# MIT License # Copyright (c) 2022 Intelligent Systems Lab Org # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # File author: Shariq Farooq Bhat # This file may include modifications from author Zhenyu Li import os import uuid import warnings from datetime import datetime as dt from typing import Dict import matplotlib.pyplot as plt import numpy as np import torch import torch.distributed as dist import torch.nn as nn import torch.optim as optim import wandb from tqdm import tqdm from zoedepth.utils.config import flatten from zoedepth.utils.misc import RunningAverageDict, colorize, colors def is_rank_zero(args): return args.rank == 0 class BaseTrainer: def __init__(self, config, model, train_loader, test_loader=None, device=None): """ Base Trainer class for training a model.""" self.config = config self.metric_criterion = "abs_rel" if device is None: device = torch.device( 'cuda') if torch.cuda.is_available() else torch.device('cpu') self.device = device self.model = model self.train_loader = train_loader self.test_loader = test_loader self.optimizer = self.init_optimizer() self.scheduler = self.init_scheduler() # import matplotlib.pyplot as plt # lrs = [] # momentums = [] # for e in range(self.config.epochs): # for s in range(len(self.train_loader)): # self.scheduler.step() # self.optimizer.step() # lr = self.scheduler.get_last_lr()[2] # lrs.append(lr) # print(self.optimizer.param_groups[0]['betas']) # momentum = self.optimizer.param_groups[0]['betas'][0] # momentums.append(momentum) # step = [_ for _ in range(len(lrs))] # plt.scatter(step, momentums) # plt.savefig("debug.png") # exit(100) def resize_to_target(self, prediction, target): if prediction.shape[2:] != target.shape[-2:]: prediction = nn.functional.interpolate( prediction, size=target.shape[-2:], mode="bilinear", align_corners=True ) return prediction def load_ckpt(self, checkpoint_dir="./checkpoints", ckpt_type="best"): import glob import os from zoedepth.models.model_io import load_wts if hasattr(self.config, "checkpoint"): checkpoint = self.config.checkpoint elif hasattr(self.config, "ckpt_pattern"): pattern = self.config.ckpt_pattern matches = glob.glob(os.path.join( checkpoint_dir, f"*{pattern}*{ckpt_type}*")) if not (len(matches) > 0): raise ValueError(f"No matches found for the pattern {pattern}") checkpoint = matches[0] else: return model = load_wts(self.model, checkpoint) # TODO : Resuming training is not properly supported in this repo. Implement loading / saving of optimizer and scheduler to support it. print("Loaded weights from {0}".format(checkpoint)) warnings.warn( "Resuming training is not properly supported in this repo. Implement loading / saving of optimizer and scheduler to support it.") self.model = model def init_optimizer(self): m = self.model.module if self.config.multigpu else self.model if self.config.same_lr: print("Using same LR") if hasattr(m, 'core'): m.core.unfreeze() params = self.model.parameters() else: print("Using diff LR") if not hasattr(m, 'get_lr_params'): raise NotImplementedError( f"Model {m.__class__.__name__} does not implement get_lr_params. Please implement it or use the same LR for all parameters.") params = m.get_lr_params(self.config.lr) return optim.AdamW(params, lr=self.config.lr, weight_decay=self.config.wd) def init_scheduler(self): lrs = [l['lr'] for l in self.optimizer.param_groups] return optim.lr_scheduler.OneCycleLR(self.optimizer, lrs, epochs=self.config.epochs, steps_per_epoch=len(self.train_loader), cycle_momentum=self.config.cycle_momentum, base_momentum=self.config.get('base_momentum', 0.85), max_momentum=self.config.get('max_momentum', 0.95), div_factor=self.config.div_factor, final_div_factor=self.config.final_div_factor, pct_start=self.config.pct_start, three_phase=self.config.three_phase) def train_on_batch(self, batch, train_step): raise NotImplementedError def validate_on_batch(self, batch, val_step): raise NotImplementedError def raise_if_nan(self, losses): for key, value in losses.items(): if torch.isnan(value): raise ValueError(f"{key} is NaN, Stopping training") @property def iters_per_epoch(self): return len(self.train_loader) @property def total_iters(self): return self.config.epochs * self.iters_per_epoch def should_early_stop(self): if self.config.get('early_stop', False) and self.step > self.config.early_stop: return True def train(self): print(f"Training {self.config.name}") if self.config.uid is None: self.config.uid = str(uuid.uuid4()).split('-')[-1] run_id = f"{dt.now().strftime('%d-%h_%H-%M')}-{self.config.uid}" self.config.run_id = run_id self.config.experiment_id = f"{self.config.name}{self.config.version_name}_{run_id}" self.should_write = ((not self.config.distributed) or self.config.rank == 0) self.should_log = self.should_write # and logging if self.should_log: tags = self.config.tags.split( ',') if self.config.tags != '' else None wandb.init(project=self.config.project, name=self.config.experiment_id, config=flatten(self.config), dir=self.config.root, tags=tags, notes=self.config.notes, settings=wandb.Settings(start_method="fork")) self.model.train() self.step = 0 best_loss = np.inf validate_every = int(self.config.validate_every * self.iters_per_epoch) if self.config.prefetch: for i, batch in tqdm(enumerate(self.train_loader), desc=f"Prefetching...", total=self.iters_per_epoch) if is_rank_zero(self.config) else enumerate(self.train_loader): pass losses = {} def stringify_losses(L): return "; ".join(map( lambda kv: f"{colors.fg.purple}{kv[0]}{colors.reset}: {round(kv[1].item(),3):.4e}", L.items())) for epoch in range(self.config.epochs): if self.should_early_stop(): break self.epoch = epoch # self.model.eval() # metrics, test_losses = self.validate() # print(metrics) # exit(100) ################################# Train loop ########################################################## if self.should_log: wandb.log({"Epoch": epoch}, step=self.step) pbar = tqdm(enumerate(self.train_loader), desc=f"Epoch: {epoch + 1}/{self.config.epochs}. Loop: Train", total=self.iters_per_epoch) if is_rank_zero(self.config) else enumerate(self.train_loader) for i, batch in pbar: if self.should_early_stop(): print("Early stopping") break # print(f"Batch {self.step+1} on rank {self.config.rank}") losses = self.train_on_batch(batch, i) # print(f"trained batch {self.step+1} on rank {self.config.rank}") self.raise_if_nan(losses) if is_rank_zero(self.config) and self.config.print_losses: pbar.set_description( f"Epoch: {epoch + 1}/{self.config.epochs}. Loop: Train. Losses: {stringify_losses(losses)}") self.scheduler.step() if self.should_log and self.step % 50 == 0: wandb.log({f"Train/{name}": loss.item() for name, loss in losses.items()}, step=self.step) # current_lr = self.optimizer.param_groups[0]['lr'] current_lr = self.scheduler.get_last_lr()[0] wandb.log({f"Train/LR": current_lr}, step=self.step) momentum = self.optimizer.param_groups[0]['betas'][0] wandb.log({f"Train/momentum": momentum}, step=self.step) self.step += 1 ######################################################################################################## if self.test_loader: if (self.step % validate_every) == 0: self.model.eval() if self.should_write: self.save_checkpoint( f"{self.config.experiment_id}_latest.pt") ################################# Validation loop ################################################## # validate on the entire validation set in every process but save only from rank 0, I know, inefficient, but avoids divergence of processes metrics, test_losses = self.validate() # print("Validated: {}".format(metrics)) if self.should_log: wandb.log( {f"Test/{name}": tloss for name, tloss in test_losses.items()}, step=self.step) wandb.log({f"Metrics/{k}": v for k, v in metrics.items()}, step=self.step) if (metrics[self.metric_criterion] < best_loss) and self.should_write: self.save_checkpoint( f"{self.config.experiment_id}_best.pt") best_loss = metrics[self.metric_criterion] self.model.train() if self.config.distributed: dist.barrier() # print(f"Validated: {metrics} on device {self.config.rank}") # print(f"Finished step {self.step} on device {self.config.rank}") ################################################################################################# # Save / validate at the end self.step += 1 # log as final point self.model.eval() self.save_checkpoint(f"{self.config.experiment_id}_latest.pt") if self.test_loader: ################################# Validation loop ################################################## metrics, test_losses = self.validate() # print("Validated: {}".format(metrics)) if self.should_log: wandb.log({f"Test/{name}": tloss for name, tloss in test_losses.items()}, step=self.step) wandb.log({f"Metrics/{k}": v for k, v in metrics.items()}, step=self.step) if (metrics[self.metric_criterion] < best_loss) and self.should_write: self.save_checkpoint( f"{self.config.experiment_id}_best.pt") best_loss = metrics[self.metric_criterion] self.model.train() def validate(self): with torch.no_grad(): losses_avg = RunningAverageDict() metrics_avg = RunningAverageDict() for i, batch in tqdm(enumerate(self.test_loader), desc=f"Epoch: {self.epoch + 1}/{self.config.epochs}. Loop: Validation", total=len(self.test_loader), disable=not is_rank_zero(self.config)): metrics, losses = self.validate_on_batch(batch, val_step=i) if losses: losses_avg.update(losses) if metrics: metrics_avg.update(metrics) r1, r2 = metrics_avg.get_value(), losses_avg.get_value() if self.should_log and self.config.get("debug", False): print(r1) return r1, r2 def save_checkpoint(self, filename): if not self.should_write: return root = self.config.save_dir if not os.path.isdir(root): os.makedirs(root) fpath = os.path.join(root, filename) m = self.model.module if self.config.multigpu else self.model torch.save( { "model": m.state_dict(), "optimizer": None, # TODO : Change to self.optimizer.state_dict() if resume support is needed, currently None to reduce file size "epoch": self.epoch }, fpath) def log_images(self, rgb: Dict[str, list] = {}, depth: Dict[str, list] = {}, scalar_field: Dict[str, list] = {}, prefix="", scalar_cmap="turbo_r", min_depth=None, max_depth=None): if not self.should_log: return # if min_depth is None: # try: # min_depth = self.config.min_depth # max_depth = self.config.max_depth # except AttributeError: # min_depth = None # max_depth = None depths_gt = depth['GT'] invalid_mask = torch.logical_or(depths_gt<=min_depth, depths_gt>=max_depth).detach().cpu().squeeze().numpy() min_depth = None max_depth = None depth = {k: colorize(v, vmin=min_depth, vmax=max_depth, invalid_mask=invalid_mask) for k, v in depth.items()} # depth = {k: colorize(v, vmin=0, vmax=80, invalid_mask=invalid_mask) # for k, v in depth.items()} scalar_field = {k: colorize( v, vmin=None, vmax=None, cmap=scalar_cmap) for k, v in scalar_field.items()} images = {**rgb, **depth, **scalar_field} wimages = { prefix+"Predictions": [wandb.Image(v, caption=k) for k, v in images.items()]} wandb.log(wimages, step=self.step) def log_line_plot(self, data): if not self.should_log: return plt.plot(data) plt.ylabel("Scale factors") wandb.log({"Scale factors": wandb.Image(plt)}, step=self.step) plt.close() def log_bar_plot(self, title, labels, values): if not self.should_log: return data = [[label, val] for (label, val) in zip(labels, values)] table = wandb.Table(data=data, columns=["label", "value"]) wandb.log({title: wandb.plot.bar(table, "label", "value", title=title)}, step=self.step)