data.distributed from zoedepth.utils.easydict import EasyDict as edict from PIL import Image, ImageOps from torch.utils.data import DataLoader, Dataset from torchvision import transforms from zoedepth.utils.config import change_dataset from .ddad import get_ddad_loader from .diml_indoor_test import get_diml_indoor_loader from .diml_outdoor_test import get_diml_outdoor_loader from .diode import get_diode_loader from .hypersim import get_hypersim_loader from .ibims import get_ibims_loader from .sun_rgbd_loader import get_sunrgbd_loader from .vkitti import get_vkitti_loader from .vkitti2 import get_vkitti2_loader from .u4k import get_u4k_loader from .middleburry import get_mid_loader from .gta import get_gta_loader from .preprocess import CropParams, get_white_border, get_black_border import copy from zoedepth.utils.misc import get_boundaries from zoedepth.models.base_models.midas import Resize def _is_pil_image(img): return isinstance(img, Image.Image) def _is_numpy_image(img): return isinstance(img, np.ndarray) and (img.ndim in {2, 3}) # def preprocessing_transforms(mode, **kwargs): # return transforms.Compose([ # ToTensor(mode=mode, **kwargs) # ]) def preprocessing_transforms(mode, sec_stage=False, **kwargs): return transforms.Compose([ ToTensor(mode=mode, sec_stage=sec_stage, **kwargs) ]) class DepthDataLoader(object): def __init__(self, config, mode, device='cpu', transform=None, **kwargs): """ Data loader for depth datasets Args: config (dict): Config dictionary. Refer to utils/config.py mode (str): "train" or "online_eval" device (str, optional): Device to load the data on. Defaults to 'cpu'. transform (torchvision.transforms, optional): Transform to apply to the data. Defaults to None. """ self.config = config if config.dataset == 'ibims': self.data = get_ibims_loader(config, batch_size=1, num_workers=1) return if config.dataset == 'sunrgbd': self.data = get_sunrgbd_loader( data_dir_root=config.sunrgbd_root, batch_size=1, num_workers=1) return if config.dataset == 'diml_indoor': self.data = get_diml_indoor_loader( data_dir_root=config.diml_indoor_root, batch_size=1, num_workers=1) return if config.dataset == 'diml_outdoor': self.data = get_diml_outdoor_loader( data_dir_root=config.diml_outdoor_root, batch_size=1, num_workers=1) return if "diode" in config.dataset: self.data = get_diode_loader( config[config.dataset+"_root"], batch_size=1, num_workers=1) return if config.dataset == 'hypersim_test': self.data = get_hypersim_loader( config.hypersim_test_root, batch_size=1, num_workers=1) return if config.dataset == 'vkitti': self.data = get_vkitti_loader( config.vkitti_root, batch_size=1, num_workers=1) return if config.dataset == 'vkitti2': self.data = get_vkitti2_loader( config.vkitti2_root, batch_size=1, num_workers=1) return if config.dataset == 'ddad': self.data = get_ddad_loader(config.ddad_root, resize_shape=( 352, 1216), batch_size=1, num_workers=1) return # under construction if config.dataset == 'u4k': self.data = get_u4k_loader(config, mode, transform) return if config.dataset == 'mid': self.data = get_mid_loader(config, mode, transform) return if config.dataset == 'gta': self.data = get_gta_loader(config, mode, transform) return img_size = self.config.get("img_size", None) img_size = img_size if self.config.get( "do_input_resize", False) else None if transform is None: # transform = preprocessing_transforms(mode, size=img_size) transform = preprocessing_transforms(mode, size=img_size, sec_stage=config.get("sec_stage", False)) if mode == 'train': Dataset = DataLoadPreprocess self.training_samples = Dataset( config, mode, transform=transform, device=device) if config.distributed: self.train_sampler = torch.utils.data.distributed.DistributedSampler( self.training_samples) else: self.train_sampler = None self.data = DataLoader(self.training_samples, batch_size=config.batch_size, shuffle=(self.train_sampler is None), num_workers=config.workers, pin_memory=True, persistent_workers=True, # prefetch_factor=2, sampler=self.train_sampler) elif mode == 'online_eval': self.testing_samples = DataLoadPreprocess( config, mode, transform=transform) if config.distributed: # redundant. here only for readability and to be more explicit # Give whole test set to all processes (and report evaluation only on one) regardless self.eval_sampler = None else: self.eval_sampler = None self.data = DataLoader(self.testing_samples, 1, shuffle=False, num_workers=1, pin_memory=False, sampler=self.eval_sampler) elif mode == 'test': self.testing_samples = DataLoadPreprocess( config, mode, transform=transform) self.data = DataLoader(self.testing_samples, 1, shuffle=False, num_workers=1) else: print( 'mode should be one of \'train, test, online_eval\'. Got {}'.format(mode)) def repetitive_roundrobin(*iterables): """ cycles through iterables but sample wise first yield first sample from first iterable then first sample from second iterable and so on then second sample from first iterable then second sample from second iterable and so on If one iterable is shorter than the others, it is repeated until all iterables are exhausted repetitive_roundrobin('ABC', 'D', 'EF') --> A D E B D F C D E """ # Repetitive roundrobin iterables_ = [iter(it) for it in iterables] exhausted = [False] * len(iterables) while not all(exhausted): for i, it in enumerate(iterables_): try: yield next(it) except StopIteration: exhausted[i] = True iterables_[i] = itertools.cycle(iterables[i]) # First elements may get repeated if one iterable is shorter than the others yield next(iterables_[i]) class RepetitiveRoundRobinDataLoader(object): def __init__(self, *dataloaders): self.dataloaders = dataloaders def __iter__(self): return repetitive_roundrobin(*self.dataloaders) def __len__(self): # First samples get repeated, thats why the plus one return len(self.dataloaders) * (max(len(dl) for dl in self.dataloaders) + 1) class MixedNYUKITTI(object): def __init__(self, config, mode, device='cpu', **kwargs): config = edict(config) config.workers = config.workers // 2 self.config = config nyu_conf = change_dataset(edict(config), 'nyu') kitti_conf = change_dataset(edict(config), 'kitti') # make nyu default for testing self.config = config = nyu_conf img_size = self.config.get("img_size", None) img_size = img_size if self.config.get( "do_input_resize", False) else None if mode == 'train': nyu_loader = DepthDataLoader( nyu_conf, mode, device=device, transform=preprocessing_transforms(mode, size=img_size)).data kitti_loader = DepthDataLoader( kitti_conf, mode, device=device, transform=preprocessing_transforms(mode, size=img_size)).data # It has been changed to repetitive roundrobin self.data = RepetitiveRoundRobinDataLoader( nyu_loader, kitti_loader) else: self.data = DepthDataLoader(nyu_conf, mode, device=device).data def remove_leading_slash(s): if s[0] == '/' or s[0] == '\\': return s[1:] return s class CachedReader: def __init__(self, shared_dict=None): if shared_dict: self._cache = shared_dict else: self._cache = {} def open(self, fpath): im = self._cache.get(fpath, None) if im is None: im = self._cache[fpath] = Image.open(fpath) return im class ImReader: def __init__(self): pass # @cache def open(self, fpath): return Image.open(fpath) class DataLoadPreprocess(Dataset): def __init__(self, config, mode, transform=None, is_for_online_eval=False, **kwargs): self.config = config if mode == 'online_eval': with open(config.filenames_file_eval, 'r') as f: self.filenames = f.readlines() else: with open(config.filenames_file, 'r') as f: self.filenames = f.readlines() self.sec_stage = self.config.get("sec_stage", False) # self.crop_size = [120, 160] # 1/4 self.crop_size = [120*2, 160*2] # 1/4 self.overlap = self.config.get("overlap", False) self.consistency_training = self.config.get("consistency_training", False) self.overlap_length_h = self.config.get("overlap_length_h", int(60)) self.overlap_length_w = self.config.get("overlap_length_w", int(80)) print("current overlap_length_h and overlap_length_w are {} and {}".format(self.overlap_length_h, self.overlap_length_w)) self.mode = mode self.transform = transform self.to_tensor = ToTensor(mode) self.is_for_online_eval = is_for_online_eval if config.use_shared_dict: self.reader = CachedReader(config.shared_dict) else: self.reader = ImReader() def postprocess(self, sample): return sample def get_crop_bbox(self, img): """Randomly get a crop bounding box.""" margin_h = max(img.shape[0] - self.crop_size[0], 0) margin_w = max(img.shape[1] - self.crop_size[1], 0) offset_h = np.random.randint(0, margin_h + 1) offset_w = np.random.randint(0, margin_w + 1) crop_y1, crop_y2 = offset_h, offset_h + self.crop_size[0] crop_x1, crop_x2 = offset_w, offset_w + self.crop_size[1] return crop_y1, crop_y2, crop_x1, crop_x2 def crop(self, img, crop_bbox, tmp=False): """Crop from ``img``""" crop_y1, crop_y2, crop_x1, crop_x2 = crop_bbox if tmp: templete = np.zeros((img.shape[0], img.shape[1], 1), dtype=np.float32) templete[crop_y1:crop_y2, crop_x1:crop_x2, :] = 1.0 img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...] return img, templete else: img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...] return img def __getitem__(self, idx): sample_path = self.filenames[idx] focal = float(sample_path.split()[2]) sample = {} height=480 width=640 if self.mode == 'train': if self.config.dataset == 'kitti' and self.config.use_right and random.random() > 0.5: image_path = os.path.join( self.config.data_path, remove_leading_slash(sample_path.split()[3])) depth_path = os.path.join( self.config.gt_path, remove_leading_slash(sample_path.split()[4])) else: image_path = os.path.join( self.config.data_path, remove_leading_slash(sample_path.split()[0])) depth_path = os.path.join( self.config.gt_path, remove_leading_slash(sample_path.split()[1])) image = self.reader.open(image_path) depth_gt = self.reader.open(depth_path) w, h = image.size if self.config.do_kb_crop: height = image.height width = image.width top_margin = int(height - 352) left_margin = int((width - 1216) / 2) depth_gt = depth_gt.crop( (left_margin, top_margin, left_margin + 1216, top_margin + 352)) image = image.crop( (left_margin, top_margin, left_margin + 1216, top_margin + 352)) # Avoid blank boundaries due to pixel registration? # Train images have white border. Test images have black border. if self.config.dataset == 'nyu' and self.config.avoid_boundary: # print("Avoiding Blank Boundaries!") # We just crop and pad again with reflect padding to original size # original_size = image.size crop_params = get_white_border(np.array(image, dtype=np.uint8)) image = image.crop((crop_params.left, crop_params.top, crop_params.right, crop_params.bottom)) depth_gt = depth_gt.crop((crop_params.left, crop_params.top, crop_params.right, crop_params.bottom)) # Use reflect padding to fill the blank image = np.array(image) image = np.pad(image, ((crop_params.top, h - crop_params.bottom), (crop_params.left, w - crop_params.right), (0, 0)), mode='reflect') image = Image.fromarray(image) depth_gt = np.array(depth_gt) depth_gt = np.pad(depth_gt, ((crop_params.top, h - crop_params.bottom), (crop_params.left, w - crop_params.right)), 'constant', constant_values=0) depth_gt = Image.fromarray(depth_gt) if self.config.do_random_rotate and (self.config.aug): # NOTE: YES! random_angle = (random.random() - 0.5) * 2 * self.config.degree image = self.rotate_image(image, random_angle) depth_gt = self.rotate_image( depth_gt, random_angle, flag=Image.NEAREST) image = np.asarray(image, dtype=np.float32) / 255.0 depth_gt = np.asarray(depth_gt, dtype=np.float32) depth_gt = np.expand_dims(depth_gt, axis=2) disp_gt_copy = depth_gt[:, :, 0].copy() if self.config.dataset == 'nyu': depth_gt = depth_gt / 1000.0 else: depth_gt = depth_gt / 256.0 # if self.config.aug and (self.config.random_crop): # image, depth_gt = self.random_crop( # image, depth_gt, self.config.input_height, self.config.input_width) image, depth_gt = self.train_preprocess(image, depth_gt) img_temp = copy.deepcopy(image) depth_gt_temp = copy.deepcopy(depth_gt) if self.random_crop: # use in sec_stage if self.consistency_training: crop_y1, crop_y2, crop_x1, crop_x2 = self.get_crop_bbox(image) # ensure the prob of crop is the same while True: # shift_x = random.randint(self.overlap_length//3, self.overlap_length) # shift_y = random.randint(self.overlap_length//3, self.overlap_length) shift_x = self.overlap_length_w shift_y = self.overlap_length_h if random.random() > 0.5: shift_x = shift_x * -1 if random.random() > 0.5: shift_y = shift_y * -1 crop_y1_shift, crop_y2_shift, crop_x1_shift, crop_x2_shift = crop_y1 + shift_y, crop_y2 + shift_y, crop_x1 + shift_x, crop_x2 + shift_x if crop_y1_shift > 0 and crop_x1_shift > 0 and crop_y2_shift < image.shape[0] and crop_x2_shift < image.shape[1]: break bbox_ori = (crop_y1, crop_y2, crop_x1, crop_x2) bbox_shift = (crop_y1_shift, crop_y2_shift, crop_x1_shift, crop_x2_shift) image_ori, crop_area_ori = self.crop(image, bbox_ori, tmp=True) image_shift, crop_area_shift = self.crop(image, bbox_shift, tmp=True) depth_gt_ori = self.crop(depth_gt, bbox_ori) depth_gt_shift = self.crop(depth_gt, bbox_shift) disp_gt_copy_ori = self.crop(disp_gt_copy, bbox_ori) disp_gt_copy_shift = self.crop(disp_gt_copy, bbox_shift) bboxs_ori = torch.tensor([crop_x1 / width * 160 * 2, crop_y1 / height * 120 * 2, crop_x2 / width * 160 * 2, crop_y2 / height * 120 * 2]) bboxs_shift = torch.tensor([crop_x1_shift / width * 160 * 2, crop_y1_shift / height * 120 * 2, crop_x2_shift / width * 160 * 2, crop_y2_shift / height * 120 * 2]) bboxs_raw = torch.tensor([crop_x1, crop_y1, crop_x2, crop_y2]) bboxs_raw_shift = torch.tensor([crop_x1_shift, crop_y1_shift, crop_x2_shift, crop_y2_shift]) else: bbox = self.get_crop_bbox(image) image, crop_area = self.crop(image, bbox, tmp=True) depth_gt = self.crop(depth_gt, bbox) disp_gt_copy = self.crop(disp_gt_copy, bbox) crop_y1, crop_y2, crop_x1, crop_x2 = bbox bboxs_res = torch.tensor([crop_x1 / width * 160 * 2, crop_y1 / height * 120 * 2, crop_x2 / width * 160 * 2, crop_y2 / height * 120 * 2]) # coord in 384, 512 bboxs_raw = torch.tensor([crop_x1, crop_y1, crop_x2, crop_y2]) mask = np.logical_and(depth_gt > self.config.min_depth, depth_gt < self.config.max_depth).squeeze()[None, ...] mask_raw = np.logical_and(depth_gt_temp > self.config.min_depth, depth_gt_temp < self.config.max_depth).squeeze()[None, ...] sample = {'image': image, 'depth': depth_gt, 'focal': focal, 'mask': mask, 'image_raw': image.copy(), 'mask_raw': mask_raw} if self.random_crop: if self.consistency_training: image = np.concatenate([image_ori, image_shift], axis=-1) depth_gt = np.concatenate([depth_gt_ori, depth_gt_shift], axis=-1) crop_area = np.concatenate([crop_area_ori, crop_area_shift], axis=-1) bboxs_res = torch.cat([bboxs_ori, bboxs_shift], dim=-1) bboxes_raw_res = torch.cat([bboxs_raw, bboxs_raw_shift], dim=-1) mask = np.logical_and(depth_gt > self.config.min_depth, depth_gt < self.config.max_depth) # hack the sample dict sample['image'] = image sample['depth'] = depth_gt sample['crop_area'] = crop_area sample['bbox'] = bboxs_res sample['bbox_raw'] = bboxes_raw_res sample['shift'] = torch.tensor([shift_y, shift_x]) # h direction, then w direction sample['mask'] = mask else: if bboxs_res is not None: sample['bbox'] = bboxs_res sample['bbox_raw'] = bboxs_raw sample['crop_area'] = crop_area if self.config.aug and self.config.random_translate: image, depth_gt = self.random_translate(image, depth_gt, self.config.max_translation) else: if self.mode == 'online_eval': data_path = self.config.data_path_eval else: data_path = self.config.data_path image_path = os.path.join( data_path, remove_leading_slash(sample_path.split()[0])) image = np.asarray(self.reader.open(image_path), dtype=np.float32) / 255.0 if self.mode == 'online_eval': gt_path = self.config.gt_path_eval depth_path = os.path.join( gt_path, remove_leading_slash(sample_path.split()[1])) has_valid_depth = False try: depth_gt = self.reader.open(depth_path) has_valid_depth = True except IOError: depth_gt = False # print('Missing gt for {}'.format(image_path)) if has_valid_depth: depth_gt = np.asarray(depth_gt, dtype=np.float32) depth_gt = np.expand_dims(depth_gt, axis=2) disp_gt_copy = depth_gt[:, :, 0].copy() if self.config.dataset == 'nyu': depth_gt = depth_gt / 1000.0 else: depth_gt = depth_gt / 256.0 mask = np.logical_and( depth_gt >= self.config.min_depth, depth_gt <= self.config.max_depth).squeeze()[None, ...] else: mask = False if self.config.do_kb_crop: height = image.shape[0] width = image.shape[1] top_margin = int(height - 352) left_margin = int((width - 1216) / 2) image = image[top_margin:top_margin + 352, left_margin:left_margin + 1216, :] if self.mode == 'online_eval' and has_valid_depth: depth_gt = depth_gt[top_margin:top_margin + 352, left_margin:left_margin + 1216, :] # NOTE: start insert something new for sec_stage training if self.sec_stage: img_temp = copy.deepcopy(image) depth_gt_temp = copy.deepcopy(depth_gt) x_start, y_start = [0, 240], [0, 320] # x_start, y_start = [0 + 3 * self.overlap / 2, 120 + self.overlap / 2, 240 - self.overlap / 2, 360 - 3 * self.overlap / 2], \ # [0 + 3 * self.overlap / 2, 160 + self.overlap / 2, 320 - self.overlap / 2, 480 - 3 * self.overlap / 2] img_crops = [] bboxs_roi = [] crop_areas = [] bboxs_raw_list = [] for x in x_start: for y in y_start: bbox = (int(x), int(x+240), int(y), int(y+320)) img_crop, crop_area = self.crop(image, bbox, tmp=True) img_crops.append(img_crop) crop_areas.append(crop_area) crop_y1, crop_y2, crop_x1, crop_x2 = bbox bbox_roi = torch.tensor([crop_x1 / width * 160 * 2, crop_y1 / height * 120 * 2, crop_x2 / width * 160 * 2, crop_y2 / height * 120 * 2]) bboxs_roi.append(bbox_roi) bboxs_raw = torch.tensor([crop_x1, crop_y1, crop_x2, crop_y2]) bboxs_raw_list.append(bboxs_raw) image = img_crops bboxs_roi = torch.stack(bboxs_roi, dim=0) bboxs_raw = torch.stack(bboxs_raw_list, dim=0) disp_gt_edges = get_boundaries(disp_gt_copy, th=1, dilation=0) if self.mode == 'online_eval': sample = {'image': image, 'depth': depth_gt, 'focal': focal, 'has_valid_depth': has_valid_depth, 'image_path': sample_path.split()[0], 'depth_path': sample_path.split()[1], 'mask': mask, 'image_raw': image.copy(), 'disp_gt_edges': disp_gt_edges} if bboxs_roi is not None: sample['bbox'] = bboxs_roi sample['bbox_raw'] = bboxs_raw if crop_areas is not None: sample['crop_area'] = crop_areas else: sample = {'image': image, 'focal': focal} if (self.mode == 'train') or ('has_valid_depth' in sample and sample['has_valid_depth']): mask = np.logical_and(depth_gt > self.config.min_depth, depth_gt < self.config.max_depth).squeeze()[None, ...] sample['mask'] = mask if self.transform: # sample = self.transform(sample) sample['img_temp'] = img_temp sample['depth_gt_temp'] = depth_gt_temp sample = self.transform(sample) sample = self.postprocess(sample) sample['dataset'] = self.config.dataset sample = {**sample, 'image_path': sample_path.split()[0], 'depth_path': sample_path.split()[1]} return sample def rotate_image(self, image, angle, flag=Image.BILINEAR): result = image.rotate(angle, resample=flag) return result def random_crop(self, img, depth, height, width): assert img.shape[0] >= height assert img.shape[1] >= width assert img.shape[0] == depth.shape[0] assert img.shape[1] == depth.shape[1] x = random.randint(0, img.shape[1] - width) y = random.randint(0, img.shape[0] - height) img = img[y:y + height, x:x + width, :] depth = depth[y:y + height, x:x + width, :] return img, depth def random_translate(self, img, depth, max_t=20): assert img.shape[0] == depth.shape[0] assert img.shape[1] == depth.shape[1] p = self.config.translate_prob do_translate = random.random() if do_translate > p: return img, depth x = random.randint(-max_t, max_t) y = random.randint(-max_t, max_t) M = np.float32([[1, 0, x], [0, 1, y]]) # print(img.shape, depth.shape) img = cv2.warpAffine(img, M, (img.shape[1], img.shape[0])) depth = cv2.warpAffine(depth, M, (depth.shape[1], depth.shape[0])) depth = depth.squeeze()[..., None] # add channel dim back. Affine warp removes it # print("after", img.shape, depth.shape) return img, depth def train_preprocess(self, image, depth_gt): if self.config.aug: # Random flipping do_flip = random.random() if do_flip > 0.5: image = (image[:, ::-1, :]).copy() depth_gt = (depth_gt[:, ::-1, :]).copy() # Random gamma, brightness, color augmentation do_augment = random.random() if do_augment > 0.5: image = self.augment_image(image) return image, depth_gt def augment_image(self, image): # gamma augmentation gamma = random.uniform(0.9, 1.1) image_aug = image ** gamma # brightness augmentation if self.config.dataset == 'nyu': brightness = random.uniform(0.75, 1.25) else: brightness = random.uniform(0.9, 1.1) image_aug = image_aug * brightness # color augmentation colors = np.random.uniform(0.9, 1.1, size=3) white = np.ones((image.shape[0], image.shape[1])) color_image = np.stack([white * colors[i] for i in range(3)], axis=2) image_aug *= color_image image_aug = np.clip(image_aug, 0, 1) return image_aug def __len__(self): return len(self.filenames) # class ToTensor(object): # def __init__(self, mode, do_normalize=False, size=None): # self.mode = mode # self.normalize = transforms.Normalize( # mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) if do_normalize else nn.Identity() # self.size = size # if size is not None: # self.resize = transforms.Resize(size=size) # else: # self.resize = nn.Identity() # def __call__(self, sample): # image, focal = sample['image'], sample['focal'] # image = self.to_tensor(image) # image = self.normalize(image) # image = self.resize(image) # if self.mode == 'test': # return {'image': image, 'focal': focal} # depth = sample['depth'] # if self.mode == 'train': # depth = self.to_tensor(depth) # return {**sample, 'image': image, 'depth': depth, 'focal': focal} # else: # has_valid_depth = sample['has_valid_depth'] # image = self.resize(image) # return {**sample, 'image': image, 'depth': depth, 'focal': focal, 'has_valid_depth': has_valid_depth, # 'image_path': sample['image_path'], 'depth_path': sample['depth_path']} # def to_tensor(self, pic): # if not (_is_pil_image(pic) or _is_numpy_image(pic)): # raise TypeError( # 'pic should be PIL Image or ndarray. Got {}'.format(type(pic))) # if isinstance(pic, np.ndarray): # img = torch.from_numpy(pic.transpose((2, 0, 1))) # return img # # handle PIL Image # if pic.mode == 'I': # img = torch.from_numpy(np.array(pic, np.int32, copy=False)) # elif pic.mode == 'I;16': # img = torch.from_numpy(np.array(pic, np.int16, copy=False)) # else: # img = torch.ByteTensor( # torch.ByteStorage.from_buffer(pic.tobytes())) # # PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK # if pic.mode == 'YCbCr': # nchannel = 3 # elif pic.mode == 'I;16': # nchannel = 1 # else: # nchannel = len(pic.mode) # img = img.view(pic.size[1], pic.size[0], nchannel) # img = img.transpose(0, 1).transpose(0, 2).contiguous() # if isinstance(img, torch.ByteTensor): # return img.float() # else: # return img class ToTensor(object): def __init__(self, mode, do_normalize=False, size=None, sec_stage=False): self.mode = mode # don't do normalization as default self.normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) if do_normalize else nn.Identity() self.size = size if size is not None: # self.resize = transforms.Resize(size=size) net_h, net_w = size self.resize = Resize(net_w, net_h, keep_aspect_ratio=False, ensure_multiple_of=32, resize_method="minimal") else: self.resize = nn.Identity() self.sec_stage = sec_stage def __call__(self, sample): image, focal = sample['image'], sample['focal'] crop_areas = sample.get('crop_area', None) if isinstance(image, list): # there must be crop_areas # only infer on eval sec_stage imgs_process = [] crp_process = [] for img, crp in zip(image, crop_areas): img = self.to_tensor(img) img = self.normalize(img) img = img.unsqueeze(dim=0) img = self.resize(img) img = img.squeeze(dim=0) imgs_process.append(img) crp = self.to_tensor(crp) crp = crp.unsqueeze(dim=0) crp = self.resize(crp) crp = crp.squeeze(dim=0) crp_process.append(crp) image = torch.cat(imgs_process, dim=0) crop_areas = torch.cat(crp_process, dim=0) img_temp = sample['img_temp'] img_temp = self.to_tensor(img_temp) img_temp = self.normalize(img_temp) img_temp = img_temp.unsqueeze(dim=0) img_temp = self.resize(img_temp) #NOTE: hack img_temp = img_temp.squeeze(dim=0) image_raw = copy.deepcopy(img_temp) else: image = self.to_tensor(image) image = self.normalize(image) if crop_areas is not None: crop_areas = self.to_tensor(crop_areas) crop_areas = crop_areas.unsqueeze(dim=0) crop_areas = self.resize(crop_areas) crop_areas = crop_areas.squeeze(dim=0) if self.sec_stage: img_temp = sample['img_temp'] img_temp = self.to_tensor(img_temp) img_temp = self.normalize(img_temp) img_temp = img_temp.unsqueeze(dim=0) img_temp = self.resize(img_temp) image_raw = img_temp.squeeze(dim=0) image = image.unsqueeze(dim=0) image = self.resize(image) image = image.squeeze(dim=0) else: # in the first stage, this hr info is reserved image_raw = copy.deepcopy(image) image = image.unsqueeze(dim=0) image = self.resize(image) image = image.squeeze(dim=0) if self.mode == 'test': return_dict = {'image': image, 'focal': focal} if crop_areas is not None: return_dict['crop_area'] = crop_areas return return_dict depth = sample['depth'] depth = self.to_tensor(depth) depth_gt_temp = sample['depth_gt_temp'] depth_gt_raw = self.to_tensor(depth_gt_temp) if self.mode == 'train': return_dict = {**sample, 'image': image, 'depth': depth, 'focal': focal, 'image_raw': image_raw, 'depth_raw': depth_gt_raw} if crop_areas is not None: return_dict['crop_area'] = crop_areas return return_dict else: has_valid_depth = sample['has_valid_depth'] # image = self.resize(image) return_dict = {**sample, 'image': image, 'depth': depth, 'focal': focal, 'image_raw': image_raw, 'has_valid_depth': has_valid_depth, 'image_path': sample['image_path'], 'depth_path': sample['depth_path'], 'depth_raw': depth_gt_raw} if crop_areas is not None: return_dict['crop_area'] = crop_areas return return_dict def to_tensor(self, pic): if isinstance(pic, np.ndarray): img = torch.from_numpy(pic.transpose((2, 0, 1))) # img here return img