_base_ = [ '../_base_/datasets/u4k.py', '../_base_/datasets/general_dataset.py', '../_base_/run_time.py' ] min_depth=1e-3 max_depth=80 zoe_depth_config=dict( type='ZoeDepth', min_depth=min_depth, max_depth=max_depth, # some important params midas_model_type='DPT_BEiT_L_384', pretrained_resource='local::./work_dir/ZoeDepthv1.pt', use_pretrained_midas=True, train_midas=True, freeze_midas_bn=True, do_resize=False, # do not resize image in midas # default settings attractor_alpha=1000, attractor_gamma=2, attractor_kind='mean', attractor_type='inv', aug=True, bin_centers_type='softplus', bin_embedding_dim=128, clip_grad=0.1, dataset='nyu', distributed=True, force_keep_ar=True, gpu='NULL', img_size=[384, 512], inverse_midas=False, log_images_every=0.1, max_temp=50.0, max_translation=100, memory_efficient=True, min_temp=0.0212, model='zoedepth', n_attractors=[16, 8, 4, 1], n_bins=64, name='ZoeDepth', notes='', output_distribution='logbinomial', prefetch=False, print_losses=False, project='ZoeDepth', random_crop=False, random_translate=False, root='.', save_dir='', shared_dict='NULL', tags='', translate_prob=0.2, uid='NULL', use_amp=False, use_shared_dict=False, validate_every=0.25, version_name='v1', workers=16, ) model=dict( type='PatchFusion', config=dict( image_raw_shape=(2160, 3840), patch_split_num=(4, 4), patch_process_shape=(384, 512), min_depth=min_depth, max_depth=max_depth, load_branch=True, pretrain_model=['./work_dir/zoedepth_u4k/coarse_pretrain/checkpoint_24.pth', './work_dir/zoedepth_u4k/fine_pretrain/checkpoint_24.pth'], # coarse, fine coarse_branch=zoe_depth_config, fine_branch=zoe_depth_config, guided_fusion=dict( type='GuidedFusionPatchFusion', n_channels=5, g2l=True,), sigloss=dict(type='SILogLoss'))) collect_input_args=['image_lr', 'crops_image_hr', 'depth_gt', 'crop_depths', 'bboxs', 'image_hr'] project='patchfusion' train_cfg=dict(max_epochs=16, val_interval=2, save_checkpoint_interval=16, log_interval=100, train_log_img_interval=500, val_log_img_interval=50, val_type='epoch_base', eval_start=0) optim_wrapper=dict( optimizer=dict(type='AdamW', lr=0.0001, weight_decay=0.001), clip_grad=dict(type='norm', max_norm=0.1, norm_type=2), # norm clip paramwise_cfg=dict( bypass_duplicate=True, custom_keys={ })) param_scheduler=dict( cycle_momentum=True, base_momentum=0.85, max_momentum=0.95, div_factor=10, final_div_factor=10000, pct_start=0.25, three_phase=False,) convert_syncbn=True find_unused_parameters=True