File size: 1,733 Bytes
755dd12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import { DefaultSystem } from '../utils/constant';
import { IChatInputMessage, IStreamHandler } from '../interface';
import { BaseChat } from './base/base';
import { LMStudioClient } from '@lmstudio/sdk';

const host = process.env.OLLAMA_HOST || 'localhost:1234';
const lmstudioClient = new LMStudioClient({
  baseUrl: `ws://${host}`
});
/**
 * run large language models locally with LMStudio.
 */
export class LMStudioChat implements BaseChat {
  public platform = 'lmstudio';

  public async chat(
    messages: IChatInputMessage[],
    model = 'lmstudio-community/Meta-Llama-3.1-8B-Instruct-GGUF',
    system = DefaultSystem
  ): Promise<string | null> {
    if (system) {
      messages.unshift({
        role: 'system',
        content: system
      });
    }

    const llama3 = await lmstudioClient.llm.load(model);
    const response = await llama3.respond(messages);

    return response.content;
  }

  public async chatStream(
    messages: IChatInputMessage[],
    onMessage: IStreamHandler,
    model = 'llama2',
    system = DefaultSystem
  ): Promise<void> {
    if (system) {
      messages.unshift({
        role: 'system',
        content: system
      });
    }
    const llama3 = await lmstudioClient.llm.load(model);

    const response = llama3.respond(messages);

    for await (const chunk of response) {
      onMessage?.(chunk, false);
    }
    onMessage?.(null, true);
  }

  public async list() {
    const models = await lmstudioClient.llm.listLoaded();
    if (models.length === 0) return Promise.reject('No models loaded.');
    return {
      models: models.map((x: any) => {
        return {
          name: x.identifier
        };
      })
    };
  }
}

export const lmstudio = new LMStudioChat();