# MIT License # Copyright (c) 2022 Intelligent Systems Lab Org # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # File author: Shariq Farooq Bhat """Miscellaneous utility functions.""" from scipy import ndimage import base64 import math import re from io import BytesIO import matplotlib import matplotlib.cm import numpy as np import requests import torch import torch.distributed as dist import torch.nn import torch.nn as nn import torch.utils.data.distributed from PIL import Image from torchvision.transforms import ToTensor import cv2 import matplotlib class RunningAverage: def __init__(self): self.avg = 0 self.count = 0 def append(self, value): self.avg = (value + self.count * self.avg) / (self.count + 1) self.count += 1 def get_value(self): return self.avg def denormalize(x): """Reverses the imagenet normalization applied to the input. Args: x (torch.Tensor - shape(N,3,H,W)): input tensor Returns: torch.Tensor - shape(N,3,H,W): Denormalized input """ mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(x.device) std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(x.device) return x * std + mean class RunningAverageDict: """A dictionary of running averages.""" def __init__(self): self._dict = None def update(self, new_dict): if new_dict is None: return if self._dict is None: self._dict = dict() for key, value in new_dict.items(): self._dict[key] = RunningAverage() for key, value in new_dict.items(): self._dict[key].append(value) def get_value(self): if self._dict is None: return None return {key: value.get_value() for key, value in self._dict.items()} def colorize(value, vmin=None, vmax=None, cmap='turbo_r', invalid_val=-99, invalid_mask=None, background_color=(128, 128, 128, 255), gamma_corrected=False, value_transform=None): """Converts a depth map to a color image. Args: value (torch.Tensor, numpy.ndarry): Input depth map. Shape: (H, W) or (1, H, W) or (1, 1, H, W). All singular dimensions are squeezed vmin (float, optional): vmin-valued entries are mapped to start color of cmap. If None, value.min() is used. Defaults to None. vmax (float, optional): vmax-valued entries are mapped to end color of cmap. If None, value.max() is used. Defaults to None. cmap (str, optional): matplotlib colormap to use. Defaults to 'magma_r'. invalid_val (int, optional): Specifies value of invalid pixels that should be colored as 'background_color'. Defaults to -99. invalid_mask (numpy.ndarray, optional): Boolean mask for invalid regions. Defaults to None. background_color (tuple[int], optional): 4-tuple RGB color to give to invalid pixels. Defaults to (128, 128, 128, 255). gamma_corrected (bool, optional): Apply gamma correction to colored image. Defaults to False. value_transform (Callable, optional): Apply transform function to valid pixels before coloring. Defaults to None. Returns: numpy.ndarray, dtype - uint8: Colored depth map. Shape: (H, W, 4) """ if isinstance(value, torch.Tensor): value = value.detach().cpu().numpy() value = value.squeeze() if invalid_mask is None: invalid_mask = value == invalid_val mask = np.logical_not(invalid_mask) # normalize vmin = np.percentile(value[mask],2) if vmin is None else vmin vmax = np.percentile(value[mask],85) if vmax is None else vmax if vmin != vmax: value = (value - vmin) / (vmax - vmin) # vmin..vmax else: # Avoid 0-division value = value * 0. # squeeze last dim if it exists # grey out the invalid values value[invalid_mask] = np.nan cmapper = matplotlib.cm.get_cmap(cmap) if value_transform: value = value_transform(value) # value = value / value.max() value = cmapper(value, bytes=True) # (nxmx4) # img = value[:, :, :] img = value[...] img[invalid_mask] = background_color # return img.transpose((2, 0, 1)) if gamma_corrected: # gamma correction img = img / 255 img = np.power(img, 2.2) img = img * 255 img = img.astype(np.uint8) return img def count_parameters(model, include_all=False): return sum(p.numel() for p in model.parameters() if p.requires_grad or include_all) def compute_errors(gt, pred): """Compute metrics for 'pred' compared to 'gt' Args: gt (numpy.ndarray): Ground truth values pred (numpy.ndarray): Predicted values gt.shape should be equal to pred.shape Returns: dict: Dictionary containing the following metrics: 'a1': Delta1 accuracy: Fraction of pixels that are within a scale factor of 1.25 'a2': Delta2 accuracy: Fraction of pixels that are within a scale factor of 1.25^2 'a3': Delta3 accuracy: Fraction of pixels that are within a scale factor of 1.25^3 'abs_rel': Absolute relative error 'rmse': Root mean squared error 'log_10': Absolute log10 error 'sq_rel': Squared relative error 'rmse_log': Root mean squared error on the log scale 'silog': Scale invariant log error """ thresh = np.maximum((gt / pred), (pred / gt)) a1 = (thresh < 1.25).mean() a2 = (thresh < 1.25 ** 2).mean() a3 = (thresh < 1.25 ** 3).mean() abs_rel = np.mean(np.abs(gt - pred) / gt) sq_rel = np.mean(((gt - pred) ** 2) / gt) rmse = (gt - pred) ** 2 rmse = np.sqrt(rmse.mean()) rmse_log = (np.log(gt) - np.log(pred)) ** 2 rmse_log = np.sqrt(rmse_log.mean()) err = np.log(pred) - np.log(gt) silog = np.sqrt(np.mean(err ** 2) - np.mean(err) ** 2) * 100 log_10 = (np.abs(np.log10(gt) - np.log10(pred))).mean() return dict(a1=a1, a2=a2, a3=a3, abs_rel=abs_rel, rmse=rmse, log_10=log_10, rmse_log=rmse_log, silog=silog, sq_rel=sq_rel) def shift_2d_replace(data, dx, dy, constant=False): shifted_data = np.roll(data, dx, axis=1) if dx < 0: shifted_data[:, dx:] = constant elif dx > 0: shifted_data[:, 0:dx] = constant shifted_data = np.roll(shifted_data, dy, axis=0) if dy < 0: shifted_data[dy:, :] = constant elif dy > 0: shifted_data[0:dy, :] = constant return shifted_data def soft_edge_error(pred, gt, radius=1): abs_diff=[] for i in range(-radius, radius + 1): for j in range(-radius, radius + 1): abs_diff.append(np.abs(shift_2d_replace(gt, i, j, 0) - pred)) return np.minimum.reduce(abs_diff) def get_boundaries(disp, th=1., dilation=10): edges_y = np.logical_or(np.pad(np.abs(disp[1:, :] - disp[:-1, :]) > th, ((1, 0), (0, 0))), np.pad(np.abs(disp[:-1, :] - disp[1:, :]) > th, ((0, 1), (0, 0)))) edges_x = np.logical_or(np.pad(np.abs(disp[:, 1:] - disp[:, :-1]) > th, ((0, 0), (1, 0))), np.pad(np.abs(disp[:, :-1] - disp[:,1:]) > th, ((0, 0), (0, 1)))) edges = np.logical_or(edges_y, edges_x).astype(np.float32) if dilation > 0: kernel = np.ones((dilation, dilation), np.uint8) edges = cv2.dilate(edges, kernel, iterations=1) return edges @torch.no_grad() def scale_shift_linear(rendered_depth, predicted_depth, mask, fuse=True, return_params=False): """ Optimize a scale and shift parameter in the least squares sense, such that rendered_depth and predicted_depth match. Formally, solves the following objective: min || (d * a + b) - d_hat || a, b where d = 1 / predicted_depth, d_hat = 1 / rendered_depth :param rendered_depth: torch.Tensor (H, W) :param predicted_depth: torch.Tensor (H, W) :param mask: torch.Tensor (H, W) - True: valid points of rendered_depth, False: invalid points of rendered_depth (ignore) :param fuse: whether to fuse shifted/scaled predicted_depth with the rendered_depth :return: scale/shift corrected depth """ if mask.sum() == 0: return predicted_depth # rendered_disparity = 1 / rendered_depth[mask].unsqueeze(-1) # predicted_disparity = 1 / predicted_depth[mask].unsqueeze(-1) rendered_disparity = rendered_depth[mask].unsqueeze(-1) predicted_disparity = predicted_depth[mask].unsqueeze(-1) X = torch.cat([predicted_disparity, torch.ones_like(predicted_disparity)], dim=1) XTX_inv = (X.T @ X).inverse() XTY = X.T @ rendered_disparity AB = XTX_inv @ XTY if return_params: return AB fixed_disparity = (predicted_depth) * AB[0] + AB[1] fixed_depth = fixed_disparity if fuse: fused_depth = torch.where(mask, rendered_depth, fixed_depth) return fused_depth else: return fixed_depth def compute_metrics(gt, pred, interpolate=True, garg_crop=False, eigen_crop=True, dataset='nyu', min_depth_eval=0.1, max_depth_eval=10, disp_gt_edges=None, pred_depths=None, **kwargs): """Compute metrics of predicted depth maps. Applies cropping and masking as necessary or specified via arguments. Refer to compute_errors for more details on metrics. """ if 'config' in kwargs: config = kwargs['config'] garg_crop = config.garg_crop eigen_crop = config.eigen_crop min_depth_eval = config.min_depth_eval max_depth_eval = config.max_depth_eval if gt.shape[-2:] != pred.shape[-2:] and interpolate: pred = nn.functional.interpolate( pred.unsqueeze(dim=0).unsqueeze(dim=0), gt.shape[-2:], mode='bilinear', align_corners=True).squeeze() pred = pred.squeeze().cpu().numpy() pred[pred < min_depth_eval] = min_depth_eval pred[pred > max_depth_eval] = max_depth_eval pred[np.isinf(pred)] = max_depth_eval pred[np.isnan(pred)] = min_depth_eval gt_depth = gt.squeeze().cpu().numpy() valid_mask = np.logical_and( gt_depth > min_depth_eval, gt_depth < max_depth_eval) eval_mask = np.ones(valid_mask.shape) if garg_crop or eigen_crop: gt_height, gt_width = gt_depth.shape eval_mask = np.zeros(valid_mask.shape) if garg_crop: eval_mask[int(0.40810811 * gt_height):int(0.99189189 * gt_height), int(0.03594771 * gt_width):int(0.96405229 * gt_width)] = 1 elif eigen_crop: # print("-"*10, " EIGEN CROP ", "-"*10) if dataset == 'kitti': eval_mask[int(0.3324324 * gt_height):int(0.91351351 * gt_height), int(0.0359477 * gt_width):int(0.96405229 * gt_width)] = 1 else: # assert gt_depth.shape == (480, 640), "Error: Eigen crop is currently only valid for (480, 640) images" eval_mask[45:471, 41:601] = 1 else: eval_mask = np.ones(valid_mask.shape) valid_mask = np.logical_and(valid_mask, eval_mask) # if dataset == 'nyu': # # pred = scale_shift_linear(torch.tensor(pred_depths), torch.tensor(pred), torch.tensor(valid_mask), fuse=False).numpy() # pred = scale_shift_linear(torch.tensor(gt), torch.tensor(pred), torch.tensor(valid_mask), fuse=False).numpy() metrics = compute_errors(gt_depth[valid_mask], pred[valid_mask]) mask = valid_mask.squeeze() # squeeze gt = gt_depth pred = pred see_depth = 0 if disp_gt_edges is None: print("Maybe we need edge maps from origin disp!") edges = get_boundaries(gt, th=0.08, dilation=0) else: edges = disp_gt_edges mask = np.logical_and(mask, edges) import matplotlib.pyplot as plt if mask.sum() > 0: see_depth = soft_edge_error(pred, gt)[mask].mean() metrics['see'] = see_depth return metrics # 'abs_rel': 0.07546425755890458, 'rmse': 0.2714709522322233, base zoe # 'abs_rel': 0.04409278385819647, 'rmse': 0.18093922881791188, base zoe+opt # patchfusion + pred scale-shift: 'abs_rel': 0.09078774519765959, 'rmse': 0.31991247948976803, # gt scale-shift abs_rel': 0.06316796072476771, 'rmse': 0.24189620860353886, #################################### Model uilts ################################################ def parallelize(config, model, find_unused_parameters=True): if config.gpu is not None: torch.cuda.set_device(config.gpu) model = model.cuda(config.gpu) config.multigpu = False if config.distributed: # Use DDP config.multigpu = True config.rank = config.rank * config.ngpus_per_node + config.gpu dist.init_process_group(backend=config.dist_backend, init_method=config.dist_url, world_size=config.world_size, rank=config.rank) config.batch_size = int(config.batch_size / config.ngpus_per_node) # config.batch_size = 8 config.workers = int( (config.num_workers + config.ngpus_per_node - 1) / config.ngpus_per_node) print("Device", config.gpu, "Rank", config.rank, "batch size", config.batch_size, "Workers", config.workers) torch.cuda.set_device(config.gpu) model = nn.SyncBatchNorm.convert_sync_batchnorm(model) model = model.cuda(config.gpu) model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[config.gpu], output_device=config.gpu, find_unused_parameters=find_unused_parameters) # model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[config.gpu], output_device=config.gpu, # find_unused_parameters=True) elif config.gpu is None: # Use DP config.multigpu = True model = model.cuda() model = torch.nn.DataParallel(model) return model ################################################################################################# ##################################################################################################### class colors: '''Colors class: Reset all colors with colors.reset Two subclasses fg for foreground and bg for background. Use as colors.subclass.colorname. i.e. colors.fg.red or colors.bg.green Also, the generic bold, disable, underline, reverse, strikethrough, and invisible work with the main class i.e. colors.bold ''' reset = '\033[0m' bold = '\033[01m' disable = '\033[02m' underline = '\033[04m' reverse = '\033[07m' strikethrough = '\033[09m' invisible = '\033[08m' class fg: black = '\033[30m' red = '\033[31m' green = '\033[32m' orange = '\033[33m' blue = '\033[34m' purple = '\033[35m' cyan = '\033[36m' lightgrey = '\033[37m' darkgrey = '\033[90m' lightred = '\033[91m' lightgreen = '\033[92m' yellow = '\033[93m' lightblue = '\033[94m' pink = '\033[95m' lightcyan = '\033[96m' class bg: black = '\033[40m' red = '\033[41m' green = '\033[42m' orange = '\033[43m' blue = '\033[44m' purple = '\033[45m' cyan = '\033[46m' lightgrey = '\033[47m' def printc(text, color): print(f"{color}{text}{colors.reset}") ############################################ def get_image_from_url(url): response = requests.get(url) img = Image.open(BytesIO(response.content)).convert("RGB") return img def url_to_torch(url, size=(384, 384)): img = get_image_from_url(url) img = img.resize(size, Image.ANTIALIAS) img = torch.from_numpy(np.asarray(img)).float() img = img.permute(2, 0, 1) img.div_(255) return img def pil_to_batched_tensor(img): return ToTensor()(img).unsqueeze(0) def save_raw_16bit(depth, fpath="raw.png"): if isinstance(depth, torch.Tensor): depth = depth.squeeze().cpu().numpy() assert isinstance(depth, np.ndarray), "Depth must be a torch tensor or numpy array" assert depth.ndim == 2, "Depth must be 2D" depth = depth * 256 # scale for 16-bit png depth = depth.astype(np.uint16) depth = Image.fromarray(depth) depth.save(fpath) print("Saved raw depth to", fpath) def generatemask(size, k_size=-1, sigma=-1, h_factor=0.03, w_factor=0.02): # Generates a Guassian mask mask = np.zeros(size, dtype=np.float32) if sigma == -1: sigma = int(size[0]/16) if k_size == -1: k_size = int(2 * np.ceil(2 * int(size[0]/16)) + 1) # mask[int(0.02*size[0]):size[0] - int(0.02*size[0]), int(0.015*size[1]): size[1] - int(0.015*size[1])] = 1 mask[int(h_factor*size[0]):size[0] - int(h_factor*size[0]), int(w_factor*size[1]): size[1] - int(w_factor*size[1])] = 1 mask = cv2.GaussianBlur(mask, (int(k_size), int(k_size)), sigma) mask = (mask - mask.min()) / (mask.max() - mask.min()) mask = mask.astype(np.float32) return mask