# MIT License # Copyright (c) 2022 Intelligent Systems Lab Org # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # File author: Shariq Farooq Bhat import torch def load_state_dict(model, state_dict): """Load state_dict into model, handling DataParallel and DistributedDataParallel. Also checks for "model" key in state_dict. DataParallel prefixes state_dict keys with 'module.' when saving. If the model is not a DataParallel model but the state_dict is, then prefixes are removed. If the model is a DataParallel model but the state_dict is not, then prefixes are added. """ state_dict = state_dict.get('model', state_dict) # if model is a DataParallel model, then state_dict keys are prefixed with 'module.' do_prefix = isinstance( model, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel)) state = {} for k, v in state_dict.items(): if k.startswith('module.') and not do_prefix: k = k[7:] if not k.startswith('module.') and do_prefix: k = 'module.' + k state[k] = v model.load_state_dict(state, strict=False) print("Loaded successfully") return model def load_wts(model, checkpoint_path): ckpt = torch.load(checkpoint_path, map_location='cpu') return load_state_dict(model, ckpt) def load_state_dict_from_url(model, url, **kwargs): state_dict = torch.hub.load_state_dict_from_url(url, map_location='cpu', **kwargs) return load_state_dict(model, state_dict) def load_state_from_resource(model, resource: str): """Loads weights to the model from a given resource. A resource can be of following types: 1. URL. Prefixed with "url::" e.g. url::http(s)://url.resource.com/ckpt.pt 2. Local path. Prefixed with "local::" e.g. local::/path/to/ckpt.pt Args: model (torch.nn.Module): Model resource (str): resource string Returns: torch.nn.Module: Model with loaded weights """ print(f"Using pretrained resource {resource}") if resource.startswith('url::'): url = resource.split('url::')[1] return load_state_dict_from_url(model, url, progress=True) elif resource.startswith('local::'): path = resource.split('local::')[1] return load_wts(model, path) else: raise ValueError("Invalid resource type, only url:: and local:: are supported")