zidanehammouda
commited on
Upload folder using huggingface_hub
Browse files- .gitignore +5 -0
- README.md +164 -8
- launch_app.sh +32 -0
- requirements.txt +14 -0
- src/Interface.py +104 -0
- src/api_client.py +40 -0
- src/app.py +117 -0
- src/evaluation/datasets/Monthly_Counts_of_Deaths_by_Select_Causes__2014-2019.csv +73 -0
- src/evaluation/datasets/hw_200.csv +201 -0
- src/evaluation/datasets/onlinefoods.csv +389 -0
- src/evaluation/datasets/titanic.csv +888 -0
- src/evaluation/results_codellama_prompt3.xlsx +0 -0
- src/evaluation/results_deepseek_prompt1.xlsx +0 -0
- src/evaluation/results_deepseek_prompt2.xlsx +0 -0
- src/evaluation/results_deepseek_prompt3.xlsx +0 -0
- src/evaluation/results_mistral_prompt1.xlsx +0 -0
- src/evaluation/results_mistral_prompt3.xlsx +0 -0
- src/model.py +36 -0
- src/model_server.py +59 -0
- src/notebook.ipynb +0 -0
- src/prompt_templates.py +21 -0
- survived_age_correlation.png +0 -0
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
.vscode
|
3 |
+
log.json
|
4 |
+
gc
|
5 |
+
__pycache__
|
README.md
CHANGED
@@ -1,12 +1,168 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
|
4 |
-
colorFrom: indigo
|
5 |
-
colorTo: green
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: CSV_Question_Answering_App
|
3 |
+
app_file: src/Interface.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
+
sdk_version: 4.26.0
|
|
|
|
|
6 |
---
|
7 |
+
# CSV Question Answering App
|
8 |
|
9 |
+
CSV Question Answering App, as the name implies, is an application that leverages the capabilities of text-generation LLM deepseek-coder to answer questions and give insights about datasets and CSV files. The application gives you the freedom to ask any kind of question regarding your input dataset and It will give you responses. Questions could range from ‘Which country has the highest infection rates per capita?” to “What’s the distribution of COVID-19 cases by age group?” for the [COVID-19 dataset](https://www.kaggle.com/datasets/imdevskp/corona-virus-report/code).
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
## Run Locally
|
15 |
+
|
16 |
+
The app can be run using three different methods: Remote Model Inference, Local Model Inference, and API. To start, run the ./launch_app.sh file and select your preferred method. Detailed explanations of each method are provided below.
|
17 |
+
|
18 |
+
![alt text](https://i.imgur.com/DFGdZLn.png)
|
19 |
+
|
20 |
+
**Please note:** The first two methods require that your hardware be capable of running the model locally.
|
21 |
+
|
22 |
+
### Remote Model Inference:
|
23 |
+
|
24 |
+
In this method, the model is deployed on a local server, meaning it runs independently of the application. The application communicates with the server via HTTP requests to send input data and receive predictions. This setup allows for easy updates and debugging without needing to reload the model with each change. To use this method, run the shell script and select mode 1. Alternatively, you can manually enter the following commands:
|
25 |
+
|
26 |
+
```bash
|
27 |
+
python3 src/model_server.py
|
28 |
+
export method=server
|
29 |
+
python3 src/Interface.py
|
30 |
+
```
|
31 |
+
This configuration deploys the model on a local server on port 5000 and launches the application interface on a different port.
|
32 |
+
|
33 |
+
### Local Model Inference:
|
34 |
+
|
35 |
+
Here, the machine learning model is loaded directly within the application, eliminating the need for network communications. To use this method, choose mode 2 when running the ./launch_app.sh shell script. Alternatively, you can set it up manually with:
|
36 |
+
|
37 |
+
```bash
|
38 |
+
export method=local
|
39 |
+
python3 src/Interface.py
|
40 |
+
```
|
41 |
+
|
42 |
+
### Through API:
|
43 |
+
|
44 |
+
This method utilizes the public DeepSeek model API, allowing you to make predictions without loading the model on your machine. You'll need an API key from the DeepSeek API, set as an environment variable in the .env file. Note that the DeepSeek API platform provides 10M free tokens upon account creation. To proceed, update the DEEPSEEK_API_KEY in your .env file, then run ./launch_app.sh and choose mode 3.
|
45 |
+
|
46 |
+
|
47 |
+
## Live version
|
48 |
+
If you prefer not to install and run the app manually, you can use the hosted version on Hugging Face Spaces. Follow [this](https://huggingface.co/spaces/zidanehammouda/CSV_Question_Answering_App) link to access it.
|
49 |
+
|
50 |
+
|
51 |
+
## Usage
|
52 |
+
Once the app is running and you have selected a dataset you're interested in exploring, simply upload the CSV file. The app will then utilize the OpenAI API (GPT3.5 model) to generate a description of the dataset and suggest example queries that you can pose to the main code generator model. Note that the description and suggestions are optional; you can manually provide the description to the model instead.
|
53 |
+
|
54 |
+
Below is an example demo of how the app works and how to use it:
|
55 |
+
|
56 |
+
|
57 |
+
![alt text](https://i.imgur.com/dj1qnJF.gif)
|
58 |
+
## Documentation
|
59 |
+
|
60 |
+
This app consists of four main components:
|
61 |
+
|
62 |
+
**Interface:** Utilizes the Gradio UI, which serves as the interface between the user and the rest of the application's components.
|
63 |
+
|
64 |
+
**Main App Component:** Encapsulates most of the app’s workflow, including prompt formatting, code extraction, and code execution.
|
65 |
+
|
66 |
+
**Model:** Features the deepseek-coder model, which acts as the code generator for this app. (Further details are available in the next section)
|
67 |
+
|
68 |
+
**API Client:** Calls the GPT-3.5 model to generate a brief description of the input dataset and suggests example questions that could help explore and understand the dataset. (This component is optional and can be omitted if not needed. Its primary function is to provide descriptions and suggested queries for the coder model)
|
69 |
+
|
70 |
+
### High-level design
|
71 |
+
Below is the high-level design of the app and how the different components interact with each other to answer input questions. Step 2 which represents the calling of the GPT3.5 API is optional and depends on whether you choose to rely on the model to generate a description for you (as well as return suggested questions for the dataset) or you write it manually.
|
72 |
+
Note: Providing a description of the dataset is not mandatory for the model to function, but it is highly recommended as it offers valuable context that can enhance the accuracy and relevance of the model's responses.
|
73 |
+
|
74 |
+
![HL design](https://i.imgur.com/b8CcaLZ.jpeg)
|
75 |
+
|
76 |
+
### Activity Diagram (Low-level design)
|
77 |
+
Below is the activity diagram describing the flow of the answer generation and how the components interact to return a response.
|
78 |
+
|
79 |
+
![HL design](https://i.imgur.com/HpPjjf0.jpeg)
|
80 |
+
|
81 |
+
### Model Selection:
|
82 |
+
|
83 |
+
The choice of the model was not made arbitrarily; it was based on comparative results from tests conducted on four distinct datasets. Each dataset included a set of test cases—comprising questions and answers—where the Deepseek-coder model consistently demonstrated superior efficiency and performance. The models compared were:
|
84 |
+
|
85 |
+
* Deepseek-coder-7b-instruct-v1.5
|
86 |
+
* mistralai/Mistral-7B-Instruct-v0.2
|
87 |
+
* CodeLlama-7b-Instruct-hf
|
88 |
+
|
89 |
+
Note that the same hyperparameters were used during the evaluation of the models.
|
90 |
+
|
91 |
+
#### Evaluation Data
|
92 |
+
Below are the four datasets used in the evaluation and comparison of the three models:
|
93 |
+
|
94 |
+
* **Titanic.csv:** This dataset includes passenger details from the Titanic, such as survival status, class, name, gender, age, number of siblings/spouses and parents/children aboard, and fare amount.
|
95 |
+
|
96 |
+
* **Onlinefoods.csv:** Contains data from an online food ordering platform, covering attributes like occupation, family size, and feedback collected over a certain period.
|
97 |
+
|
98 |
+
* **Hw_200.csv:** Provides height and weight for 200 individuals. Each record includes three values: index, height (in inches), and weight (in pounds).
|
99 |
+
|
100 |
+
* **Monthly_Counts_of_Deaths_by_Select_Causes__2014-2019.csv:** Features monthly counts of deaths in the United States by select causes from 2014 to 2019, including causes such as Alzheimer's, heart disease, accidents, and drug overdose.
|
101 |
+
|
102 |
+
Each dataset was accompanied by a set of test cases ranging from 10 to 14, totaling 52 test cases for all datasets together.
|
103 |
+
|
104 |
+
Example test cases for the Titanic dataset include:
|
105 |
+
>
|
106 |
+
Question: How many females are in the dataset? Answer: 314
|
107 |
+
Question: What is the average age of the passengers? Answer: 29.471
|
108 |
+
Question: How many passengers survived? Answer: 342
|
109 |
+
Question: Who paid the highest fare? Answer: Miss. Anna Ward
|
110 |
+
Question: What is the total amount of fare paid? Answer: $28,654.91
|
111 |
+
Question: Who is the passenger with the highest number of siblings aboard?
|
112 |
+
|
113 |
+
Some test cases were generated by ChatGPT but were thoroughly reviewed and verified to ensure they were suitable for use as test cases.
|
114 |
+
|
115 |
+
#### Prompt evaluation and results:
|
116 |
+
|
117 |
+
Below are the prompts that were ultimately used to evaluate the models. These were selected after testing numerous other prompts, which helped identify the most effective ones for our purposes. The development of these prompts was an incremental process, with adjustments made gradually until the optimal configuration was achieved.
|
118 |
+
|
119 |
+
**Prompt 1:**
|
120 |
+
>
|
121 |
+
df is a dataframe that {description}. df has these columns: {columns}. Without explaining, write in a Python code block the answer to this question: Print {question}
|
122 |
+
**Prompt 2:**
|
123 |
+
>
|
124 |
+
Prompt 2: df is a dataframe that {description}. df has these columns: {columns}. Write in a Python code block the answer to this question: Print {question}. Just code, no explanation should be given.
|
125 |
+
**Prompt 3:**
|
126 |
+
>
|
127 |
+
Prompt 3: df is a dataframe that {description}. df has these columns: {columns}. Write in a Python code block the answer to this question: {question}. Just write code and print results, no explanation should be given.
|
128 |
+
|
129 |
+
Prompt 2 is derived from Prompt 1 and was specifically designed to compel the models to return only code. Prompt 3, a derivative of Prompt 2, was introduced when it was observed that the models occasionally failed to print the results.
|
130 |
+
|
131 |
+
|
132 |
+
* **CodeLlama:** This model struggled with both Prompt 1 and Prompt 2. With Prompt 1, it tended to overexplain and included many non-code tokens. With Prompt 2, it often failed to print the results, which is crucial for displaying the response. Therefore, both Prompt 2 and Prompt 3 were evaluated, with Prompt 3 proving to be the most effective for this model.
|
133 |
+
|
134 |
+
* **Deepseek:** This model delivered consistent results with both Prompts 1 and 2, and showed a slight improvement with Prompt 3.
|
135 |
+
|
136 |
+
* **Mistral:** Performed better with Prompt 1 but had issues with forgetting to print results in some test cases when using Prompt 2. It exhibited the lowest accuracy with Prompt 3.
|
137 |
+
|
138 |
+
#### Results
|
139 |
+
In this next section, the results of the three models will be compared when every model uses its best prompt. (Codellama and Deepseek prompt 3 and Mistral prompt 1).
|
140 |
+
|
141 |
+
Deepseek had the best performance with 44 true answers and 8 false answers (85% accuracy). Following it is Mistral with 34 true answers and 18 false answers (65% accuracy) and then Codellama which had the worst results with only 22 true answers and 30 false answers (42% accuracy)
|
142 |
+
|
143 |
+
![HL design](https://i.imgur.com/Qyo2r2Z.png)
|
144 |
+
![HL design](https://i.imgur.com/MctuZVC.png)
|
145 |
+
|
146 |
+
The models' average inference time results range from 2.2 seconds to 3.8 with Codellama being the fastest with 2.27s inference time followed by Deepseek with 3.4s and Mistral with 3.78s.
|
147 |
+
|
148 |
+
![HL design](https://i.imgur.com/6zwiyzv.png)
|
149 |
+
|
150 |
+
![HL design](https://i.imgur.com/DJ4gccE.png)
|
151 |
+
|
152 |
+
Because both efficiency and accuracy are important in this project Deepseek was chosen as the best coder model for this app.
|
153 |
+
|
154 |
+
Please note all comparing results and data are included in this project under the evaluation directory.
|
155 |
+
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
|
163 |
+
## Contribution
|
164 |
+
Although the app heavily relies on the model code generator and its output, its success would not have been possible without significant efforts to refine and adjust the inputs before they are fed into the model. This ensures that the model provides the most accurate results possible. A major contribution to this project was the thorough evaluation of different models, utilizing a set of meticulously validated test cases to determine which model would best suit the application's needs. Equally important is the work done to extract relevant code from the model's response, converting it into a format suitable for the code executor. The seamless integration of these commands is what makes this application functional by leveraging the LLM code generator. Finally, a key contribution to this project is the engineering behind the app. This includes careful planning of its various components and comprehensive management of all potential scenarios, including unexpected behaviors. These efforts ensure robust and reliable performance of the whole application.
|
165 |
+
## Limitations
|
166 |
+
While the model has shown strong performance compared to other options and consistently achieves good scores, it is not 100% accurate and occasionally makes errors. Currently, the app is limited to displaying results through prints or plots only. Supporting additional result formats could be a valuable improvement for future development.
|
167 |
+
|
168 |
+
Another significant limitation is that the app does not automatically process and return results for suggested questions; it merely displays these suggestions to the user. Implementing a feature that automatically runs suggested questions and analyzes the CSV file would not only enhance user interaction but also provide deeper insights and knowledge about the data. This capability could be developed in future iterations of the project.
|
launch_app.sh
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
chmod +x launch_app.sh
|
3 |
+
|
4 |
+
echo "Select the launch mode for the model:"
|
5 |
+
echo "1. Server"
|
6 |
+
echo "2. Local"
|
7 |
+
echo "3. Api"
|
8 |
+
read -p "Enter choice [1-3]: " mode
|
9 |
+
|
10 |
+
case $mode in
|
11 |
+
1)
|
12 |
+
echo "Starting server..."
|
13 |
+
python3 src/model_server.py &
|
14 |
+
echo "Launching app in mode 1..."
|
15 |
+
export method=server
|
16 |
+
python3 src/Interface.py
|
17 |
+
;;
|
18 |
+
2)
|
19 |
+
echo "Launching app in mode 2..."
|
20 |
+
export method=local
|
21 |
+
python3 src/Interface.py
|
22 |
+
;;
|
23 |
+
3)
|
24 |
+
echo "Launching app in mode 3..."
|
25 |
+
export method=api
|
26 |
+
python3 src/Interface.py
|
27 |
+
;;
|
28 |
+
*)
|
29 |
+
echo "Invalid option selected. Exiting."
|
30 |
+
exit 1
|
31 |
+
;;
|
32 |
+
esac
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python-dotenv
|
2 |
+
requests
|
3 |
+
gradio
|
4 |
+
pillow
|
5 |
+
flask
|
6 |
+
transformers
|
7 |
+
torch
|
8 |
+
openai
|
9 |
+
|
10 |
+
seaborn
|
11 |
+
pandas
|
12 |
+
matplotlib
|
13 |
+
numpy
|
14 |
+
scipy
|
src/Interface.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from app import run, describe_file,suggest_questions
|
4 |
+
import os
|
5 |
+
from PIL import Image
|
6 |
+
import logging
|
7 |
+
import sys
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
load_dotenv()
|
10 |
+
|
11 |
+
if not os.environ.get('method'):
|
12 |
+
if len(sys.argv) > 1 and sys.argv[1] in ["server","api","local"] :
|
13 |
+
os.environ['method'] = sys.argv[1]
|
14 |
+
else:
|
15 |
+
print("Please type a valid model method")
|
16 |
+
sys.exit()
|
17 |
+
|
18 |
+
logging.basicConfig(level=logging.INFO)
|
19 |
+
logging.info(os.environ.get('method'))
|
20 |
+
|
21 |
+
|
22 |
+
def read_image():
|
23 |
+
directory='./'
|
24 |
+
image_files = [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f)) and (f.endswith('.png') or f.endswith('.jpg'))]
|
25 |
+
if image_files:
|
26 |
+
image_path = os.path.join(directory, image_files[0])
|
27 |
+
try:
|
28 |
+
image = Image.open(image_path)
|
29 |
+
return image
|
30 |
+
except Exception as e:
|
31 |
+
print(f"Error {e}")
|
32 |
+
return None
|
33 |
+
return None
|
34 |
+
|
35 |
+
def delete_image():
|
36 |
+
directory='./'
|
37 |
+
image_files = [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f)) and (f.endswith('.png') or f.endswith('.jpg'))]
|
38 |
+
if image_files:
|
39 |
+
for image_file in image_files:
|
40 |
+
image_path = os.path.join(directory, image_file)
|
41 |
+
try:
|
42 |
+
os.remove(image_path)
|
43 |
+
except:
|
44 |
+
return
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
def generate_description(uploaded_file):
|
49 |
+
delete_image()
|
50 |
+
if uploaded_file is None:
|
51 |
+
return "", "Please upload a CSV file"
|
52 |
+
df = pd.read_csv(uploaded_file)
|
53 |
+
automatic_description = describe_file(df, uploaded_file.name)
|
54 |
+
suggestions = suggest_questions(df, uploaded_file.name)
|
55 |
+
return automatic_description, "",suggestions
|
56 |
+
|
57 |
+
def process_csv_question_and_description(uploaded_file, description, question):
|
58 |
+
delete_image()
|
59 |
+
if uploaded_file is None:
|
60 |
+
return "Please upload a CSV file."
|
61 |
+
df = pd.read_csv(uploaded_file)
|
62 |
+
df_columns = str(list(df.columns))
|
63 |
+
namespace = {'df': df}
|
64 |
+
logging.info("Generating started")
|
65 |
+
response = run(namespace, description, df_columns, question,os.environ.get("method"))
|
66 |
+
logging.info("Generating finished")
|
67 |
+
logging.info(response)
|
68 |
+
|
69 |
+
image = read_image()
|
70 |
+
# logging.basicConfig(level=logging.INFO)
|
71 |
+
# logging.info("This is an info message")
|
72 |
+
# logging.info(response)
|
73 |
+
|
74 |
+
try:
|
75 |
+
execution = response['execution']
|
76 |
+
except:
|
77 |
+
try:
|
78 |
+
execution = response['error']
|
79 |
+
except:
|
80 |
+
execution = 'An error occured while generating a response'
|
81 |
+
|
82 |
+
return execution,image
|
83 |
+
|
84 |
+
|
85 |
+
with gr.Blocks(css=".file_container {max-height:150px} .file_container > button > div {display:flex;flex-direction:row}") as app:
|
86 |
+
gr.Markdown("## CSV Question Answering App")
|
87 |
+
gr.Markdown("Upload a CSV file, and an automatic description will be generated. You can edit this description before asking your question.")
|
88 |
+
|
89 |
+
with gr.Row():
|
90 |
+
with gr.Column():
|
91 |
+
file_input = gr.File(label="Upload CSV File",elem_classes=['file_container'])
|
92 |
+
description_input = gr.Textbox(label="Dataset Description", placeholder="The description will be generated here...")
|
93 |
+
question_input = gr.Textbox(label="For better visualization results start your input with \"Plot\"")
|
94 |
+
submit_button = gr.Button("Submit")
|
95 |
+
suggestions=gr.Text(label="Suggestions")
|
96 |
+
with gr.Column():
|
97 |
+
output = gr.Text(label="Answer")
|
98 |
+
image = gr.Image()
|
99 |
+
message = gr.Textbox(label="Message", visible=False)
|
100 |
+
|
101 |
+
file_input.change(fn=generate_description, inputs=[file_input], outputs=[description_input, message,suggestions])
|
102 |
+
submit_button.click(fn=process_csv_question_and_description, inputs=[file_input, description_input, question_input], outputs=[output,image])
|
103 |
+
|
104 |
+
app.launch(debug=True)
|
src/api_client.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from openai import OpenAI
|
2 |
+
import os
|
3 |
+
import requests
|
4 |
+
import json
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
load_dotenv()
|
7 |
+
|
8 |
+
|
9 |
+
gpt_client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
|
10 |
+
|
11 |
+
def predict_gpt(prompt):
|
12 |
+
response = gpt_client.chat.completions.create(
|
13 |
+
model="gpt-4",
|
14 |
+
messages=[{"role": "user", "content": prompt}])
|
15 |
+
text_response = response.choices[0].message.content
|
16 |
+
return text_response
|
17 |
+
|
18 |
+
def predict_deepseek(prompt):
|
19 |
+
try:
|
20 |
+
url = "https://api.deepseek.com/v1/chat/completions"
|
21 |
+
|
22 |
+
payload = json.dumps({
|
23 |
+
"messages":[{"role": "user", "content": prompt}],
|
24 |
+
"model": "deepseek-coder",
|
25 |
+
"max_tokens": 1000,
|
26 |
+
"temperature": 0.1,
|
27 |
+
})
|
28 |
+
os.environ.get("DEEPSEEK_API_KEY")
|
29 |
+
headers = {
|
30 |
+
'Content-Type': 'application/json',
|
31 |
+
'Accept': 'application/json',
|
32 |
+
'Authorization': f'Bearer {os.environ.get("DEEPSEEK_API_KEY")}'
|
33 |
+
}
|
34 |
+
|
35 |
+
response = requests.request("POST", url, headers=headers, data=payload).text
|
36 |
+
response = json.loads(response)
|
37 |
+
return response['choices'][0]['message']['content']
|
38 |
+
|
39 |
+
except Exception as e:
|
40 |
+
raise Exception("Error generating: ",e) from e
|
src/app.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import re
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
import requests
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
import logging
|
8 |
+
import io
|
9 |
+
import sys
|
10 |
+
from api_client import predict_deepseek,predict_gpt
|
11 |
+
|
12 |
+
load_dotenv()
|
13 |
+
|
14 |
+
if os.environ.get("method") =="local":
|
15 |
+
from model import generate_response
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
from prompt_templates import prompt_template_textual,prompt_template_visual,description_template,suggestion_template,libraries
|
20 |
+
|
21 |
+
|
22 |
+
def describe_file(df,filename):
|
23 |
+
first_row = df.iloc[0].to_dict()
|
24 |
+
prompt = description_template.format(filename=filename,example_row=first_row)
|
25 |
+
response = predict_gpt(prompt)
|
26 |
+
return response
|
27 |
+
|
28 |
+
def suggest_questions(df,filename):
|
29 |
+
example_row = dict(df.iloc[0])
|
30 |
+
prompt = suggestion_template.format(filename=filename,example_row=example_row)
|
31 |
+
response = predict_gpt(prompt)
|
32 |
+
return response
|
33 |
+
|
34 |
+
def extract_code(text):
|
35 |
+
try:
|
36 |
+
matches = []
|
37 |
+
pattern = r"```python(.*?)```"
|
38 |
+
if text:
|
39 |
+
matches = re.findall(pattern, text, re.DOTALL)
|
40 |
+
if matches:
|
41 |
+
return matches[0]
|
42 |
+
else:
|
43 |
+
raise Exception("Error extracting code: No match")
|
44 |
+
except Exception as e:
|
45 |
+
raise Exception("Error extracting code: ",e) from e
|
46 |
+
|
47 |
+
def execute(code,namespace):
|
48 |
+
try:
|
49 |
+
buffer = io.StringIO()
|
50 |
+
sys.stdout = buffer
|
51 |
+
exec(libraries+code,namespace)
|
52 |
+
|
53 |
+
sys.stdout = sys.__stdout__
|
54 |
+
|
55 |
+
return buffer.getvalue()
|
56 |
+
|
57 |
+
except Exception as e:
|
58 |
+
raise Exception("Error executing: ",e) from e
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
def run(namespace,description,columns,question,method):
|
63 |
+
try:
|
64 |
+
if question.lower().startswith('plot'):
|
65 |
+
prompt = prompt_template_visual.format(description=description,columns=columns,question=question)
|
66 |
+
else:
|
67 |
+
prompt = prompt_template_textual.format(description=description,columns=columns,question=question)
|
68 |
+
full_response= None
|
69 |
+
extracted_code= None
|
70 |
+
execution= None
|
71 |
+
error = None
|
72 |
+
try:
|
73 |
+
if method == 'server':
|
74 |
+
request = {
|
75 |
+
'url' : os.environ.get("MODEL_URL"),
|
76 |
+
'payload' : json.dumps({"prompt": prompt}),
|
77 |
+
'headers' : {
|
78 |
+
'Content-Type': 'application/json'
|
79 |
+
}}
|
80 |
+
full_response = requests.request("POST", request['url'], headers=request['headers'], data=request['payload']).json()["response"]
|
81 |
+
|
82 |
+
elif method == 'local':
|
83 |
+
full_response = generate_response(prompt)
|
84 |
+
|
85 |
+
elif method == 'api':
|
86 |
+
full_response = predict_deepseek(prompt)
|
87 |
+
|
88 |
+
else:
|
89 |
+
return {'execution': 'Wrong model method'}
|
90 |
+
|
91 |
+
extracted_code = extract_code(full_response)
|
92 |
+
execution = execute(extracted_code,namespace)
|
93 |
+
|
94 |
+
except Exception as e:
|
95 |
+
error = e
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
data = {
|
100 |
+
'question': question,
|
101 |
+
'prompt':prompt,
|
102 |
+
'full_response': full_response,
|
103 |
+
'extracted_code': extracted_code,
|
104 |
+
'execution': execution,
|
105 |
+
'error': error
|
106 |
+
}
|
107 |
+
|
108 |
+
logging.info(data)
|
109 |
+
with open("log.json", 'w') as file:
|
110 |
+
json.dump(data, file, indent=4)
|
111 |
+
|
112 |
+
return data
|
113 |
+
|
114 |
+
except Exception as e:
|
115 |
+
print(e)
|
116 |
+
|
117 |
+
|
src/evaluation/datasets/Monthly_Counts_of_Deaths_by_Select_Causes__2014-2019.csv
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Jurisdiction of Occurrence,Year,Month,All Cause,Natural Cause,Septicemia,Malignant Neoplasms,Diabetes Mellitus,Alzheimer Disease,Influenza and Pneumonia,Chronic Lower Respiratory Diseases,Other Diseases of Respiratory System,"Nephritis, Nephrotic Syndrome, and Nephrosis","Symptoms, Signs, and Abnormal Clinical and Laboratory Findings, Not Elsewhere Classified",Diseases of Heart,Cerebrovascular Diseases,Accidents (Unintentional Injuries),Motor Vehicle Accidents,Intentional Self-Harm (Suicide),Assault (Homicide),Drug Overdose
|
2 |
+
United States,2014,1,243298,226621,3944,51101,7344,8305,7929,15078,3466,4600,2815,58229,12074,11461,2572,3320,1213,4026
|
3 |
+
United States,2015,1,265355,247269,4194,52346,8053,11638,10005,16769,3797,4979,3005,63190,13576,12311,2754,3618,1437,4354
|
4 |
+
United States,2016,1,245823,227341,3846,51863,7392,10612,5295,14331,3705,4645,2755,58049,12968,12559,2734,3720,1499,4631
|
5 |
+
United States,2017,1,262832,241918,4089,52120,7907,12018,6925,16574,4083,4818,2769,61650,13595,14520,3034,3709,1726,6233
|
6 |
+
United States,2018,1,286744,265418,4502,52876,8674,13410,12164,18271,4603,5346,3138,67024,14653,14748,3010,3966,1674,5659
|
7 |
+
United States,2019,1,257649,237219,3580,52087,8218,10961,5720,15330,4116,4740,2738,60675,13447,13988,2948,3833,1574,5519
|
8 |
+
United States,2014,2,211980,197001,3214,45558,6443,7315,5561,12747,2873,4064,2532,50435,10780,10286,2248,3091,1050,3895
|
9 |
+
United States,2015,2,227047,211028,3559,46226,6809,9477,6402,14196,3245,4344,2578,54374,11679,11040,2350,3215,1124,4087
|
10 |
+
United States,2016,2,230021,212140,3459,48258,6851,9729,5162,13986,3266,4307,2553,54652,11823,12442,2820,3445,1266,5022
|
11 |
+
United States,2017,2,233819,215160,3511,46531,7013,10309,6657,14934,3581,4317,2595,54944,11975,12994,2748,3381,1428,5619
|
12 |
+
United States,2018,2,236998,218466,3660,46447,7028,10623,8554,14579,3879,4398,2560,54673,12176,12686,2734,3596,1376,5244
|
13 |
+
United States,2019,2,232821,214074,3257,46739,7485,10098,5551,13890,3641,4270,2451,54835,12125,12892,2535,3561,1356,5180
|
14 |
+
United States,2014,3,228477,212045,3451,50646,6738,7999,5148,13493,3260,4300,2632,54347,11395,11120,2589,3408,1261,4106
|
15 |
+
United States,2015,3,242712,224708,3723,51192,7106,9790,5601,15185,3668,4597,2674,57615,12546,12028,2764,3935,1365,4583
|
16 |
+
United States,2016,3,244283,224696,3773,51566,7108,10076,6208,15417,3668,4652,2655,57206,12431,13382,3105,3921,1476,5511
|
17 |
+
United States,2017,3,251732,231028,3796,50785,7588,11179,6490,15832,3885,4628,2859,58476,12969,14392,3164,3870,1467,6164
|
18 |
+
United States,2018,3,248805,228464,3673,50689,7415,10815,6133,14995,3990,4534,2665,58301,12927,13926,3015,4011,1449,5793
|
19 |
+
United States,2019,3,254929,234074,3559,51450,7886,10809,6292,15149,4126,4649,2718,59728,13433,14220,2956,4161,1467,5887
|
20 |
+
United States,2014,4,215600,199454,3125,48304,6343,7117,4512,12573,3179,3902,2549,50954,10773,10608,2720,3606,1277,3733
|
21 |
+
United States,2015,4,224423,207336,3342,48745,6568,8859,4878,13982,3306,4247,2551,52961,11343,11419,2830,3726,1297,4281
|
22 |
+
United States,2016,4,227191,208249,3480,48574,6522,9479,5068,13634,3277,4124,2634,52973,11671,12832,3152,3812,1525,5259
|
23 |
+
United States,2017,4,231830,211542,3484,49056,6701,9932,4799,13916,3680,4281,2633,53081,12047,13839,3238,3972,1530,5886
|
24 |
+
United States,2018,4,233164,213483,3278,48786,7032,9902,4633,13857,3688,4219,2552,54235,12312,13275,2979,3920,1572,5555
|
25 |
+
United States,2019,4,235254,215336,3254,48493,7360,9824,4603,13785,3698,4286,2557,54920,12443,13481,3079,4029,1444,5562
|
26 |
+
United States,2014,5,216862,199843,3105,49497,6272,7266,4099,12281,3101,3980,2584,50810,10963,11360,3038,3589,1398,3925
|
27 |
+
United States,2015,5,223600,205087,3204,50072,6479,8674,4109,13376,3109,4046,2489,52243,11445,12324,3339,3966,1531,4462
|
28 |
+
United States,2016,5,224528,205011,3257,49589,6626,9274,4053,12809,3232,4082,2631,51910,11637,13225,3481,3853,1649,5158
|
29 |
+
United States,2017,5,229670,208638,3242,49814,6713,9498,3877,13410,3344,4235,2566,52924,11978,14137,3416,4257,1688,6036
|
30 |
+
United States,2018,5,228772,208108,3092,49582,6805,9333,3588,13218,3606,4081,2508,53298,11812,14025,3443,4190,1559,5773
|
31 |
+
United States,2019,5,236893,215726,3089,50627,7202,9722,3742,13428,3629,4237,2575,54985,12232,14475,3417,4052,1662,5829
|
32 |
+
United States,2014,6,204687,187644,2947,48103,5802,6755,3658,11207,2782,3631,2518,47144,9973,11446,3084,3552,1376,3783
|
33 |
+
United States,2015,6,211175,193014,3019,48055,6076,8109,3679,11946,2983,3881,2489,48672,10897,12176,3222,3785,1546,4176
|
34 |
+
United States,2016,6,213051,193541,2993,47587,6051,8687,3391,11703,3058,3927,2545,49210,10980,13289,3542,3726,1657,5128
|
35 |
+
United States,2017,6,218929,198032,3060,48436,6349,8943,3482,12161,3146,3777,2559,50117,11126,14267,3492,4081,1670,5884
|
36 |
+
United States,2018,6,220103,198902,2933,48344,6481,8906,3252,12206,3327,3904,2521,50456,11445,14200,3514,4378,1674,5817
|
37 |
+
United States,2019,6,225422,204218,2886,48621,6867,9351,3300,12335,3427,4054,2513,51680,11556,14518,3449,4050,1673,5807
|
38 |
+
United States,2014,7,209373,192035,3112,49259,5983,6990,3535,11161,2690,3690,2449,47991,10449,11743,3227,3534,1382,3902
|
39 |
+
United States,2015,7,216951,197673,3151,50112,6251,8361,3476,11473,2906,3935,2529,50265,11218,12941,3530,3944,1676,4497
|
40 |
+
United States,2016,7,219691,198767,3222,49792,6221,9038,3412,11681,3051,3845,2726,49709,11036,14245,3582,4033,1804,5592
|
41 |
+
United States,2017,7,221869,200090,3014,50439,6472,9027,3363,11535,3136,3735,2496,50217,11362,14863,3730,4179,1803,5938
|
42 |
+
United States,2018,7,225111,203310,3178,49870,6612,9082,3153,11720,3438,3947,2626,51396,11656,14813,3552,4356,1755,5940
|
43 |
+
United States,2019,7,229211,207062,3015,50055,6880,9418,3068,11941,3369,4097,2622,52335,11870,15292,3527,4193,1729,6162
|
44 |
+
United States,2014,8,208013,190204,2931,49519,5930,6986,3312,10722,2778,3778,2465,47109,10369,11688,3277,4027,1467,3987
|
45 |
+
United States,2015,8,214404,195312,3236,50196,6173,8346,3439,10768,2877,3797,2464,48945,10964,12803,3642,3912,1650,4492
|
46 |
+
United States,2016,8,219911,199453,3134,50593,6282,8991,3298,11464,2907,3929,2811,49701,11290,13827,3600,4042,1804,5397
|
47 |
+
United States,2017,8,221887,200838,3071,50351,6390,9298,3189,11260,3166,3874,2551,49894,11687,14242,3409,4275,1651,5863
|
48 |
+
United States,2018,8,224254,203330,3134,50582,6598,9277,3011,11339,3210,4083,2668,50652,11640,14116,3490,4300,1607,5836
|
49 |
+
United States,2019,8,227280,205220,2893,50508,6658,9420,3035,11399,3334,3929,2668,51346,11816,15171,3645,4181,1639,6194
|
50 |
+
United States,2014,9,205274,188322,2918,48331,5810,7238,3352,10426,2696,3823,2586,46909,10513,11022,3069,4034,1307,3748
|
51 |
+
United States,2015,9,209905,191754,3123,48835,6012,8419,3378,10729,2844,3781,2518,47849,10826,12293,3372,3578,1610,4481
|
52 |
+
United States,2016,9,214310,194685,3138,48688,6175,9077,3307,11107,2936,3723,2674,48258,11057,13495,3612,3720,1675,5195
|
53 |
+
United States,2017,9,220262,199625,3173,48987,6558,9363,3313,11313,3167,3922,2734,49742,11426,14169,3572,4024,1595,5786
|
54 |
+
United States,2018,9,218696,198209,3092,49018,6458,9250,3082,11061,3238,3885,2535,49112,11296,13900,3579,4136,1613,5500
|
55 |
+
United States,2019,9,222715,201663,2952,48945,6585,9330,2882,11247,3346,3882,2591,50100,11752,14341,3543,4109,1647,5882
|
56 |
+
United States,2014,10,218147,200741,3203,50900,6183,8319,3804,11412,2903,3881,2703,50401,11321,11579,3304,3791,1423,4021
|
57 |
+
United States,2015,10,223535,204815,3390,50889,6566,9368,3883,11675,3057,3927,2733,51290,11792,12845,3550,3688,1486,4546
|
58 |
+
United States,2016,10,228919,208592,3287,50815,6669,9875,3622,12009,3277,4212,2967,52414,11766,14051,3834,3838,1678,5446
|
59 |
+
United States,2017,10,231125,210453,3275,51132,6829,10080,3614,12095,3311,4053,2817,52495,12177,14012,3629,4072,1725,5538
|
60 |
+
United States,2018,10,233903,213240,3359,51631,7028,10080,3447,12073,3510,4047,2775,53232,12355,14114,3657,4127,1512,5522
|
61 |
+
United States,2019,10,237661,216275,3186,51501,7082,10423,3294,11970,3640,4316,2817,53795,12693,14822,3506,4043,1610,6133
|
62 |
+
United States,2014,11,221317,204268,3192,49377,6477,9069,3875,11759,2977,3954,3000,52027,11863,11644,3175,3480,1307,3927
|
63 |
+
United States,2015,11,219788,202283,3315,48800,6582,9408,3763,11749,3141,4060,2801,51218,11777,12002,3159,3357,1503,4199
|
64 |
+
United States,2016,11,227313,207691,3310,49285,6715,9988,3740,12279,3227,4128,2957,52606,12163,13664,3535,3458,1720,5464
|
65 |
+
United States,2017,11,230891,210862,3348,49456,7061,10006,3905,12171,3378,4263,2854,53015,12301,13773,3408,3724,1647,5491
|
66 |
+
United States,2018,11,233375,213904,3197,49827,7152,10391,3614,12258,3426,4295,2885,54389,12427,13473,3250,3651,1483,5177
|
67 |
+
United States,2019,11,239028,218156,3176,49697,7332,10632,3520,12196,3766,4427,2885,54979,12955,14701,3274,3597,1625,6176
|
68 |
+
United States,2014,12,243390,225948,3798,51105,7163,10182,6442,14242,3482,4543,3409,57992,12630,11971,3095,3394,1411,4002
|
69 |
+
United States,2015,12,233735,215657,3517,50462,6860,10112,4449,13193,3353,4365,3211,55220,12260,12389,3245,3469,1568,4246
|
70 |
+
United States,2016,12,249207,228888,3714,51428,7446,11277,4981,14176,3620,4472,3465,58572,13320,14363,3330,3397,1609,5829
|
71 |
+
United States,2017,12,258657,237819,3859,52001,7983,11751,6058,15000,3816,4730,3317,60902,13740,14728,3391,3629,1580,5799
|
72 |
+
United States,2018,12,249280,229184,3620,51622,7663,10950,4489,13909,3899,4647,3104,58613,13111,13851,3181,3713,1556,5551
|
73 |
+
United States,2019,12,255975,234438,3584,50878,8092,11511,4776,14309,4020,4678,3273,59663,13683,15139,3228,3702,1715,6299
|
src/evaluation/datasets/hw_200.csv
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Index,Height(Inches),Weight(Pounds)
|
2 |
+
1, 65.78, 112.99
|
3 |
+
2, 71.52, 136.49
|
4 |
+
3, 69.40, 153.03
|
5 |
+
4, 68.22, 142.34
|
6 |
+
5, 67.79, 144.30
|
7 |
+
6, 68.70, 123.30
|
8 |
+
7, 69.80, 141.49
|
9 |
+
8, 70.01, 136.46
|
10 |
+
9, 67.90, 112.37
|
11 |
+
10, 66.78, 120.67
|
12 |
+
11, 66.49, 127.45
|
13 |
+
12, 67.62, 114.14
|
14 |
+
13, 68.30, 125.61
|
15 |
+
14, 67.12, 122.46
|
16 |
+
15, 68.28, 116.09
|
17 |
+
16, 71.09, 140.00
|
18 |
+
17, 66.46, 129.50
|
19 |
+
18, 68.65, 142.97
|
20 |
+
19, 71.23, 137.90
|
21 |
+
20, 67.13, 124.04
|
22 |
+
21, 67.83, 141.28
|
23 |
+
22, 68.88, 143.54
|
24 |
+
23, 63.48, 97.90
|
25 |
+
24, 68.42, 129.50
|
26 |
+
25, 67.63, 141.85
|
27 |
+
26, 67.21, 129.72
|
28 |
+
27, 70.84, 142.42
|
29 |
+
28, 67.49, 131.55
|
30 |
+
29, 66.53, 108.33
|
31 |
+
30, 65.44, 113.89
|
32 |
+
31, 69.52, 103.30
|
33 |
+
32, 65.81, 120.75
|
34 |
+
33, 67.82, 125.79
|
35 |
+
34, 70.60, 136.22
|
36 |
+
35, 71.80, 140.10
|
37 |
+
36, 69.21, 128.75
|
38 |
+
37, 66.80, 141.80
|
39 |
+
38, 67.66, 121.23
|
40 |
+
39, 67.81, 131.35
|
41 |
+
40, 64.05, 106.71
|
42 |
+
41, 68.57, 124.36
|
43 |
+
42, 65.18, 124.86
|
44 |
+
43, 69.66, 139.67
|
45 |
+
44, 67.97, 137.37
|
46 |
+
45, 65.98, 106.45
|
47 |
+
46, 68.67, 128.76
|
48 |
+
47, 66.88, 145.68
|
49 |
+
48, 67.70, 116.82
|
50 |
+
49, 69.82, 143.62
|
51 |
+
50, 69.09, 134.93
|
52 |
+
51, 69.91, 147.02
|
53 |
+
52, 67.33, 126.33
|
54 |
+
53, 70.27, 125.48
|
55 |
+
54, 69.10, 115.71
|
56 |
+
55, 65.38, 123.49
|
57 |
+
56, 70.18, 147.89
|
58 |
+
57, 70.41, 155.90
|
59 |
+
58, 66.54, 128.07
|
60 |
+
59, 66.36, 119.37
|
61 |
+
60, 67.54, 133.81
|
62 |
+
61, 66.50, 128.73
|
63 |
+
62, 69.00, 137.55
|
64 |
+
63, 68.30, 129.76
|
65 |
+
64, 67.01, 128.82
|
66 |
+
65, 70.81, 135.32
|
67 |
+
66, 68.22, 109.61
|
68 |
+
67, 69.06, 142.47
|
69 |
+
68, 67.73, 132.75
|
70 |
+
69, 67.22, 103.53
|
71 |
+
70, 67.37, 124.73
|
72 |
+
71, 65.27, 129.31
|
73 |
+
72, 70.84, 134.02
|
74 |
+
73, 69.92, 140.40
|
75 |
+
74, 64.29, 102.84
|
76 |
+
75, 68.25, 128.52
|
77 |
+
76, 66.36, 120.30
|
78 |
+
77, 68.36, 138.60
|
79 |
+
78, 65.48, 132.96
|
80 |
+
79, 69.72, 115.62
|
81 |
+
80, 67.73, 122.52
|
82 |
+
81, 68.64, 134.63
|
83 |
+
82, 66.78, 121.90
|
84 |
+
83, 70.05, 155.38
|
85 |
+
84, 66.28, 128.94
|
86 |
+
85, 69.20, 129.10
|
87 |
+
86, 69.13, 139.47
|
88 |
+
87, 67.36, 140.89
|
89 |
+
88, 70.09, 131.59
|
90 |
+
89, 70.18, 121.12
|
91 |
+
90, 68.23, 131.51
|
92 |
+
91, 68.13, 136.55
|
93 |
+
92, 70.24, 141.49
|
94 |
+
93, 71.49, 140.61
|
95 |
+
94, 69.20, 112.14
|
96 |
+
95, 70.06, 133.46
|
97 |
+
96, 70.56, 131.80
|
98 |
+
97, 66.29, 120.03
|
99 |
+
98, 63.43, 123.10
|
100 |
+
99, 66.77, 128.14
|
101 |
+
100, 68.89, 115.48
|
102 |
+
101, 64.87, 102.09
|
103 |
+
102, 67.09, 130.35
|
104 |
+
103, 68.35, 134.18
|
105 |
+
104, 65.61, 98.64
|
106 |
+
105, 67.76, 114.56
|
107 |
+
106, 68.02, 123.49
|
108 |
+
107, 67.66, 123.05
|
109 |
+
108, 66.31, 126.48
|
110 |
+
109, 69.44, 128.42
|
111 |
+
110, 63.84, 127.19
|
112 |
+
111, 67.72, 122.06
|
113 |
+
112, 70.05, 127.61
|
114 |
+
113, 70.19, 131.64
|
115 |
+
114, 65.95, 111.90
|
116 |
+
115, 70.01, 122.04
|
117 |
+
116, 68.61, 128.55
|
118 |
+
117, 68.81, 132.68
|
119 |
+
118, 69.76, 136.06
|
120 |
+
119, 65.46, 115.94
|
121 |
+
120, 68.83, 136.90
|
122 |
+
121, 65.80, 119.88
|
123 |
+
122, 67.21, 109.01
|
124 |
+
123, 69.42, 128.27
|
125 |
+
124, 68.94, 135.29
|
126 |
+
125, 67.94, 106.86
|
127 |
+
126, 65.63, 123.29
|
128 |
+
127, 66.50, 109.51
|
129 |
+
128, 67.93, 119.31
|
130 |
+
129, 68.89, 140.24
|
131 |
+
130, 70.24, 133.98
|
132 |
+
131, 68.27, 132.58
|
133 |
+
132, 71.23, 130.70
|
134 |
+
133, 69.10, 115.56
|
135 |
+
134, 64.40, 123.79
|
136 |
+
135, 71.10, 128.14
|
137 |
+
136, 68.22, 135.96
|
138 |
+
137, 65.92, 116.63
|
139 |
+
138, 67.44, 126.82
|
140 |
+
139, 73.90, 151.39
|
141 |
+
140, 69.98, 130.40
|
142 |
+
141, 69.52, 136.21
|
143 |
+
142, 65.18, 113.40
|
144 |
+
143, 68.01, 125.33
|
145 |
+
144, 68.34, 127.58
|
146 |
+
145, 65.18, 107.16
|
147 |
+
146, 68.26, 116.46
|
148 |
+
147, 68.57, 133.84
|
149 |
+
148, 64.50, 112.89
|
150 |
+
149, 68.71, 130.76
|
151 |
+
150, 68.89, 137.76
|
152 |
+
151, 69.54, 125.40
|
153 |
+
152, 67.40, 138.47
|
154 |
+
153, 66.48, 120.82
|
155 |
+
154, 66.01, 140.15
|
156 |
+
155, 72.44, 136.74
|
157 |
+
156, 64.13, 106.11
|
158 |
+
157, 70.98, 158.96
|
159 |
+
158, 67.50, 108.79
|
160 |
+
159, 72.02, 138.78
|
161 |
+
160, 65.31, 115.91
|
162 |
+
161, 67.08, 146.29
|
163 |
+
162, 64.39, 109.88
|
164 |
+
163, 69.37, 139.05
|
165 |
+
164, 68.38, 119.90
|
166 |
+
165, 65.31, 128.31
|
167 |
+
166, 67.14, 127.24
|
168 |
+
167, 68.39, 115.23
|
169 |
+
168, 66.29, 124.80
|
170 |
+
169, 67.19, 126.95
|
171 |
+
170, 65.99, 111.27
|
172 |
+
171, 69.43, 122.61
|
173 |
+
172, 67.97, 124.21
|
174 |
+
173, 67.76, 124.65
|
175 |
+
174, 65.28, 119.52
|
176 |
+
175, 73.83, 139.30
|
177 |
+
176, 66.81, 104.83
|
178 |
+
177, 66.89, 123.04
|
179 |
+
178, 65.74, 118.89
|
180 |
+
179, 65.98, 121.49
|
181 |
+
180, 66.58, 119.25
|
182 |
+
181, 67.11, 135.02
|
183 |
+
182, 65.87, 116.23
|
184 |
+
183, 66.78, 109.17
|
185 |
+
184, 68.74, 124.22
|
186 |
+
185, 66.23, 141.16
|
187 |
+
186, 65.96, 129.15
|
188 |
+
187, 68.58, 127.87
|
189 |
+
188, 66.59, 120.92
|
190 |
+
189, 66.97, 127.65
|
191 |
+
190, 68.08, 101.47
|
192 |
+
191, 70.19, 144.99
|
193 |
+
192, 65.52, 110.95
|
194 |
+
193, 67.46, 132.86
|
195 |
+
194, 67.41, 146.34
|
196 |
+
195, 69.66, 145.59
|
197 |
+
196, 65.80, 120.84
|
198 |
+
197, 66.11, 115.78
|
199 |
+
198, 68.24, 128.30
|
200 |
+
199, 68.02, 127.47
|
201 |
+
200, 71.39, 127.88
|
src/evaluation/datasets/onlinefoods.csv
ADDED
@@ -0,0 +1,389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Age,Gender,Marital Status,Occupation,Monthly Income,Educational Qualifications,Family size,latitude,longitude,Pin code,Output,Feedback,
|
2 |
+
20,Female,Single,Student,No Income,Post Graduate,4,12.9766,77.5993,560001,Yes,Positive,Yes
|
3 |
+
24,Female,Single,Student,Below Rs.10000,Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
|
4 |
+
22,Male,Single,Student,Below Rs.10000,Post Graduate,3,12.9551,77.6593,560017,Yes,Negative ,Yes
|
5 |
+
22,Female,Single,Student,No Income,Graduate,6,12.9473,77.5616,560019,Yes,Positive,Yes
|
6 |
+
22,Male,Single,Student,Below Rs.10000,Post Graduate,4,12.985,77.5533,560010,Yes,Positive,Yes
|
7 |
+
27,Female,Married,Employee,More than 50000,Post Graduate,2,12.9299,77.6848,560103,Yes,Positive,Yes
|
8 |
+
22,Male,Single,Student,No Income,Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
|
9 |
+
24,Female,Single,Student,No Income,Post Graduate,3,12.9828,77.6131,560042,Yes,Positive,Yes
|
10 |
+
23,Female,Single,Student,No Income,Post Graduate,2,12.9766,77.5993,560001,Yes,Positive,Yes
|
11 |
+
23,Female,Single,Student,No Income,Post Graduate,4,12.9854,77.7081,560048,Yes,Positive,Yes
|
12 |
+
22,Female,Single,Student,No Income,Post Graduate,5,12.985,77.5533,560010,Yes,Positive,Yes
|
13 |
+
23,Male,Single,Student,Below Rs.10000,Post Graduate,2,12.977,77.5773,560009,Yes,Negative ,Yes
|
14 |
+
23,Male,Single,Student,No Income,Post Graduate,5,12.8988,77.5764,560078,Yes,Positive,Yes
|
15 |
+
21,Male,Single,Student,No Income,Graduate,4,12.977,77.5773,560009,Yes,Positive,Yes
|
16 |
+
23,Female,Single,Self Employeed,10001 to 25000,Post Graduate,5,12.9438,77.5738,560004,Yes,Positive,Yes
|
17 |
+
24,Female,Single,Student,No Income,Post Graduate,6,12.8893,77.6399,560068,Yes,Positive,Yes
|
18 |
+
28,Female,Single,Employee,25001 to 50000,Post Graduate,2,12.9783,77.6408,560038,Yes,Positive,Yes
|
19 |
+
23,Female,Single,Student,No Income,Graduate,3,12.982,77.6256,560008,Yes,Negative ,Yes
|
20 |
+
25,Male,Single,Student,No Income,Graduate,4,12.8988,77.5764,560078,Yes,Negative ,Yes
|
21 |
+
21,Female,Single,Student,Below Rs.10000,Post Graduate,1,12.9783,77.6408,560038,Yes,Positive,Yes
|
22 |
+
24,Male,Single,Student,No Income,Post Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
|
23 |
+
22,Male,Single,Student,No Income,Post Graduate,4,13.0298,77.6047,560032,Yes,Positive,Yes
|
24 |
+
22,Female,Single,Student,No Income,Graduate,4,12.9983,77.6409,560033,Yes,Positive,Yes
|
25 |
+
23,Male,Single,Student,No Income,Graduate,4,12.9925,77.5633,560021,Yes,Positive,Yes
|
26 |
+
21,Male,Single,Student,Below Rs.10000,Post Graduate,3,12.9306,77.5434,560085,Yes,Positive,Yes
|
27 |
+
25,Male,Single,Student,No Income,Post Graduate,3,12.982,77.6256,560008,Yes,Positive,Yes
|
28 |
+
22,Female,Single,Student,No Income,Post Graduate,5,12.9353,77.5585,560050,Yes,Positive,Yes
|
29 |
+
22,Male,Single,Student,No Income,Post Graduate,3,12.9155,77.5135,560098,Yes,Positive,Yes
|
30 |
+
23,Female,Single,Employee,10001 to 25000,Graduate,3,12.9854,77.7081,560048,Yes,Positive,Yes
|
31 |
+
22,Male,Single,Student,Below Rs.10000,Post Graduate,4,13.0019,77.5713,560003,Yes,Positive,Yes
|
32 |
+
22,Female,Single,Employee,10001 to 25000,Graduate,5,12.9698,77.75,560066,Yes,Positive,Yes
|
33 |
+
22,Male,Single,Student,No Income,Post Graduate,4,12.9783,77.6408,560038,Yes,Positive,Yes
|
34 |
+
25,Male,Married,Employee,More than 50000,Ph.D,4,12.9261,77.6221,560034,Yes,Positive,Yes
|
35 |
+
22,Female,Single,Student,10001 to 25000,Post Graduate,5,12.985,77.5533,560010,Yes,Positive,Yes
|
36 |
+
22,Female,Single,Student,No Income,Post Graduate,2,12.9119,77.6446,560102,Yes,Positive,Yes
|
37 |
+
25,Male,Single,Student,10001 to 25000,Post Graduate,3,12.9306,77.5434,560085,Yes,Positive,Yes
|
38 |
+
25,Male,Single,Student,No Income,Post Graduate,5,12.977,77.5773,560009,No,Positive,No
|
39 |
+
32,Female,Prefer not to say,House wife,No Income,Graduate,5,12.982,77.6256,560008,Yes,Negative ,Yes
|
40 |
+
23,Female,Single,Student,No Income,Post Graduate,3,12.9438,77.5738,560004,Yes,Positive,Yes
|
41 |
+
23,Female,Single,Student,No Income,Post Graduate,4,12.8988,77.5764,560078,Yes,Positive,Yes
|
42 |
+
30,Male,Married,Self Employeed,More than 50000,Uneducated,4,12.9662,77.6068,560025,Yes,Negative ,Yes
|
43 |
+
23,Male,Single,Student,No Income,Graduate,3,12.9565,77.5484,560026,Yes,Positive,Yes
|
44 |
+
23,Male,Single,Student,No Income,Post Graduate,4,12.9925,77.5633,560021,Yes,Positive,Yes
|
45 |
+
22,Female,Single,Student,No Income,Post Graduate,5,12.985,77.5533,560010,Yes,Positive,Yes
|
46 |
+
22,Male,Single,Student,No Income,Graduate,5,12.985,77.5533,560010,Yes,Positive,Yes
|
47 |
+
27,Female,Married,Self Employeed,10001 to 25000,Post Graduate,2,12.9261,77.6221,560034,Yes,Positive,Yes
|
48 |
+
24,Female,Single,Student,No Income,Post Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
|
49 |
+
23,Male,Single,Student,No Income,Post Graduate,2,12.977,77.5773,560009,Yes,Positive,Yes
|
50 |
+
23,Female,Single,Student,No Income,Graduate,3,12.982,77.6256,560008,Yes,Negative ,Yes
|
51 |
+
22,Female,Single,Student,10001 to 25000,Post Graduate,5,12.985,77.5533,560010,Yes,Positive,Yes
|
52 |
+
23,Female,Single,Student,No Income,Graduate,5,13.0206,77.6479,560043,Yes,Positive,Yes
|
53 |
+
23,Female,Single,Student,No Income,Post Graduate,2,12.977,77.5773,560009,Yes,Positive,Yes
|
54 |
+
24,Male,Single,Student,No Income,Post Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
|
55 |
+
25,Male,Single,Student,No Income,Post Graduate,2,12.9635,77.5821,560002,Yes,Positive,Yes
|
56 |
+
22,Male,Single,Student,No Income,Post Graduate,3,12.9306,77.5434,560085,Yes,Positive,Yes
|
57 |
+
28,Female,Married,Student,No Income,Graduate,2,13.0067,77.545,560086,Yes,Positive,Yes
|
58 |
+
22,Female,Single,Student,No Income,Post Graduate,1,12.8845,77.6036,560076,Yes,Positive,Yes
|
59 |
+
24,Female,Single,Student,No Income,Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
|
60 |
+
31,Male,Married,Employee,More than 50000,Ph.D,5,12.9119,77.6446,560102,Yes,Positive,Yes
|
61 |
+
25,Male,Single,Student,No Income,Post Graduate,4,13.0067,77.545,560086,Yes,Positive,Yes
|
62 |
+
23,Male,Single,Student,No Income,Post Graduate,5,12.8988,77.5764,560078,Yes,Positive,Yes
|
63 |
+
22,Male,Single,Student,No Income,Post Graduate,3,12.8845,77.6036,560076,Yes,Positive,Yes
|
64 |
+
23,Male,Single,Student,25001 to 50000,Post Graduate,1,13.0158,77.539,560096,Yes,Positive,Yes
|
65 |
+
23,Male,Single,Student,No Income,Graduate,4,12.9343,77.6044,560029,Yes,Positive,Yes
|
66 |
+
23,Female,Single,Student,No Income,Post Graduate,2,13.0019,77.5713,560003,Yes,Positive,Yes
|
67 |
+
25,Male,Single,Student,No Income,Post Graduate,6,13.0012,77.5995,560046,Yes,Positive,Yes
|
68 |
+
24,Male,Single,Employee,10001 to 25000,Graduate,4,12.9442,77.6076,560030,Yes,Positive,Yes
|
69 |
+
23,Female,Single,Student,No Income,Post Graduate,4,13.0487,77.5923,560024,Yes,Positive,Yes
|
70 |
+
23,Female,Single,Student,No Income,Post Graduate,4,13.0487,77.5923,560024,Yes,Positive,Yes
|
71 |
+
24,Female,Married,Employee,More than 50000,Ph.D,4,12.9438,77.5738,560004,Yes,Positive,Yes
|
72 |
+
22,Male,Single,Student,No Income,Graduate,4,12.9889,77.5741,560020,Yes,Positive,Yes
|
73 |
+
24,Female,Single,Student,10001 to 25000,Post Graduate,3,12.9335,77.5691,560028,No,Positive,No
|
74 |
+
25,Female,Single,Student,No Income,Post Graduate,3,12.9766,77.5993,560001,Yes,Positive,Yes
|
75 |
+
23,Male,Single,Student,No Income,Post Graduate,2,12.8845,77.6036,560076,Yes,Positive,Yes
|
76 |
+
26,Male,Single,Student,No Income,Post Graduate,4,13.0019,77.5713,560003,Yes,Positive,Yes
|
77 |
+
24,Female,Single,Student,25001 to 50000,Post Graduate,3,13.102,77.5864,560064,Yes,Positive,Yes
|
78 |
+
26,Male,Single,Student,No Income,Post Graduate,4,12.9048,77.6821,560036,Yes,Positive,Yes
|
79 |
+
21,Male,Single,Student,No Income,Graduate,4,12.977,77.5773,560009,Yes,Positive,Yes
|
80 |
+
22,Female,Single,Student,No Income,Post Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
|
81 |
+
24,Male,Single,Student,No Income,Post Graduate,5,12.9337,77.59,560011,Yes,Positive,Yes
|
82 |
+
24,Male,Single,Student,10001 to 25000,Post Graduate,4,12.9037,77.5376,560061,Yes,Positive,Yes
|
83 |
+
23,Female,Single,Student,No Income,Post Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
|
84 |
+
23,Male,Single,Student,No Income,Post Graduate,3,12.9343,77.6044,560029,Yes,Positive,Yes
|
85 |
+
22,Male,Single,Student,No Income,Post Graduate,3,12.9438,77.5738,560004,Yes,Positive,Yes
|
86 |
+
23,Male,Single,Student,No Income,Post Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
|
87 |
+
24,Female,Single,Student,No Income,Post Graduate,4,12.9783,77.6408,560038,Yes,Positive,Yes
|
88 |
+
24,Male,Single,Student,No Income,Post Graduate,5,12.9337,77.59,560011,Yes,Positive,Yes
|
89 |
+
25,Male,Single,Student,No Income,Graduate,1,12.977,77.5773,560009,Yes,Positive,Yes
|
90 |
+
25,Male,Single,Student,No Income,Post Graduate,5,12.977,77.5773,560009,No,Positive,No
|
91 |
+
28,Male,Married,Self Employeed,10001 to 25000,Graduate,2,13.0289,77.54,560022,No,Negative ,No
|
92 |
+
27,Female,Prefer not to say,Employee,25001 to 50000,Post Graduate,5,13.0289,77.54,560022,No,Positive,No
|
93 |
+
26,Male,Single,Self Employeed,10001 to 25000,Ph.D,1,12.9698,77.75,560066,No,Positive,No
|
94 |
+
22,Male,Single,Student,No Income,Post Graduate,2,12.977,77.5773,560009,Yes,Positive,Yes
|
95 |
+
24,Female,Single,Student,No Income,Post Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
|
96 |
+
23,Male,Single,Student,No Income,Post Graduate,1,12.9561,77.5921,560027,Yes,Positive,Yes
|
97 |
+
25,Male,Single,Student,No Income,Graduate,1,12.977,77.5773,560009,Yes,Positive,Yes
|
98 |
+
23,Female,Single,Student,No Income,Graduate,5,13.0206,77.6479,560043,Yes,Positive,Yes
|
99 |
+
23,Female,Single,Student,No Income,Graduate,5,13.0206,77.6479,560043,Yes,Positive,Yes
|
100 |
+
26,Male,Married,Employee,25001 to 50000,Graduate,5,12.9579,77.6309,560007,No,Positive,No
|
101 |
+
32,Female,Married,House wife,No Income,Uneducated,3,13.014,77.5658,560012,No,Positive,No
|
102 |
+
24,Female,Single,Student,10001 to 25000,Post Graduate,3,12.9335,77.5691,560028,No,Positive,No
|
103 |
+
23,Male,Single,Student,No Income,Post Graduate,2,12.9442,77.6076,560030,Yes,Positive,Yes
|
104 |
+
22,Female,Single,Employee,10001 to 25000,Graduate,3,12.9698,77.75,560066,Yes,Positive,Yes
|
105 |
+
24,Female,Single,Student,No Income,Ph.D,3,12.9438,77.5738,560004,Yes,Positive,Yes
|
106 |
+
26,Male,Single,Employee,25001 to 50000,Graduate,2,12.9261,77.6221,560034,Yes,Negative ,Yes
|
107 |
+
28,Male,Married,Employee,More than 50000,Graduate,3,12.9698,77.75,560066,No,Positive,No
|
108 |
+
26,Male,Single,Employee,More than 50000,Post Graduate,2,12.9698,77.75,560066,No,Positive,No
|
109 |
+
25,Male,Single,Student,No Income,Post Graduate,1,12.9343,77.6044,560029,Yes,Positive,Yes
|
110 |
+
25,Male,Single,Employee,Below Rs.10000,Graduate,2,12.9698,77.75,560066,No,Positive,No
|
111 |
+
18,Male,Single,Student,No Income,Graduate,5,12.9635,77.5821,560002,Yes,Positive,Yes
|
112 |
+
21,Male,Single,Student,No Income,Post Graduate,4,12.977,77.5773,560009,Yes,Positive,Yes
|
113 |
+
25,Male,Single,Student,No Income,Post Graduate,1,12.9343,77.6044,560029,Yes,Positive,Yes
|
114 |
+
25,Male,Single,Student,Below Rs.10000,Post Graduate,2,12.9925,77.5633,560021,Yes,Positive,Yes
|
115 |
+
23,Female,Single,Student,No Income,Graduate,5,13.0206,77.6479,560043,Yes,Positive,Yes
|
116 |
+
23,Male,Single,Employee,10001 to 25000,Post Graduate,2,12.985,77.5533,560010,Yes,Positive,Yes
|
117 |
+
25,Female,Married,Employee,25001 to 50000,Graduate,4,12.9551,77.6593,560017,No,Negative ,No
|
118 |
+
31,Female,Married,House wife,No Income,School,5,13.0289,77.54,560022,Yes,Positive,Yes
|
119 |
+
24,Male,Prefer not to say,Self Employeed,More than 50000,Ph.D,2,13.0138,77.5877,560006,No,Positive,No
|
120 |
+
32,Female,Married,Employee,25001 to 50000,Graduate,5,12.9261,77.6221,560034,Yes,Positive,Yes
|
121 |
+
25,Male,Single,Employee,25001 to 50000,Graduate,3,12.9766,77.5993,560001,Yes,Positive,Yes
|
122 |
+
27,Female,Married,Self Employeed,More than 50000,Graduate,5,12.9766,77.5993,560001,No,Positive,No
|
123 |
+
26,Male,Single,Self Employeed,25001 to 50000,Graduate,3,12.9766,77.5993,560001,Yes,Positive,Yes
|
124 |
+
26,Female,Single,Self Employeed,25001 to 50000,Post Graduate,3,12.9635,77.5821,560002,Yes,Positive,Yes
|
125 |
+
32,Male,Married,Employee,More than 50000,Ph.D,5,12.9635,77.5821,560002,Yes,Negative ,Yes
|
126 |
+
24,Male,Married,Self Employeed,More than 50000,Ph.D,6,12.9635,77.5821,560002,No,Negative ,No
|
127 |
+
27,Female,Married,Self Employeed,25001 to 50000,Graduate,3,12.9635,77.5821,560002,Yes,Positive,Yes
|
128 |
+
23,Male,Single,Student,No Income,Post Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
|
129 |
+
25,Male,Single,Student,No Income,Post Graduate,4,12.977,77.5773,560009,Yes,Positive,Yes
|
130 |
+
23,Male,Single,Student,No Income,Post Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
|
131 |
+
23,Female,Single,Student,No Income,Post Graduate,4,13.0487,77.5923,560024,Yes,Positive,Yes
|
132 |
+
28,Male,Married,Employee,More than 50000,Post Graduate,3,13.0019,77.5713,560003,Yes,Positive,Yes
|
133 |
+
32,Female,Married,Employee,More than 50000,Graduate,1,13.0019,77.5713,560003,No,Positive,No
|
134 |
+
23,Male,Single,Student,No Income,Post Graduate,2,13.0019,77.5713,560003,Yes,Positive,Yes
|
135 |
+
19,Male,Single,Student,No Income,Graduate,2,13.0019,77.5713,560003,No,Negative ,No
|
136 |
+
19,Female,Single,Student,No Income,Graduate,4,12.9537,77.6176,560047,Yes,Positive,Yes
|
137 |
+
27,Female,Married,Employee,25001 to 50000,Post Graduate,2,12.9698,77.75,560066,No,Positive,No
|
138 |
+
25,Male,Single,Self Employeed,25001 to 50000,Graduate,3,12.998,77.6227,560005,Yes,Positive,Yes
|
139 |
+
33,Male,Married,Employee,More than 50000,Ph.D,5,12.998,77.6227,560005,No,Negative ,No
|
140 |
+
26,Female,Single,Employee,More than 50000,Graduate,3,12.998,77.6227,560005,Yes,Positive,Yes
|
141 |
+
22,Female,Single,Student,Below Rs.10000,Post Graduate,4,12.9343,77.6044,560029,Yes,Positive,Yes
|
142 |
+
23,Male,Single,Student,No Income,Post Graduate,3,13.102,77.5864,560064,No,Positive,No
|
143 |
+
22,Female,Single,Student,No Income,Graduate,3,13.0158,77.539,560096,Yes,Negative ,Yes
|
144 |
+
25,Male,Married,Employee,25001 to 50000,Graduate,2,12.998,77.6227,560005,Yes,Positive,Yes
|
145 |
+
30,Female,Married,House wife,No Income,School,5,12.998,77.6227,560005,Yes,Positive,Yes
|
146 |
+
24,Male,Single,Student,No Income,Post Graduate,3,13.0138,77.5877,560006,No,Negative ,No
|
147 |
+
25,Male,Single,Employee,10001 to 25000,Post Graduate,3,13.0138,77.5877,560006,Yes,Positive,Yes
|
148 |
+
23,Male,Single,Student,More than 50000,Post Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
|
149 |
+
24,Female,Single,Student,No Income,Post Graduate,4,13.0496,77.4941,560073,Yes,Positive,Yes
|
150 |
+
32,Male,Married,Employee,10001 to 25000,Graduate,4,12.9783,77.6408,560038,Yes,Positive,Yes
|
151 |
+
22,Male,Single,Student,No Income,Post Graduate,4,12.9889,77.5741,560020,Yes,Positive,Yes
|
152 |
+
23,Male,Single,Student,More than 50000,Post Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
|
153 |
+
23,Female,Single,Student,No Income,Post Graduate,4,13.0487,77.5923,560024,Yes,Positive,Yes
|
154 |
+
20,Male,Single,Student,No Income,Graduate,2,12.9579,77.6309,560007,Yes,Positive,Yes
|
155 |
+
21,Male,Single,Student,No Income,Graduate,2,12.9579,77.6309,560007,Yes,Positive,Yes
|
156 |
+
24,Female,Married,Self Employeed,10001 to 25000,Graduate,5,12.9579,77.6309,560007,Yes,Positive,Yes
|
157 |
+
23,Female,Single,Student,No Income,Post Graduate,4,13.0487,77.5923,560024,Yes,Positive,Yes
|
158 |
+
25,Male,Single,Employee,25001 to 50000,Post Graduate,3,12.985,77.5533,560010,Yes,Positive,Yes
|
159 |
+
32,Female,Married,House wife,No Income,Graduate,3,12.985,77.5533,560010,Yes,Positive,Yes
|
160 |
+
27,Male,Married,Employee,More than 50000,Ph.D,5,12.985,77.5533,560010,No,Negative ,No
|
161 |
+
20,Female,Single,Student,No Income,Graduate,2,12.9337,77.59,560011,Yes,Positive,Yes
|
162 |
+
21,Male,Single,Student,No Income,Graduate,2,12.9337,77.59,560011,Yes,Positive,Yes
|
163 |
+
26,Male,Single,Employee,More than 50000,Post Graduate,3,12.9337,77.59,560011,No,Negative ,No
|
164 |
+
25,Male,Single,Employee,10001 to 25000,Graduate,4,13.0166,77.6804,560016,Yes,Positive,Yes
|
165 |
+
26,Male,Single,Employee,25001 to 50000,Post Graduate,3,13.014,77.5658,560012,Yes,Positive,Yes
|
166 |
+
26,Female,Married,Employee,25001 to 50000,Graduate,3,13.014,77.5658,560012,Yes,Positive,Yes
|
167 |
+
27,Male,Single,Employee,More than 50000,Ph.D,4,13.0503,77.5529,560013,No,Positive,No
|
168 |
+
27,Female,Single,Student,No Income,Ph.D,5,13.0503,77.5529,560013,No,Negative ,No
|
169 |
+
24,Female,Single,Student,No Income,Post Graduate,5,12.9883,77.5987,560051,Yes,Positive,Yes
|
170 |
+
25,Male,Married,Self Employeed,More than 50000,School,2,13.0626,77.5284,560015,Yes,Positive,Yes
|
171 |
+
20,Male,Single,Student,No Income,Graduate,2,13.0626,77.5284,560015,No,Negative ,No
|
172 |
+
22,Male,Single,Student,No Income,Post Graduate,1,13.0626,77.5284,560015,Yes,Positive,Yes
|
173 |
+
26,Female,Married,Student,Below Rs.10000,Ph.D,3,13.0166,77.6804,560016,Yes,Positive,Yes
|
174 |
+
27,Male,Prefer not to say,Employee,25001 to 50000,Post Graduate,1,13.0166,77.6804,560016,Yes,Positive,Yes
|
175 |
+
25,Female,Single,Student,No Income,Post Graduate,3,12.9551,77.6593,560017,Yes,Positive,Yes
|
176 |
+
24,Male,Single,Employee,Below Rs.10000,Graduate,2,12.9551,77.6593,560017,Yes,Positive,Yes
|
177 |
+
23,Female,Single,Employee,10001 to 25000,Graduate,6,12.9551,77.6593,560017,Yes,Positive,Yes
|
178 |
+
22,Male,Single,Student,No Income,Graduate,2,12.957,77.5637,560018,No,Positive,No
|
179 |
+
26,Male,Married,Self Employeed,More than 50000,Post Graduate,3,12.957,77.5637,560018,No,Negative ,No
|
180 |
+
26,Male,Single,Employee,Below Rs.10000,Post Graduate,1,12.957,77.5637,560018,Yes,Negative ,Yes
|
181 |
+
25,Female,Married,Self Employeed,25001 to 50000,Post Graduate,3,12.957,77.5637,560018,No,Positive,No
|
182 |
+
29,Female,Married,Employee,More than 50000,Graduate,3,12.957,77.5637,560018,No,Positive,No
|
183 |
+
23,Male,Single,Student,Below Rs.10000,Graduate,3,12.8652,77.524,560109,Yes,Negative ,Yes
|
184 |
+
22,Female,Single,Employee,25001 to 50000,Graduate,4,12.9698,77.75,560066,Yes,Positive,Yes
|
185 |
+
22,Male,Single,Student,No Income,Graduate,2,12.9889,77.5741,560020,No,Positive,No
|
186 |
+
32,Female,Married,House wife,No Income,School,5,12.9889,77.5741,560020,Yes,Positive,Yes
|
187 |
+
28,Male,Married,Employee,More than 50000,Post Graduate,1,12.9925,77.5633,560021,Yes,Positive,Yes
|
188 |
+
22,Male,Single,Student,No Income,Post Graduate,2,12.977,77.5773,560009,Yes,Positive,Yes
|
189 |
+
25,Male,Single,Employee,10001 to 25000,Graduate,2,12.9757,77.5586,560023,Yes,Positive,Yes
|
190 |
+
26,Female,Married,Employee,25001 to 50000,Post Graduate,2,12.9757,77.5586,560023,No,Negative ,No
|
191 |
+
31,Male,Married,Self Employeed,More than 50000,School,6,13.0487,77.5923,560024,Yes,Positive,Yes
|
192 |
+
24,Male,Single,Student,No Income,Post Graduate,3,13.0487,77.5923,560024,No,Negative ,No
|
193 |
+
24,Male,Single,Employee,25001 to 50000,Post Graduate,2,12.9662,77.6068,560025,Yes,Positive,Yes
|
194 |
+
31,Female,Married,Employee,More than 50000,Ph.D,5,12.9662,77.6068,560025,Yes,Positive,Yes
|
195 |
+
26,Male,Single,Employee,25001 to 50000,Graduate,2,12.9343,77.6044,560029,Yes,Positive,Yes
|
196 |
+
24,Female,Married,Self Employeed,More than 50000,Graduate,2,12.9343,77.6044,560029,Yes,Positive,Yes
|
197 |
+
22,Female,Single,Student,No Income,Graduate,3,12.9343,77.6044,560029,Yes,Positive,Yes
|
198 |
+
19,Male,Single,Student,No Income,Graduate,6,12.9442,77.6076,560030,Yes,Positive,Yes
|
199 |
+
25,Male,Married,Employee,More than 50000,Post Graduate,6,12.9442,77.6076,560030,Yes,Positive,Yes
|
200 |
+
23,Female,Married,House wife,No Income,School,6,12.9442,77.6076,560030,Yes,Positive,Yes
|
201 |
+
23,Female,Single,Student,No Income,Graduate,2,13.0298,77.6047,560032,No,Negative ,No
|
202 |
+
23,Male,Single,Student,No Income,Post Graduate,2,12.9261,77.6221,560034,Yes,Positive,Yes
|
203 |
+
24,Male,Single,Student,No Income,Post Graduate,5,12.9621,77.5376,560104,Yes,Positive,Yes
|
204 |
+
22,Female,Single,Employee,25001 to 50000,Graduate,4,12.8845,77.6036,560076,Yes,Positive,Yes
|
205 |
+
26,Male,Married,Employee,More than 50000,Graduate,4,12.9048,77.6821,560036,Yes,Positive,Yes
|
206 |
+
25,Female,Single,Student,No Income,Ph.D,3,12.9048,77.6821,560036,Yes,Positive,Yes
|
207 |
+
20,Male,Single,Student,No Income,Graduate,2,12.9261,77.6221,560034,Yes,Positive,Yes
|
208 |
+
29,Male,Married,Employee,25001 to 50000,Graduate,4,12.9261,77.6221,560034,No,Negative ,No
|
209 |
+
23,Female,Single,Student,No Income,Graduate,1,12.977,77.5773,560009,Yes,Positive,Yes
|
210 |
+
25,Male,Single,Self Employeed,More than 50000,Graduate,2,12.9783,77.6408,560038,Yes,Positive,Yes
|
211 |
+
29,Female,Married,Employee,25001 to 50000,Graduate,4,12.9783,77.6408,560038,No,Negative ,No
|
212 |
+
27,Male,Married,Self Employeed,25001 to 50000,Graduate,6,12.9217,77.5936,560041,No,Negative ,No
|
213 |
+
25,Male,Single,Self Employeed,10001 to 25000,Graduate,3,13.0206,77.6479,560043,Yes,Positive,Yes
|
214 |
+
21,Male,Single,Student,No Income,Graduate,2,13.0012,77.5995,560046,No,Negative ,No
|
215 |
+
23,Male,Single,Student,No Income,Graduate,3,13.0223,77.7132,560049,Yes,Positive,Yes
|
216 |
+
24,Female,Single,Employee,10001 to 25000,Post Graduate,4,12.9337,77.59,560011,Yes,Positive,Yes
|
217 |
+
32,Male,Married,Self Employeed,10001 to 25000,School,3,12.982,77.6256,560008,Yes,Negative ,Yes
|
218 |
+
28,Male,Married,Employee,25001 to 50000,Post Graduate,5,13.0262,77.62,560045,Yes,Positive,Yes
|
219 |
+
26,Male,Single,Employee,10001 to 25000,Graduate,2,12.9217,77.5936,560041,No,Negative ,No
|
220 |
+
31,Female,Married,House wife,No Income,Graduate,5,13.0078,77.5577,560055,Yes,Positive,Yes
|
221 |
+
27,Female,Married,Self Employeed,25001 to 50000,Graduate,3,13.0078,77.5577,560055,Yes,Positive,Yes
|
222 |
+
21,Female,Single,Student,No Income,Post Graduate,1,12.9217,77.5936,560041,Yes,Positive,Yes
|
223 |
+
23,Female,Single,Student,No Income,Graduate,2,12.9105,77.4842,560060,No,Positive,No
|
224 |
+
26,Male,Married,Employee,10001 to 25000,Graduate,4,12.9105,77.4842,560060,No,Positive,No
|
225 |
+
32,Male,Married,Employee,More than 50000,Graduate,5,12.9037,77.5376,560061,Yes,Positive,Yes
|
226 |
+
25,Female,Married,Student,No Income,Post Graduate,2,12.8834,77.5486,560062,Yes,Positive,Yes
|
227 |
+
28,Male,Single,Self Employeed,10001 to 25000,Post Graduate,2,12.9149,77.5635,560070,Yes,Positive,Yes
|
228 |
+
21,Female,Single,Student,No Income,Post Graduate,3,12.9149,77.5635,560070,Yes,Positive,Yes
|
229 |
+
24,Male,Single,Student,No Income,Post Graduate,2,12.9706,77.6529,560075,Yes,Positive,Yes
|
230 |
+
26,Female,Married,Self Employeed,10001 to 25000,Graduate,5,12.9706,77.6529,560075,No,Negative ,No
|
231 |
+
32,Male,Married,Employee,25001 to 50000,Graduate,3,12.9706,77.6529,560075,Yes,Positive,Yes
|
232 |
+
29,Male,Single,Self Employeed,More than 50000,Graduate,6,12.8845,77.6036,560076,Yes,Positive,Yes
|
233 |
+
21,Male,Single,Student,No Income,Graduate,5,12.9783,77.6408,560038,Yes,Positive,Yes
|
234 |
+
24,Female,Single,Self Employeed,25001 to 50000,Post Graduate,3,13.0103,77.5796,560080,No,Negative ,No
|
235 |
+
26,Male,Prefer not to say,Self Employeed,More than 50000,Post Graduate,2,13.0103,77.5796,560080,Yes,Positive,Yes
|
236 |
+
25,Male,Married,Employee,More than 50000,Ph.D,3,12.9306,77.5434,560085,Yes,Positive,Yes
|
237 |
+
29,Male,Single,Employee,25001 to 50000,Graduate,3,13.0641,77.5931,560092,No,Negative ,No
|
238 |
+
22,Male,Single,Student,No Income,Graduate,3,13.0158,77.539,560096,Yes,Positive,Yes
|
239 |
+
24,Male,Single,Student,No Income,Graduate,2,12.9561,77.5921,560027,Yes,Positive,Yes
|
240 |
+
27,Male,Married,Employee,25001 to 50000,Graduate,2,12.8845,77.6036,560076,Yes,Positive,Yes
|
241 |
+
23,Female,Single,Student,No Income,Post Graduate,3,12.9369,77.6407,560095,No,Positive,No
|
242 |
+
32,Male,Married,Employee,More than 50000,Post Graduate,6,12.9369,77.6407,560095,Yes,Positive,Yes
|
243 |
+
22,Female,Single,Student,No Income,Graduate,2,12.9369,77.6407,560095,Yes,Positive,Yes
|
244 |
+
28,Male,Married,Employee,25001 to 50000,Graduate,3,12.9369,77.6407,560095,Yes,Positive,Yes
|
245 |
+
23,Female,Single,Student,No Income,Post Graduate,2,13.0158,77.539,560096,Yes,Positive,Yes
|
246 |
+
30,Male,Married,Self Employeed,More than 50000,Graduate,1,13.0809,77.5565,560097,No,Negative ,No
|
247 |
+
21,Male,Single,Student,No Income,Graduate,3,13.0641,77.5931,560092,Yes,Positive,Yes
|
248 |
+
26,Female,Married,Employee,Below Rs.10000,Graduate,6,12.9859,77.6713,560093,No,Negative ,No
|
249 |
+
25,Male,Single,Self Employeed,More than 50000,School,3,12.9859,77.6713,560093,Yes,Positive,Yes
|
250 |
+
31,Male,Prefer not to say,Employee,Below Rs.10000,Graduate,1,12.9866,77.4904,560091,No,Negative ,No
|
251 |
+
23,Female,Single,Employee,25001 to 50000,Post Graduate,2,12.9847,77.5491,560100,Yes,Positive,Yes
|
252 |
+
29,Female,Married,Employee,25001 to 50000,Ph.D,3,12.9847,77.5491,560100,Yes,Positive,Yes
|
253 |
+
21,Male,Single,Student,No Income,Graduate,6,12.9847,77.5491,560100,Yes,Positive,Yes
|
254 |
+
20,Male,Single,Student,No Income,Graduate,3,12.9299,77.6848,560103,Yes,Positive,Yes
|
255 |
+
22,Male,Single,Employee,10001 to 25000,Graduate,2,12.9299,77.6848,560103,Yes,Positive,Yes
|
256 |
+
30,Female,Married,House wife,No Income,School,6,12.9828,77.6131,560042,No,Positive,No
|
257 |
+
27,Male,Married,Self Employeed,More than 50000,Graduate,3,12.989,77.5332,560079,Yes,Positive,Yes
|
258 |
+
23,Male,Single,Student,No Income,Post Graduate,2,12.977,77.5773,560009,No,Negative ,No
|
259 |
+
30,Male,Married,Self Employeed,25001 to 50000,School,6,12.9251,77.4992,560059,No,Negative ,No
|
260 |
+
23,Male,Single,Student,No Income,Post Graduate,3,12.9967,77.7582,560067,Yes,Positive,Yes
|
261 |
+
28,Female,Married,Employee,25001 to 50000,Post Graduate,6,12.9967,77.7582,560067,No,Negative ,No
|
262 |
+
30,Male,Married,Self Employeed,More than 50000,Graduate,6,12.9967,77.7582,560067,Yes,Positive,Yes
|
263 |
+
24,Female,Married,Employee,25001 to 50000,Post Graduate,2,12.957,77.5637,560018,Yes,Negative ,Yes
|
264 |
+
21,Male,Single,Student,No Income,Graduate,2,12.957,77.5637,560018,No,Negative ,No
|
265 |
+
23,Female,Prefer not to say,Employee,10001 to 25000,Graduate,3,12.9889,77.5741,560020,No,Negative ,No
|
266 |
+
25,Male,Married,Self Employeed,More than 50000,Post Graduate,4,13.0206,77.6479,560043,Yes,Positive,Yes
|
267 |
+
24,Female,Single,Employee,25001 to 50000,Graduate,2,12.8893,77.6399,560068,Yes,Positive,Yes
|
268 |
+
26,Male,Married,Employee,10001 to 25000,Graduate,3,12.8893,77.6399,560068,No,Negative ,No
|
269 |
+
25,Female,Single,Employee,25001 to 50000,Post Graduate,2,12.9967,77.7582,560067,Yes,Positive,Yes
|
270 |
+
22,Male,Single,Student,25001 to 50000,Graduate,3,12.9783,77.6408,560038,Yes,Positive,Yes
|
271 |
+
26,Female,Single,Employee,25001 to 50000,Post Graduate,2,12.9783,77.6408,560038,Yes,Positive,Yes
|
272 |
+
23,Male,Single,Employee,10001 to 25000,Graduate,2,12.9925,77.5633,560021,Yes,Positive,Yes
|
273 |
+
21,Female,Single,Employee,Below Rs.10000,Graduate,2,12.9925,77.5633,560021,No,Negative ,No
|
274 |
+
25,Male,Married,Self Employeed,25001 to 50000,Graduate,3,12.9561,77.5921,560027,Yes,Positive,Yes
|
275 |
+
24,Female,Married,Employee,10001 to 25000,Post Graduate,2,12.9561,77.5921,560027,Yes,Positive,Yes
|
276 |
+
22,Male,Married,Student,No Income,Graduate,2,13.0734,77.5464,560014,Yes,Positive,Yes
|
277 |
+
23,Female,Single,Student,No Income,Post Graduate,4,13.0487,77.5923,560024,Yes,Positive,Yes
|
278 |
+
24,Male,Married,Employee,More than 50000,Post Graduate,3,12.9515,77.4921,560056,Yes,Positive,Yes
|
279 |
+
22,Female,Single,Student,No Income,Graduate,2,12.9515,77.4921,560056,Yes,Positive,Yes
|
280 |
+
30,Male,Married,Employee,More than 50000,Graduate,5,12.9719,77.5128,560072,No,Negative ,No
|
281 |
+
23,Female,Prefer not to say,Employee,10001 to 25000,Graduate,4,12.9048,77.6821,560036,Yes,Positive,Yes
|
282 |
+
19,Male,Single,Student,No Income,Graduate,6,12.9048,77.6821,560036,Yes,Positive,Yes
|
283 |
+
21,Female,Single,Student,No Income,Graduate,2,13.0103,77.5796,560080,Yes,Positive,Yes
|
284 |
+
23,Male,Single,Student,No Income,Graduate,4,13.0103,77.5796,560080,Yes,Positive,Yes
|
285 |
+
24,Female,Single,Employee,25001 to 50000,Graduate,3,12.8893,77.6399,560068,Yes,Positive,Yes
|
286 |
+
26,Female,Married,Employee,10001 to 25000,Post Graduate,2,12.9828,77.6131,560042,No,Positive,No
|
287 |
+
26,Female,Single,Student,No Income,Ph.D,2,12.9757,77.5586,560023,Yes,Positive,Yes
|
288 |
+
25,Female,Single,Student,10001 to 25000,Graduate,2,12.9757,77.5586,560023,Yes,Positive,Yes
|
289 |
+
28,Female,Married,Employee,25001 to 50000,Graduate,5,12.9757,77.5586,560023,No,Negative ,No
|
290 |
+
25,Female,Single,Student,No Income,Post Graduate,3,13.0734,77.5464,560014,Yes,Positive,Yes
|
291 |
+
20,Female,Single,Student,No Income,Graduate,2,13.0734,77.5464,560014,Yes,Positive,Yes
|
292 |
+
27,Female,Married,Self Employeed,More than 50000,Graduate,6,13.0734,77.5464,560014,No,Positive,No
|
293 |
+
25,Female,Married,Employee,25001 to 50000,Graduate,3,13.0626,77.5284,560015,No,Positive,No
|
294 |
+
24,Female,Single,Student,No Income,Post Graduate,5,13.0626,77.5284,560015,No,Negative ,No
|
295 |
+
25,Female,Married,Employee,More than 50000,Graduate,1,12.977,77.5773,560009,No,Negative ,No
|
296 |
+
25,Female,Prefer not to say,Employee,25001 to 50000,Post Graduate,3,12.998,77.6227,560005,No,Negative ,No
|
297 |
+
24,Female,Married,Student,Below Rs.10000,Ph.D,5,13.0626,77.5284,560015,Yes,Positive,Yes
|
298 |
+
24,Male,Single,Student,No Income,Post Graduate,3,13.0626,77.5284,560015,Yes,Positive,Yes
|
299 |
+
22,Male,Single,Employee,10001 to 25000,Graduate,1,13.0138,77.5877,560006,Yes,Positive,Yes
|
300 |
+
28,Male,Single,Employee,25001 to 50000,Post Graduate,2,13.0138,77.5877,560006,No,Negative ,No
|
301 |
+
25,Female,Single,Employee,More than 50000,Post Graduate,6,13.014,77.5658,560012,No,Negative ,No
|
302 |
+
22,Male,Single,Student,Below Rs.10000,Post Graduate,3,12.9551,77.6593,560017,Yes,Negative ,Yes
|
303 |
+
22,Female,Single,Student,No Income,Graduate,6,12.9473,77.5616,560019,Yes,Positive,Yes
|
304 |
+
22,Male,Single,Student,Below Rs.10000,Post Graduate,4,12.985,77.5533,560010,Yes,Positive,Yes
|
305 |
+
27,Female,Married,Employee,More than 50000,Post Graduate,2,12.9299,77.6848,560103,Yes,Positive,Yes
|
306 |
+
22,Male,Single,Student,No Income,Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
|
307 |
+
24,Female,Single,Student,No Income,Post Graduate,3,12.9828,77.6131,560042,Yes,Positive,Yes
|
308 |
+
23,Female,Single,Student,No Income,Post Graduate,2,12.9766,77.5993,560001,Yes,Positive,Yes
|
309 |
+
23,Female,Single,Student,No Income,Post Graduate,4,12.9854,77.7081,560048,Yes,Positive,Yes
|
310 |
+
22,Female,Single,Student,No Income,Post Graduate,5,12.985,77.5533,560010,Yes,Positive,Yes
|
311 |
+
23,Male,Single,Student,Below Rs.10000,Post Graduate,2,12.977,77.5773,560009,Yes,Negative ,Yes
|
312 |
+
32,Male,Married,Employee,More than 50000,Graduate,5,12.9037,77.5376,560061,Yes,Positive,Yes
|
313 |
+
25,Female,Married,Student,No Income,Post Graduate,2,12.8834,77.5486,560062,Yes,Positive,Yes
|
314 |
+
28,Male,Single,Self Employeed,10001 to 25000,Post Graduate,2,12.9149,77.5635,560070,Yes,Positive,Yes
|
315 |
+
21,Female,Single,Student,No Income,Post Graduate,3,12.9149,77.5635,560070,Yes,Positive,Yes
|
316 |
+
24,Male,Single,Student,No Income,Post Graduate,2,12.9706,77.6529,560075,Yes,Positive,Yes
|
317 |
+
26,Female,Married,Self Employeed,10001 to 25000,Graduate,5,12.9706,77.6529,560075,No,Negative ,No
|
318 |
+
32,Male,Married,Employee,25001 to 50000,Graduate,3,12.9706,77.6529,560075,Yes,Positive,Yes
|
319 |
+
29,Male,Single,Self Employeed,More than 50000,Graduate,6,12.8845,77.6036,560076,Yes,Positive,Yes
|
320 |
+
21,Male,Single,Student,No Income,Graduate,5,12.9783,77.6408,560038,Yes,Positive,Yes
|
321 |
+
24,Female,Single,Self Employeed,25001 to 50000,Post Graduate,3,13.0103,77.5796,560080,No,Negative ,No
|
322 |
+
26,Male,Prefer not to say,Self Employeed,More than 50000,Post Graduate,2,13.0103,77.5796,560080,Yes,Positive,Yes
|
323 |
+
21,Male,Married,Employee,More than 50000,Ph.D,3,12.9306,77.5434,560085,Yes,Positive,Yes
|
324 |
+
29,Male,Single,Employee,25001 to 50000,Graduate,3,13.0641,77.5931,560092,No,Negative ,No
|
325 |
+
22,Male,Single,Student,No Income,Graduate,3,13.0158,77.539,560096,Yes,Positive,Yes
|
326 |
+
24,Male,Single,Student,No Income,Graduate,2,12.9561,77.5921,560027,Yes,Positive,Yes
|
327 |
+
27,Male,Married,Employee,25001 to 50000,Graduate,2,12.8845,77.6036,560076,Yes,Positive,Yes
|
328 |
+
23,Female,Single,Student,No Income,Post Graduate,3,12.9369,77.6407,560095,No,Positive,No
|
329 |
+
32,Male,Married,Employee,More than 50000,Post Graduate,6,12.9369,77.6407,560095,Yes,Positive,Yes
|
330 |
+
22,Female,Single,Student,No Income,Graduate,2,12.9369,77.6407,560095,Yes,Positive,Yes
|
331 |
+
22,Female,Single,Employee,25001 to 50000,Graduate,4,12.8845,77.6036,560076,Yes,Positive,Yes
|
332 |
+
26,Male,Married,Employee,More than 50000,Graduate,4,12.9048,77.6821,560036,Yes,Positive,Yes
|
333 |
+
25,Female,Single,Student,No Income,Ph.D,3,12.9048,77.6821,560036,Yes,Positive,Yes
|
334 |
+
20,Male,Single,Student,No Income,Graduate,2,12.9261,77.6221,560034,Yes,Positive,Yes
|
335 |
+
29,Male,Married,Employee,25001 to 50000,Graduate,4,12.9261,77.6221,560034,No,Negative ,No
|
336 |
+
23,Female,Single,Student,No Income,Graduate,1,12.977,77.5773,560009,Yes,Positive,Yes
|
337 |
+
25,Male,Single,Self Employeed,More than 50000,Graduate,2,12.9783,77.6408,560038,Yes,Positive,Yes
|
338 |
+
29,Female,Married,Employee,25001 to 50000,Graduate,4,12.9783,77.6408,560038,No,Negative ,No
|
339 |
+
27,Male,Married,Self Employeed,25001 to 50000,Graduate,6,12.9217,77.5936,560041,No,Positive,No
|
340 |
+
25,Male,Single,Self Employeed,10001 to 25000,Graduate,3,13.0206,77.6479,560043,Yes,Positive,Yes
|
341 |
+
21,Male,Single,Student,No Income,Graduate,2,13.0012,77.5995,560046,No,Negative ,No
|
342 |
+
23,Male,Single,Student,No Income,Graduate,3,13.0223,77.7132,560049,Yes,Positive,Yes
|
343 |
+
24,Female,Single,Employee,10001 to 25000,Post Graduate,4,12.9337,77.59,560011,Yes,Positive,Yes
|
344 |
+
22,Male,Married,Self Employeed,10001 to 25000,School,3,12.982,77.6256,560008,Yes,Negative ,Yes
|
345 |
+
28,Male,Married,Employee,25001 to 50000,Post Graduate,5,13.0262,77.62,560045,Yes,Positive,Yes
|
346 |
+
26,Male,Single,Employee,10001 to 25000,Graduate,2,12.9217,77.5936,560041,No,Negative ,No
|
347 |
+
22,Female,Single,Employee,25001 to 50000,Graduate,4,12.8845,77.6036,560076,Yes,Positive,Yes
|
348 |
+
26,Male,Married,Employee,More than 50000,Graduate,4,12.9048,77.6821,560036,Yes,Positive,Yes
|
349 |
+
25,Female,Single,Student,No Income,Ph.D,3,12.9048,77.6821,560036,Yes,Positive,Yes
|
350 |
+
20,Male,Single,Student,No Income,Graduate,2,12.9261,77.6221,560034,Yes,Positive,Yes
|
351 |
+
29,Male,Married,Employee,25001 to 50000,Graduate,4,12.9261,77.6221,560034,No,Negative ,No
|
352 |
+
23,Female,Single,Student,No Income,Graduate,1,12.977,77.5773,560009,Yes,Positive,Yes
|
353 |
+
25,Male,Single,Self Employeed,More than 50000,Graduate,2,12.9783,77.6408,560038,Yes,Positive,Yes
|
354 |
+
29,Female,Married,Employee,25001 to 50000,Graduate,4,12.9783,77.6408,560038,No,Positive,No
|
355 |
+
27,Male,Married,Self Employeed,25001 to 50000,Graduate,6,12.9217,77.5936,560041,No,Positive,No
|
356 |
+
25,Male,Single,Self Employeed,10001 to 25000,Graduate,3,13.0206,77.6479,560043,Yes,Positive,Yes
|
357 |
+
21,Male,Single,Student,No Income,Graduate,2,13.0012,77.5995,560046,No,Positive,No
|
358 |
+
24,Male,Single,Student,No Income,Post Graduate,2,12.9706,77.6529,560075,Yes,Positive,Yes
|
359 |
+
26,Female,Married,Self Employeed,10001 to 25000,Graduate,5,12.9706,77.6529,560075,No,Negative ,No
|
360 |
+
32,Male,Married,Employee,25001 to 50000,Graduate,3,12.9706,77.6529,560075,Yes,Positive,Yes
|
361 |
+
29,Male,Single,Self Employeed,More than 50000,Graduate,6,12.8845,77.6036,560076,Yes,Positive,Yes
|
362 |
+
21,Male,Single,Student,No Income,Graduate,5,12.9783,77.6408,560038,Yes,Positive,Yes
|
363 |
+
24,Female,Single,Self Employeed,25001 to 50000,Post Graduate,3,13.0103,77.5796,560080,No,Negative ,No
|
364 |
+
26,Male,Prefer not to say,Self Employeed,More than 50000,Post Graduate,2,13.0103,77.5796,560080,Yes,Positive,Yes
|
365 |
+
31,Male,Married,Employee,More than 50000,Ph.D,3,12.9306,77.5434,560085,Yes,Positive,Yes
|
366 |
+
29,Male,Single,Employee,25001 to 50000,Graduate,3,13.0641,77.5931,560092,No,Negative ,No
|
367 |
+
22,Male,Single,Student,No Income,Graduate,3,13.0158,77.539,560096,Yes,Positive,Yes
|
368 |
+
24,Male,Single,Student,No Income,Graduate,2,12.9561,77.5921,560027,Yes,Positive,Yes
|
369 |
+
27,Male,Married,Employee,25001 to 50000,Graduate,2,12.8845,77.6036,560076,Yes,Positive,Yes
|
370 |
+
23,Female,Single,Student,No Income,Post Graduate,3,12.9369,77.6407,560095,No,Positive,No
|
371 |
+
30,Male,Married,Employee,More than 50000,Post Graduate,6,12.9369,77.6407,560095,Yes,Positive,Yes
|
372 |
+
22,Female,Single,Student,No Income,Graduate,2,12.9369,77.6407,560095,Yes,Positive,Yes
|
373 |
+
28,Male,Married,Employee,25001 to 50000,Graduate,3,12.9369,77.6407,560095,Yes,Positive,Yes
|
374 |
+
23,Female,Single,Student,No Income,Post Graduate,2,13.0158,77.539,560096,Yes,Positive,Yes
|
375 |
+
30,Male,Married,Self Employeed,More than 50000,Graduate,1,13.0809,77.5565,560097,No,Negative ,No
|
376 |
+
21,Male,Single,Student,No Income,Graduate,3,13.0641,77.5931,560092,Yes,Negative ,Yes
|
377 |
+
26,Female,Married,Employee,Below Rs.10000,Graduate,6,12.9859,77.6713,560093,No,Negative ,No
|
378 |
+
25,Male,Single,Self Employeed,More than 50000,School,3,12.9859,77.6713,560093,Yes,Positive,Yes
|
379 |
+
31,Male,Prefer not to say,Employee,Below Rs.10000,Graduate,1,12.9866,77.4904,560091,No,Negative ,No
|
380 |
+
23,Female,Single,Employee,25001 to 50000,Post Graduate,2,12.9847,77.5491,560100,Yes,Positive,Yes
|
381 |
+
22,Male,Single,Student,Below Rs.10000,Post Graduate,4,12.985,77.5533,560010,Yes,Positive,Yes
|
382 |
+
27,Female,Married,Employee,More than 50000,Post Graduate,2,12.9299,77.6848,560103,Yes,Positive,Yes
|
383 |
+
22,Male,Single,Student,No Income,Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
|
384 |
+
24,Female,Single,Student,No Income,Post Graduate,3,12.9828,77.6131,560042,Yes,Positive,Yes
|
385 |
+
23,Female,Single,Student,No Income,Post Graduate,2,12.9766,77.5993,560001,Yes,Positive,Yes
|
386 |
+
23,Female,Single,Student,No Income,Post Graduate,4,12.9854,77.7081,560048,Yes,Positive,Yes
|
387 |
+
22,Female,Single,Student,No Income,Post Graduate,5,12.985,77.5533,560010,Yes,Positive,Yes
|
388 |
+
23,Male,Single,Student,Below Rs.10000,Post Graduate,2,12.977,77.5773,560009,Yes,Positive,Yes
|
389 |
+
23,Male,Single,Student,No Income,Post Graduate,5,12.8988,77.5764,560078,Yes,Positive,Yes
|
src/evaluation/datasets/titanic.csv
ADDED
@@ -0,0 +1,888 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Survived,Pclass,Name,Sex,Age,Siblings/Spouses Aboard,Parents/Children Aboard,Fare
|
2 |
+
0,3,Mr. Owen Harris Braund,male,22,1,0,7.25
|
3 |
+
1,1,Mrs. John Bradley (Florence Briggs Thayer) Cumings,female,38,1,0,71.2833
|
4 |
+
1,3,Miss. Laina Heikkinen,female,26,0,0,7.925
|
5 |
+
1,1,Mrs. Jacques Heath (Lily May Peel) Futrelle,female,35,1,0,53.1
|
6 |
+
0,3,Mr. William Henry Allen,male,35,0,0,8.05
|
7 |
+
0,3,Mr. James Moran,male,27,0,0,8.4583
|
8 |
+
0,1,Mr. Timothy J McCarthy,male,54,0,0,51.8625
|
9 |
+
0,3,Master. Gosta Leonard Palsson,male,2,3,1,21.075
|
10 |
+
1,3,Mrs. Oscar W (Elisabeth Vilhelmina Berg) Johnson,female,27,0,2,11.1333
|
11 |
+
1,2,Mrs. Nicholas (Adele Achem) Nasser,female,14,1,0,30.0708
|
12 |
+
1,3,Miss. Marguerite Rut Sandstrom,female,4,1,1,16.7
|
13 |
+
1,1,Miss. Elizabeth Bonnell,female,58,0,0,26.55
|
14 |
+
0,3,Mr. William Henry Saundercock,male,20,0,0,8.05
|
15 |
+
0,3,Mr. Anders Johan Andersson,male,39,1,5,31.275
|
16 |
+
0,3,Miss. Hulda Amanda Adolfina Vestrom,female,14,0,0,7.8542
|
17 |
+
1,2,Mrs. (Mary D Kingcome) Hewlett,female,55,0,0,16
|
18 |
+
0,3,Master. Eugene Rice,male,2,4,1,29.125
|
19 |
+
1,2,Mr. Charles Eugene Williams,male,23,0,0,13
|
20 |
+
0,3,Mrs. Julius (Emelia Maria Vandemoortele) Vander Planke,female,31,1,0,18
|
21 |
+
1,3,Mrs. Fatima Masselmani,female,22,0,0,7.225
|
22 |
+
0,2,Mr. Joseph J Fynney,male,35,0,0,26
|
23 |
+
1,2,Mr. Lawrence Beesley,male,34,0,0,13
|
24 |
+
1,3,Miss. Anna McGowan,female,15,0,0,8.0292
|
25 |
+
1,1,Mr. William Thompson Sloper,male,28,0,0,35.5
|
26 |
+
0,3,Miss. Torborg Danira Palsson,female,8,3,1,21.075
|
27 |
+
1,3,Mrs. Carl Oscar (Selma Augusta Emilia Johansson) Asplund,female,38,1,5,31.3875
|
28 |
+
0,3,Mr. Farred Chehab Emir,male,26,0,0,7.225
|
29 |
+
0,1,Mr. Charles Alexander Fortune,male,19,3,2,263
|
30 |
+
1,3,Miss. Ellen O'Dwyer,female,24,0,0,7.8792
|
31 |
+
0,3,Mr. Lalio Todoroff,male,23,0,0,7.8958
|
32 |
+
0,1,Don. Manuel E Uruchurtu,male,40,0,0,27.7208
|
33 |
+
1,1,Mrs. William Augustus (Marie Eugenie) Spencer,female,48,1,0,146.5208
|
34 |
+
1,3,Miss. Mary Agatha Glynn,female,18,0,0,7.75
|
35 |
+
0,2,Mr. Edward H Wheadon,male,66,0,0,10.5
|
36 |
+
0,1,Mr. Edgar Joseph Meyer,male,28,1,0,82.1708
|
37 |
+
0,1,Mr. Alexander Oskar Holverson,male,42,1,0,52
|
38 |
+
1,3,Mr. Hanna Mamee,male,18,0,0,7.2292
|
39 |
+
0,3,Mr. Ernest Charles Cann,male,21,0,0,8.05
|
40 |
+
0,3,Miss. Augusta Maria Vander Planke,female,18,2,0,18
|
41 |
+
1,3,Miss. Jamila Nicola-Yarred,female,14,1,0,11.2417
|
42 |
+
0,3,Mrs. Johan (Johanna Persdotter Larsson) Ahlin,female,40,1,0,9.475
|
43 |
+
0,2,Mrs. William John Robert (Dorothy Ann Wonnacott) Turpin,female,27,1,0,21
|
44 |
+
1,2,Miss. Simonne Marie Anne Andree Laroche,female,3,1,2,41.5792
|
45 |
+
1,3,Miss. Margaret Delia Devaney,female,19,0,0,7.8792
|
46 |
+
0,3,Mr. William John Rogers,male,30,0,0,8.05
|
47 |
+
0,3,Mr. Denis Lennon,male,20,1,0,15.5
|
48 |
+
1,3,Miss. Bridget O'Driscoll,female,27,0,0,7.75
|
49 |
+
0,3,Mr. Youssef Samaan,male,16,2,0,21.6792
|
50 |
+
0,3,Mrs. Josef (Josefine Franchi) Arnold-Franchi,female,18,1,0,17.8
|
51 |
+
0,3,Master. Juha Niilo Panula,male,7,4,1,39.6875
|
52 |
+
0,3,Mr. Richard Cater Nosworthy,male,21,0,0,7.8
|
53 |
+
1,1,Mrs. Henry Sleeper (Myna Haxtun) Harper,female,49,1,0,76.7292
|
54 |
+
1,2,Mrs. Lizzie (Elizabeth Anne Wilkinson) Faunthorpe,female,29,1,0,26
|
55 |
+
0,1,Mr. Engelhart Cornelius Ostby,male,65,0,1,61.9792
|
56 |
+
1,1,Mr. Hugh Woolner,male,46,0,0,35.5
|
57 |
+
1,2,Miss. Emily Rugg,female,21,0,0,10.5
|
58 |
+
0,3,Mr. Mansouer Novel,male,28.5,0,0,7.2292
|
59 |
+
1,2,Miss. Constance Mirium West,female,5,1,2,27.75
|
60 |
+
0,3,Master. William Frederick Goodwin,male,11,5,2,46.9
|
61 |
+
0,3,Mr. Orsen Sirayanian,male,22,0,0,7.2292
|
62 |
+
1,1,Miss. Amelie Icard,female,38,0,0,80
|
63 |
+
0,1,Mr. Henry Birkhardt Harris,male,45,1,0,83.475
|
64 |
+
0,3,Master. Harald Skoog,male,4,3,2,27.9
|
65 |
+
0,1,Mr. Albert A Stewart,male,64,0,0,27.7208
|
66 |
+
1,3,Master. Gerios Moubarek,male,7,1,1,15.2458
|
67 |
+
1,2,Mrs. (Elizabeth Ramell) Nye,female,29,0,0,10.5
|
68 |
+
0,3,Mr. Ernest James Crease,male,19,0,0,8.1583
|
69 |
+
1,3,Miss. Erna Alexandra Andersson,female,17,4,2,7.925
|
70 |
+
0,3,Mr. Vincenz Kink,male,26,2,0,8.6625
|
71 |
+
0,2,Mr. Stephen Curnow Jenkin,male,32,0,0,10.5
|
72 |
+
0,3,Miss. Lillian Amy Goodwin,female,16,5,2,46.9
|
73 |
+
0,2,Mr. Ambrose Jr Hood,male,21,0,0,73.5
|
74 |
+
0,3,Mr. Apostolos Chronopoulos,male,26,1,0,14.4542
|
75 |
+
1,3,Mr. Lee Bing,male,32,0,0,56.4958
|
76 |
+
0,3,Mr. Sigurd Hansen Moen,male,25,0,0,7.65
|
77 |
+
0,3,Mr. Ivan Staneff,male,23,0,0,7.8958
|
78 |
+
0,3,Mr. Rahamin Haim Moutal,male,28,0,0,8.05
|
79 |
+
1,2,Master. Alden Gates Caldwell,male,0.83,0,2,29
|
80 |
+
1,3,Miss. Elizabeth Dowdell,female,30,0,0,12.475
|
81 |
+
0,3,Mr. Achille Waelens,male,22,0,0,9
|
82 |
+
1,3,Mr. Jan Baptist Sheerlinck,male,29,0,0,9.5
|
83 |
+
1,3,Miss. Brigdet Delia McDermott,female,31,0,0,7.7875
|
84 |
+
0,1,Mr. Francisco M Carrau,male,28,0,0,47.1
|
85 |
+
1,2,Miss. Bertha Ilett,female,17,0,0,10.5
|
86 |
+
1,3,Mrs. Karl Alfred (Maria Mathilda Gustafsson) Backstrom,female,33,3,0,15.85
|
87 |
+
0,3,Mr. William Neal Ford,male,16,1,3,34.375
|
88 |
+
0,3,Mr. Selman Francis Slocovski,male,20,0,0,8.05
|
89 |
+
1,1,Miss. Mabel Helen Fortune,female,23,3,2,263
|
90 |
+
0,3,Mr. Francesco Celotti,male,24,0,0,8.05
|
91 |
+
0,3,Mr. Emil Christmann,male,29,0,0,8.05
|
92 |
+
0,3,Mr. Paul Edvin Andreasson,male,20,0,0,7.8542
|
93 |
+
0,1,Mr. Herbert Fuller Chaffee,male,46,1,0,61.175
|
94 |
+
0,3,Mr. Bertram Frank Dean,male,26,1,2,20.575
|
95 |
+
0,3,Mr. Daniel Coxon,male,59,0,0,7.25
|
96 |
+
0,3,Mr. Charles Joseph Shorney,male,22,0,0,8.05
|
97 |
+
0,1,Mr. George B Goldschmidt,male,71,0,0,34.6542
|
98 |
+
1,1,Mr. William Bertram Greenfield,male,23,0,1,63.3583
|
99 |
+
1,2,Mrs. John T (Ada Julia Bone) Doling,female,34,0,1,23
|
100 |
+
0,2,Mr. Sinai Kantor,male,34,1,0,26
|
101 |
+
0,3,Miss. Matilda Petranec,female,28,0,0,7.8958
|
102 |
+
0,3,Mr. Pastcho Petroff,male,29,0,0,7.8958
|
103 |
+
0,1,Mr. Richard Frasar White,male,21,0,1,77.2875
|
104 |
+
0,3,Mr. Gustaf Joel Johansson,male,33,0,0,8.6542
|
105 |
+
0,3,Mr. Anders Vilhelm Gustafsson,male,37,2,0,7.925
|
106 |
+
0,3,Mr. Stoytcho Mionoff,male,28,0,0,7.8958
|
107 |
+
1,3,Miss. Anna Kristine Salkjelsvik,female,21,0,0,7.65
|
108 |
+
1,3,Mr. Albert Johan Moss,male,29,0,0,7.775
|
109 |
+
0,3,Mr. Tido Rekic,male,38,0,0,7.8958
|
110 |
+
1,3,Miss. Bertha Moran,female,28,1,0,24.15
|
111 |
+
0,1,Mr. Walter Chamberlain Porter,male,47,0,0,52
|
112 |
+
0,3,Miss. Hileni Zabour,female,14.5,1,0,14.4542
|
113 |
+
0,3,Mr. David John Barton,male,22,0,0,8.05
|
114 |
+
0,3,Miss. Katriina Jussila,female,20,1,0,9.825
|
115 |
+
0,3,Miss. Malake Attalah,female,17,0,0,14.4583
|
116 |
+
0,3,Mr. Edvard Pekoniemi,male,21,0,0,7.925
|
117 |
+
0,3,Mr. Patrick Connors,male,70.5,0,0,7.75
|
118 |
+
0,2,Mr. William John Robert Turpin,male,29,1,0,21
|
119 |
+
0,1,Mr. Quigg Edmond Baxter,male,24,0,1,247.5208
|
120 |
+
0,3,Miss. Ellis Anna Maria Andersson,female,2,4,2,31.275
|
121 |
+
0,2,Mr. Stanley George Hickman,male,21,2,0,73.5
|
122 |
+
0,3,Mr. Leonard Charles Moore,male,19,0,0,8.05
|
123 |
+
0,2,Mr. Nicholas Nasser,male,32.5,1,0,30.0708
|
124 |
+
1,2,Miss. Susan Webber,female,32.5,0,0,13
|
125 |
+
0,1,Mr. Percival Wayland White,male,54,0,1,77.2875
|
126 |
+
1,3,Master. Elias Nicola-Yarred,male,12,1,0,11.2417
|
127 |
+
0,3,Mr. Martin McMahon,male,19,0,0,7.75
|
128 |
+
1,3,Mr. Fridtjof Arne Madsen,male,24,0,0,7.1417
|
129 |
+
1,3,Miss. Anna Peter,female,2,1,1,22.3583
|
130 |
+
0,3,Mr. Johan Ekstrom,male,45,0,0,6.975
|
131 |
+
0,3,Mr. Jozef Drazenoic,male,33,0,0,7.8958
|
132 |
+
0,3,Mr. Domingos Fernandeo Coelho,male,20,0,0,7.05
|
133 |
+
0,3,Mrs. Alexander A (Grace Charity Laury) Robins,female,47,1,0,14.5
|
134 |
+
1,2,Mrs. Leopold (Mathilde Francoise Pede) Weisz,female,29,1,0,26
|
135 |
+
0,2,Mr. Samuel James Hayden Sobey,male,25,0,0,13
|
136 |
+
0,2,Mr. Emile Richard,male,23,0,0,15.0458
|
137 |
+
1,1,Miss. Helen Monypeny Newsom,female,19,0,2,26.2833
|
138 |
+
0,1,Mr. Jacques Heath Futrelle,male,37,1,0,53.1
|
139 |
+
0,3,Mr. Olaf Elon Osen,male,16,0,0,9.2167
|
140 |
+
0,1,Mr. Victor Giglio,male,24,0,0,79.2
|
141 |
+
0,3,Mrs. Joseph (Sultana) Boulos,female,40,0,2,15.2458
|
142 |
+
1,3,Miss. Anna Sofia Nysten,female,22,0,0,7.75
|
143 |
+
1,3,Mrs. Pekka Pietari (Elin Matilda Dolck) Hakkarainen,female,24,1,0,15.85
|
144 |
+
0,3,Mr. Jeremiah Burke,male,19,0,0,6.75
|
145 |
+
0,2,Mr. Edgardo Samuel Andrew,male,18,0,0,11.5
|
146 |
+
0,2,Mr. Joseph Charles Nicholls,male,19,1,1,36.75
|
147 |
+
1,3,Mr. August Edvard Andersson,male,27,0,0,7.7958
|
148 |
+
0,3,Miss. Robina Maggie Ford,female,9,2,2,34.375
|
149 |
+
0,2,Mr. Michel Navratil,male,36.5,0,2,26
|
150 |
+
0,2,Rev. Thomas Roussel Davids Byles,male,42,0,0,13
|
151 |
+
0,2,Rev. Robert James Bateman,male,51,0,0,12.525
|
152 |
+
1,1,Mrs. Thomas (Edith Wearne) Pears,female,22,1,0,66.6
|
153 |
+
0,3,Mr. Alfonzo Meo,male,55.5,0,0,8.05
|
154 |
+
0,3,Mr. Austin Blyler van Billiard,male,40.5,0,2,14.5
|
155 |
+
0,3,Mr. Ole Martin Olsen,male,27,0,0,7.3125
|
156 |
+
0,1,Mr. Charles Duane Williams,male,51,0,1,61.3792
|
157 |
+
1,3,Miss. Katherine Gilnagh,female,16,0,0,7.7333
|
158 |
+
0,3,Mr. Harry Corn,male,30,0,0,8.05
|
159 |
+
0,3,Mr. Mile Smiljanic,male,37,0,0,8.6625
|
160 |
+
0,3,Master. Thomas Henry Sage,male,5,8,2,69.55
|
161 |
+
0,3,Mr. John Hatfield Cribb,male,44,0,1,16.1
|
162 |
+
1,2,Mrs. James (Elizabeth Inglis Milne) Watt,female,40,0,0,15.75
|
163 |
+
0,3,Mr. John Viktor Bengtsson,male,26,0,0,7.775
|
164 |
+
0,3,Mr. Jovo Calic,male,17,0,0,8.6625
|
165 |
+
0,3,Master. Eino Viljami Panula,male,1,4,1,39.6875
|
166 |
+
1,3,Master. Frank John William Goldsmith,male,9,0,2,20.525
|
167 |
+
1,1,Mrs. (Edith Martha Bowerman) Chibnall,female,48,0,1,55
|
168 |
+
0,3,Mrs. William (Anna Bernhardina Karlsson) Skoog,female,45,1,4,27.9
|
169 |
+
0,1,Mr. John D Baumann,male,60,0,0,25.925
|
170 |
+
0,3,Mr. Lee Ling,male,28,0,0,56.4958
|
171 |
+
0,1,Mr. Wyckoff Van der hoef,male,61,0,0,33.5
|
172 |
+
0,3,Master. Arthur Rice,male,4,4,1,29.125
|
173 |
+
1,3,Miss. Eleanor Ileen Johnson,female,1,1,1,11.1333
|
174 |
+
0,3,Mr. Antti Wilhelm Sivola,male,21,0,0,7.925
|
175 |
+
0,1,Mr. James Clinch Smith,male,56,0,0,30.6958
|
176 |
+
0,3,Mr. Klas Albin Klasen,male,18,1,1,7.8542
|
177 |
+
0,3,Master. Henry Forbes Lefebre,male,5,3,1,25.4667
|
178 |
+
0,1,Miss. Ann Elizabeth Isham,female,50,0,0,28.7125
|
179 |
+
0,2,Mr. Reginald Hale,male,30,0,0,13
|
180 |
+
0,3,Mr. Lionel Leonard,male,36,0,0,0
|
181 |
+
0,3,Miss. Constance Gladys Sage,female,8,8,2,69.55
|
182 |
+
0,2,Mr. Rene Pernot,male,39,0,0,15.05
|
183 |
+
0,3,Master. Clarence Gustaf Hugo Asplund,male,9,4,2,31.3875
|
184 |
+
1,2,Master. Richard F Becker,male,1,2,1,39
|
185 |
+
1,3,Miss. Luise Gretchen Kink-Heilmann,female,4,0,2,22.025
|
186 |
+
0,1,Mr. Hugh Roscoe Rood,male,39,0,0,50
|
187 |
+
1,3,Mrs. Thomas (Johanna Godfrey) O'Brien,female,26,1,0,15.5
|
188 |
+
1,1,Mr. Charles Hallace Romaine,male,45,0,0,26.55
|
189 |
+
0,3,Mr. John Bourke,male,40,1,1,15.5
|
190 |
+
0,3,Mr. Stjepan Turcin,male,36,0,0,7.8958
|
191 |
+
1,2,Mrs. (Rosa) Pinsky,female,32,0,0,13
|
192 |
+
0,2,Mr. William Carbines,male,19,0,0,13
|
193 |
+
1,3,Miss. Carla Christine Nielsine Andersen-Jensen,female,19,1,0,7.8542
|
194 |
+
1,2,Master. Michel M Navratil,male,3,1,1,26
|
195 |
+
1,1,Mrs. James Joseph (Margaret Tobin) Brown,female,44,0,0,27.7208
|
196 |
+
1,1,Miss. Elise Lurette,female,58,0,0,146.5208
|
197 |
+
0,3,Mr. Robert Mernagh,male,28,0,0,7.75
|
198 |
+
0,3,Mr. Karl Siegwart Andreas Olsen,male,42,0,1,8.4042
|
199 |
+
1,3,Miss. Margaret Madigan,female,21,0,0,7.75
|
200 |
+
0,2,Miss. Henriette Yrois,female,24,0,0,13
|
201 |
+
0,3,Mr. Nestor Cyriel Vande Walle,male,28,0,0,9.5
|
202 |
+
0,3,Mr. Frederick Sage,male,17,8,2,69.55
|
203 |
+
0,3,Mr. Jakob Alfred Johanson,male,34,0,0,6.4958
|
204 |
+
0,3,Mr. Gerious Youseff,male,45.5,0,0,7.225
|
205 |
+
1,3,Mr. Gurshon Cohen,male,18,0,0,8.05
|
206 |
+
0,3,Miss. Telma Matilda Strom,female,2,0,1,10.4625
|
207 |
+
0,3,Mr. Karl Alfred Backstrom,male,32,1,0,15.85
|
208 |
+
1,3,Mr. Nassef Cassem Albimona,male,26,0,0,18.7875
|
209 |
+
1,3,Miss. Helen Carr,female,16,0,0,7.75
|
210 |
+
1,1,Mr. Henry Blank,male,40,0,0,31
|
211 |
+
0,3,Mr. Ahmed Ali,male,24,0,0,7.05
|
212 |
+
1,2,Miss. Clear Annie Cameron,female,35,0,0,21
|
213 |
+
0,3,Mr. John Henry Perkin,male,22,0,0,7.25
|
214 |
+
0,2,Mr. Hans Kristensen Givard,male,30,0,0,13
|
215 |
+
0,3,Mr. Philip Kiernan,male,22,1,0,7.75
|
216 |
+
1,1,Miss. Madeleine Newell,female,31,1,0,113.275
|
217 |
+
1,3,Miss. Eliina Honkanen,female,27,0,0,7.925
|
218 |
+
0,2,Mr. Sidney Samuel Jacobsohn,male,42,1,0,27
|
219 |
+
1,1,Miss. Albina Bazzani,female,32,0,0,76.2917
|
220 |
+
0,2,Mr. Walter Harris,male,30,0,0,10.5
|
221 |
+
1,3,Mr. Victor Francis Sunderland,male,16,0,0,8.05
|
222 |
+
0,2,Mr. James H Bracken,male,27,0,0,13
|
223 |
+
0,3,Mr. George Henry Green,male,51,0,0,8.05
|
224 |
+
0,3,Mr. Christo Nenkoff,male,22,0,0,7.8958
|
225 |
+
1,1,Mr. Frederick Maxfield Hoyt,male,38,1,0,90
|
226 |
+
0,3,Mr. Karl Ivar Sven Berglund,male,22,0,0,9.35
|
227 |
+
1,2,Mr. William John Mellors,male,19,0,0,10.5
|
228 |
+
0,3,Mr. John Hall Lovell,male,20.5,0,0,7.25
|
229 |
+
0,2,Mr. Arne Jonas Fahlstrom,male,18,0,0,13
|
230 |
+
0,3,Miss. Mathilde Lefebre,female,12,3,1,25.4667
|
231 |
+
1,1,Mrs. Henry Birkhardt (Irene Wallach) Harris,female,35,1,0,83.475
|
232 |
+
0,3,Mr. Bengt Edvin Larsson,male,29,0,0,7.775
|
233 |
+
0,2,Mr. Ernst Adolf Sjostedt,male,59,0,0,13.5
|
234 |
+
1,3,Miss. Lillian Gertrud Asplund,female,5,4,2,31.3875
|
235 |
+
0,2,Mr. Robert William Norman Leyson,male,24,0,0,10.5
|
236 |
+
0,3,Miss. Alice Phoebe Harknett,female,21,0,0,7.55
|
237 |
+
0,2,Mr. Stephen Hold,male,44,1,0,26
|
238 |
+
1,2,Miss. Marjorie Collyer,female,8,0,2,26.25
|
239 |
+
0,2,Mr. Frederick William Pengelly,male,19,0,0,10.5
|
240 |
+
0,2,Mr. George Henry Hunt,male,33,0,0,12.275
|
241 |
+
0,3,Miss. Thamine Zabour,female,19,1,0,14.4542
|
242 |
+
1,3,Miss. Katherine Murphy,female,18,1,0,15.5
|
243 |
+
0,2,Mr. Reginald Charles Coleridge,male,29,0,0,10.5
|
244 |
+
0,3,Mr. Matti Alexanteri Maenpaa,male,22,0,0,7.125
|
245 |
+
0,3,Mr. Sleiman Attalah,male,30,0,0,7.225
|
246 |
+
0,1,Dr. William Edward Minahan,male,44,2,0,90
|
247 |
+
0,3,Miss. Agda Thorilda Viktoria Lindahl,female,25,0,0,7.775
|
248 |
+
1,2,Mrs. William (Anna) Hamalainen,female,24,0,2,14.5
|
249 |
+
1,1,Mr. Richard Leonard Beckwith,male,37,1,1,52.5542
|
250 |
+
0,2,Rev. Ernest Courtenay Carter,male,54,1,0,26
|
251 |
+
0,3,Mr. James George Reed,male,18,0,0,7.25
|
252 |
+
0,3,Mrs. Wilhelm (Elna Matilda Persson) Strom,female,29,1,1,10.4625
|
253 |
+
0,1,Mr. William Thomas Stead,male,62,0,0,26.55
|
254 |
+
0,3,Mr. William Arthur Lobb,male,30,1,0,16.1
|
255 |
+
0,3,Mrs. Viktor (Helena Wilhelmina) Rosblom,female,41,0,2,20.2125
|
256 |
+
1,3,Mrs. Darwis (Hanne Youssef Razi) Touma,female,29,0,2,15.2458
|
257 |
+
1,1,Mrs. Gertrude Maybelle Thorne,female,38,0,0,79.2
|
258 |
+
1,1,Miss. Gladys Cherry,female,30,0,0,86.5
|
259 |
+
1,1,Miss. Anna Ward,female,35,0,0,512.3292
|
260 |
+
1,2,Mrs. (Lutie Davis) Parrish,female,50,0,1,26
|
261 |
+
1,3,Master. Edvin Rojj Felix Asplund,male,3,4,2,31.3875
|
262 |
+
0,1,Mr. Emil Taussig,male,52,1,1,79.65
|
263 |
+
0,1,Mr. William Harrison,male,40,0,0,0
|
264 |
+
0,3,Miss. Delia Henry,female,21,0,0,7.75
|
265 |
+
0,2,Mr. David Reeves,male,36,0,0,10.5
|
266 |
+
0,3,Mr. Ernesti Arvid Panula,male,16,4,1,39.6875
|
267 |
+
1,3,Mr. Ernst Ulrik Persson,male,25,1,0,7.775
|
268 |
+
1,1,Mrs. William Thompson (Edith Junkins) Graham,female,58,0,1,153.4625
|
269 |
+
1,1,Miss. Amelia Bissette,female,35,0,0,135.6333
|
270 |
+
0,1,Mr. Alexander Cairns,male,28,0,0,31
|
271 |
+
1,3,Mr. William Henry Tornquist,male,25,0,0,0
|
272 |
+
1,2,Mrs. (Elizabeth Anne Maidment) Mellinger,female,41,0,1,19.5
|
273 |
+
0,1,Mr. Charles H Natsch,male,37,0,1,29.7
|
274 |
+
1,3,Miss. Hanora Healy,female,33,0,0,7.75
|
275 |
+
1,1,Miss. Kornelia Theodosia Andrews,female,63,1,0,77.9583
|
276 |
+
0,3,Miss. Augusta Charlotta Lindblom,female,45,0,0,7.75
|
277 |
+
0,2,Mr. Francis Parkes,male,21,0,0,0
|
278 |
+
0,3,Master. Eric Rice,male,7,4,1,29.125
|
279 |
+
1,3,Mrs. Stanton (Rosa Hunt) Abbott,female,35,1,1,20.25
|
280 |
+
0,3,Mr. Frank Duane,male,65,0,0,7.75
|
281 |
+
0,3,Mr. Nils Johan Goransson Olsson,male,28,0,0,7.8542
|
282 |
+
0,3,Mr. Alfons de Pelsmaeker,male,16,0,0,9.5
|
283 |
+
1,3,Mr. Edward Arthur Dorking,male,19,0,0,8.05
|
284 |
+
0,1,Mr. Richard William Smith,male,57,0,0,26
|
285 |
+
0,3,Mr. Ivan Stankovic,male,33,0,0,8.6625
|
286 |
+
1,3,Mr. Theodore de Mulder,male,30,0,0,9.5
|
287 |
+
0,3,Mr. Penko Naidenoff,male,22,0,0,7.8958
|
288 |
+
1,2,Mr. Masabumi Hosono,male,42,0,0,13
|
289 |
+
1,3,Miss. Kate Connolly,female,22,0,0,7.75
|
290 |
+
1,1,Miss. Ellen Barber,female,26,0,0,78.85
|
291 |
+
1,1,Mrs. Dickinson H (Helen Walton) Bishop,female,19,1,0,91.0792
|
292 |
+
0,2,Mr. Rene Jacques Levy,male,36,0,0,12.875
|
293 |
+
0,3,Miss. Aloisia Haas,female,24,0,0,8.85
|
294 |
+
0,3,Mr. Ivan Mineff,male,24,0,0,7.8958
|
295 |
+
0,1,Mr. Ervin G Lewy,male,30,0,0,27.7208
|
296 |
+
0,3,Mr. Mansour Hanna,male,23.5,0,0,7.2292
|
297 |
+
0,1,Miss. Helen Loraine Allison,female,2,1,2,151.55
|
298 |
+
1,1,Mr. Adolphe Saalfeld,male,47,0,0,30.5
|
299 |
+
1,1,Mrs. James (Helene DeLaudeniere Chaput) Baxter,female,50,0,1,247.5208
|
300 |
+
1,3,Miss. Anna Katherine Kelly,female,20,0,0,7.75
|
301 |
+
1,3,Mr. Bernard McCoy,male,24,2,0,23.25
|
302 |
+
0,3,Mr. William Cahoone Jr Johnson,male,19,0,0,0
|
303 |
+
1,2,Miss. Nora A Keane,female,46,0,0,12.35
|
304 |
+
0,3,Mr. Howard Hugh Williams,male,28,0,0,8.05
|
305 |
+
1,1,Master. Hudson Trevor Allison,male,0.92,1,2,151.55
|
306 |
+
1,1,Miss. Margaret Fleming,female,42,0,0,110.8833
|
307 |
+
1,1,Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo) Penasco y Castellana,female,17,1,0,108.9
|
308 |
+
0,2,Mr. Samuel Abelson,male,30,1,0,24
|
309 |
+
1,1,Miss. Laura Mabel Francatelli,female,30,0,0,56.9292
|
310 |
+
1,1,Miss. Margaret Bechstein Hays,female,24,0,0,83.1583
|
311 |
+
1,1,Miss. Emily Borie Ryerson,female,18,2,2,262.375
|
312 |
+
0,2,Mrs. William (Anna Sylfven) Lahtinen,female,26,1,1,26
|
313 |
+
0,3,Mr. Ignjac Hendekovic,male,28,0,0,7.8958
|
314 |
+
0,2,Mr. Benjamin Hart,male,43,1,1,26.25
|
315 |
+
1,3,Miss. Helmina Josefina Nilsson,female,26,0,0,7.8542
|
316 |
+
1,2,Mrs. Sinai (Miriam Sternin) Kantor,female,24,1,0,26
|
317 |
+
0,2,Dr. Ernest Moraweck,male,54,0,0,14
|
318 |
+
1,1,Miss. Mary Natalie Wick,female,31,0,2,164.8667
|
319 |
+
1,1,Mrs. Frederic Oakley (Margaretta Corning Stone) Spedden,female,40,1,1,134.5
|
320 |
+
0,3,Mr. Samuel Dennis,male,22,0,0,7.25
|
321 |
+
0,3,Mr. Yoto Danoff,male,27,0,0,7.8958
|
322 |
+
1,2,Miss. Hilda Mary Slayter,female,30,0,0,12.35
|
323 |
+
1,2,Mrs. Albert Francis (Sylvia Mae Harbaugh) Caldwell,female,22,1,1,29
|
324 |
+
0,3,Mr. George John Jr Sage,male,20,8,2,69.55
|
325 |
+
1,1,Miss. Marie Grice Young,female,36,0,0,135.6333
|
326 |
+
0,3,Mr. Johan Hansen Nysveen,male,61,0,0,6.2375
|
327 |
+
1,2,Mrs. (Ada E Hall) Ball,female,36,0,0,13
|
328 |
+
1,3,Mrs. Frank John (Emily Alice Brown) Goldsmith,female,31,1,1,20.525
|
329 |
+
1,1,Miss. Jean Gertrude Hippach,female,16,0,1,57.9792
|
330 |
+
1,3,Miss. Agnes McCoy,female,28,2,0,23.25
|
331 |
+
0,1,Mr. Austen Partner,male,45.5,0,0,28.5
|
332 |
+
0,1,Mr. George Edward Graham,male,38,0,1,153.4625
|
333 |
+
0,3,Mr. Leo Edmondus Vander Planke,male,16,2,0,18
|
334 |
+
1,1,Mrs. Henry William (Clara Heinsheimer) Frauenthal,female,42,1,0,133.65
|
335 |
+
0,3,Mr. Mitto Denkoff,male,30,0,0,7.8958
|
336 |
+
0,1,Mr. Thomas Clinton Pears,male,29,1,0,66.6
|
337 |
+
1,1,Miss. Elizabeth Margaret Burns,female,41,0,0,134.5
|
338 |
+
1,3,Mr. Karl Edwart Dahl,male,45,0,0,8.05
|
339 |
+
0,1,Mr. Stephen Weart Blackwell,male,45,0,0,35.5
|
340 |
+
1,2,Master. Edmond Roger Navratil,male,2,1,1,26
|
341 |
+
1,1,Miss. Alice Elizabeth Fortune,female,24,3,2,263
|
342 |
+
0,2,Mr. Erik Gustaf Collander,male,28,0,0,13
|
343 |
+
0,2,Mr. Charles Frederick Waddington Sedgwick,male,25,0,0,13
|
344 |
+
0,2,Mr. Stanley Hubert Fox,male,36,0,0,13
|
345 |
+
1,2,Miss. Amelia Brown,female,24,0,0,13
|
346 |
+
1,2,Miss. Marion Elsie Smith,female,40,0,0,13
|
347 |
+
1,3,Mrs. Thomas Henry (Mary E Finck) Davison,female,34,1,0,16.1
|
348 |
+
1,3,Master. William Loch Coutts,male,3,1,1,15.9
|
349 |
+
0,3,Mr. Jovan Dimic,male,42,0,0,8.6625
|
350 |
+
0,3,Mr. Nils Martin Odahl,male,23,0,0,9.225
|
351 |
+
0,1,Mr. Fletcher Fellows Williams-Lambert,male,43,0,0,35
|
352 |
+
0,3,Mr. Tannous Elias,male,15,1,1,7.2292
|
353 |
+
0,3,Mr. Josef Arnold-Franchi,male,25,1,0,17.8
|
354 |
+
0,3,Mr. Wazli Yousif,male,23,0,0,7.225
|
355 |
+
0,3,Mr. Leo Peter Vanden Steen,male,28,0,0,9.5
|
356 |
+
1,1,Miss. Elsie Edith Bowerman,female,22,0,1,55
|
357 |
+
0,2,Miss. Annie Clemmer Funk,female,38,0,0,13
|
358 |
+
1,3,Miss. Mary McGovern,female,22,0,0,7.8792
|
359 |
+
1,3,Miss. Helen Mary Mockler,female,23,0,0,7.8792
|
360 |
+
0,3,Mr. Wilhelm Skoog,male,40,1,4,27.9
|
361 |
+
0,2,Mr. Sebastiano del Carlo,male,29,1,0,27.7208
|
362 |
+
0,3,Mrs. (Catherine David) Barbara,female,45,0,1,14.4542
|
363 |
+
0,3,Mr. Adola Asim,male,35,0,0,7.05
|
364 |
+
0,3,Mr. Thomas O'Brien,male,27,1,0,15.5
|
365 |
+
0,3,Mr. Mauritz Nils Martin Adahl,male,30,0,0,7.25
|
366 |
+
1,1,Mrs. Frank Manley (Anna Sophia Atkinson) Warren,female,60,1,0,75.25
|
367 |
+
1,3,Mrs. (Mantoura Boulos) Moussa,female,35,0,0,7.2292
|
368 |
+
1,3,Miss. Annie Jermyn,female,22,0,0,7.75
|
369 |
+
1,1,Mme. Leontine Pauline Aubart,female,24,0,0,69.3
|
370 |
+
1,1,Mr. George Achilles Harder,male,25,1,0,55.4417
|
371 |
+
0,3,Mr. Jakob Alfred Wiklund,male,18,1,0,6.4958
|
372 |
+
0,3,Mr. William Thomas Beavan,male,19,0,0,8.05
|
373 |
+
0,1,Mr. Sante Ringhini,male,22,0,0,135.6333
|
374 |
+
0,3,Miss. Stina Viola Palsson,female,3,3,1,21.075
|
375 |
+
1,1,Mrs. Edgar Joseph (Leila Saks) Meyer,female,25,1,0,82.1708
|
376 |
+
1,3,Miss. Aurora Adelia Landergren,female,22,0,0,7.25
|
377 |
+
0,1,Mr. Harry Elkins Widener,male,27,0,2,211.5
|
378 |
+
0,3,Mr. Tannous Betros,male,20,0,0,4.0125
|
379 |
+
0,3,Mr. Karl Gideon Gustafsson,male,19,0,0,7.775
|
380 |
+
1,1,Miss. Rosalie Bidois,female,42,0,0,227.525
|
381 |
+
1,3,Miss. Maria Nakid,female,1,0,2,15.7417
|
382 |
+
0,3,Mr. Juho Tikkanen,male,32,0,0,7.925
|
383 |
+
1,1,Mrs. Alexander Oskar (Mary Aline Towner) Holverson,female,35,1,0,52
|
384 |
+
0,3,Mr. Vasil Plotcharsky,male,27,0,0,7.8958
|
385 |
+
0,2,Mr. Charles Henry Davies,male,18,0,0,73.5
|
386 |
+
0,3,Master. Sidney Leonard Goodwin,male,1,5,2,46.9
|
387 |
+
1,2,Miss. Kate Buss,female,36,0,0,13
|
388 |
+
0,3,Mr. Matthew Sadlier,male,19,0,0,7.7292
|
389 |
+
1,2,Miss. Bertha Lehmann,female,17,0,0,12
|
390 |
+
1,1,Mr. William Ernest Carter,male,36,1,2,120
|
391 |
+
1,3,Mr. Carl Olof Jansson,male,21,0,0,7.7958
|
392 |
+
0,3,Mr. Johan Birger Gustafsson,male,28,2,0,7.925
|
393 |
+
1,1,Miss. Marjorie Newell,female,23,1,0,113.275
|
394 |
+
1,3,Mrs. Hjalmar (Agnes Charlotta Bengtsson) Sandstrom,female,24,0,2,16.7
|
395 |
+
0,3,Mr. Erik Johansson,male,22,0,0,7.7958
|
396 |
+
0,3,Miss. Elina Olsson,female,31,0,0,7.8542
|
397 |
+
0,2,Mr. Peter David McKane,male,46,0,0,26
|
398 |
+
0,2,Dr. Alfred Pain,male,23,0,0,10.5
|
399 |
+
1,2,Mrs. William H (Jessie L) Trout,female,28,0,0,12.65
|
400 |
+
1,3,Mr. Juha Niskanen,male,39,0,0,7.925
|
401 |
+
0,3,Mr. John Adams,male,26,0,0,8.05
|
402 |
+
0,3,Miss. Mari Aina Jussila,female,21,1,0,9.825
|
403 |
+
0,3,Mr. Pekka Pietari Hakkarainen,male,28,1,0,15.85
|
404 |
+
0,3,Miss. Marija Oreskovic,female,20,0,0,8.6625
|
405 |
+
0,2,Mr. Shadrach Gale,male,34,1,0,21
|
406 |
+
0,3,Mr. Carl/Charles Peter Widegren,male,51,0,0,7.75
|
407 |
+
1,2,Master. William Rowe Richards,male,3,1,1,18.75
|
408 |
+
0,3,Mr. Hans Martin Monsen Birkeland,male,21,0,0,7.775
|
409 |
+
0,3,Miss. Ida Lefebre,female,3,3,1,25.4667
|
410 |
+
0,3,Mr. Todor Sdycoff,male,42,0,0,7.8958
|
411 |
+
0,3,Mr. Henry Hart,male,27,0,0,6.8583
|
412 |
+
1,1,Miss. Daisy E Minahan,female,33,1,0,90
|
413 |
+
0,2,Mr. Alfred Fleming Cunningham,male,22,0,0,0
|
414 |
+
1,3,Mr. Johan Julian Sundman,male,44,0,0,7.925
|
415 |
+
0,3,Mrs. Thomas (Annie Louise Rowley) Meek,female,32,0,0,8.05
|
416 |
+
1,2,Mrs. James Vivian (Lulu Thorne Christian) Drew,female,34,1,1,32.5
|
417 |
+
1,2,Miss. Lyyli Karoliina Silven,female,18,0,2,13
|
418 |
+
0,2,Mr. William John Matthews,male,30,0,0,13
|
419 |
+
0,3,Miss. Catharina Van Impe,female,10,0,2,24.15
|
420 |
+
0,3,Mr. David Charters,male,21,0,0,7.7333
|
421 |
+
0,3,Mr. Leo Zimmerman,male,29,0,0,7.875
|
422 |
+
0,3,Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren) Danbom,female,28,1,1,14.4
|
423 |
+
0,3,Mr. Viktor Richard Rosblom,male,18,1,1,20.2125
|
424 |
+
0,3,Mr. Phillippe Wiseman,male,54,0,0,7.25
|
425 |
+
1,2,Mrs. Charles V (Ada Maria Winfield) Clarke,female,28,1,0,26
|
426 |
+
1,2,Miss. Kate Florence Phillips,female,19,0,0,26
|
427 |
+
0,3,Mr. James Flynn,male,28,0,0,7.75
|
428 |
+
1,3,Mr. Berk (Berk Trembisky) Pickard,male,32,0,0,8.05
|
429 |
+
1,1,Mr. Mauritz Hakan Bjornstrom-Steffansson,male,28,0,0,26.55
|
430 |
+
1,3,Mrs. Percival (Florence Kate White) Thorneycroft,female,33,1,0,16.1
|
431 |
+
1,2,Mrs. Charles Alexander (Alice Adelaide Slow) Louch,female,42,1,0,26
|
432 |
+
0,3,Mr. Nikolai Erland Kallio,male,17,0,0,7.125
|
433 |
+
0,1,Mr. William Baird Silvey,male,50,1,0,55.9
|
434 |
+
1,1,Miss. Lucile Polk Carter,female,14,1,2,120
|
435 |
+
0,3,Miss. Doolina Margaret Ford,female,21,2,2,34.375
|
436 |
+
1,2,Mrs. Sidney (Emily Hocking) Richards,female,24,2,3,18.75
|
437 |
+
0,1,Mr. Mark Fortune,male,64,1,4,263
|
438 |
+
0,2,Mr. Johan Henrik Johannesson Kvillner,male,31,0,0,10.5
|
439 |
+
1,2,Mrs. Benjamin (Esther Ada Bloomfield) Hart,female,45,1,1,26.25
|
440 |
+
0,3,Mr. Leon Hampe,male,20,0,0,9.5
|
441 |
+
0,3,Mr. Johan Emil Petterson,male,25,1,0,7.775
|
442 |
+
1,2,Ms. Encarnacion Reynaldo,female,28,0,0,13
|
443 |
+
1,3,Mr. Bernt Johannesen-Bratthammer,male,29,0,0,8.1125
|
444 |
+
1,1,Master. Washington Dodge,male,4,0,2,81.8583
|
445 |
+
1,2,Miss. Madeleine Violet Mellinger,female,13,0,1,19.5
|
446 |
+
1,1,Mr. Frederic Kimber Seward,male,34,0,0,26.55
|
447 |
+
1,3,Miss. Marie Catherine Baclini,female,5,2,1,19.2583
|
448 |
+
1,1,Major. Arthur Godfrey Peuchen,male,52,0,0,30.5
|
449 |
+
0,2,Mr. Edwy Arthur West,male,36,1,2,27.75
|
450 |
+
0,3,Mr. Ingvald Olai Olsen Hagland,male,28,1,0,19.9667
|
451 |
+
0,1,Mr. Benjamin Laventall Foreman,male,30,0,0,27.75
|
452 |
+
1,1,Mr. Samuel L Goldenberg,male,49,1,0,89.1042
|
453 |
+
0,3,Mr. Joseph Peduzzi,male,24,0,0,8.05
|
454 |
+
1,3,Mr. Ivan Jalsevac,male,29,0,0,7.8958
|
455 |
+
0,1,Mr. Francis Davis Millet,male,65,0,0,26.55
|
456 |
+
1,1,Mrs. Frederick R (Marion) Kenyon,female,41,1,0,51.8625
|
457 |
+
1,2,Miss. Ellen Toomey,female,50,0,0,10.5
|
458 |
+
0,3,Mr. Maurice O'Connor,male,17,0,0,7.75
|
459 |
+
1,1,Mr. Harry Anderson,male,48,0,0,26.55
|
460 |
+
0,3,Mr. William Morley,male,34,0,0,8.05
|
461 |
+
0,1,Mr. Arthur H Gee,male,47,0,0,38.5
|
462 |
+
0,2,Mr. Jacob Christian Milling,male,48,0,0,13
|
463 |
+
0,3,Mr. Simon Maisner,male,34,0,0,8.05
|
464 |
+
0,3,Mr. Manuel Estanslas Goncalves,male,38,0,0,7.05
|
465 |
+
0,2,Mr. William Campbell,male,21,0,0,0
|
466 |
+
0,1,Mr. John Montgomery Smart,male,56,0,0,26.55
|
467 |
+
0,3,Mr. James Scanlan,male,22,0,0,7.725
|
468 |
+
1,3,Miss. Helene Barbara Baclini,female,0.75,2,1,19.2583
|
469 |
+
0,3,Mr. Arthur Keefe,male,39,0,0,7.25
|
470 |
+
0,3,Mr. Luka Cacic,male,38,0,0,8.6625
|
471 |
+
1,2,Mrs. Edwy Arthur (Ada Mary Worth) West,female,33,1,2,27.75
|
472 |
+
1,2,Mrs. Amin S (Marie Marthe Thuillard) Jerwan,female,23,0,0,13.7917
|
473 |
+
0,3,Miss. Ida Sofia Strandberg,female,22,0,0,9.8375
|
474 |
+
0,1,Mr. George Quincy Clifford,male,40,0,0,52
|
475 |
+
0,2,Mr. Peter Henry Renouf,male,34,1,0,21
|
476 |
+
0,3,Mr. Lewis Richard Braund,male,29,1,0,7.0458
|
477 |
+
0,3,Mr. Nils August Karlsson,male,22,0,0,7.5208
|
478 |
+
1,3,Miss. Hildur E Hirvonen,female,2,0,1,12.2875
|
479 |
+
0,3,Master. Harold Victor Goodwin,male,9,5,2,46.9
|
480 |
+
0,2,Mr. Anthony Wood Frost,male,37,0,0,0
|
481 |
+
0,3,Mr. Richard Henry Rouse,male,50,0,0,8.05
|
482 |
+
1,3,Mrs. (Hedwig) Turkula,female,63,0,0,9.5875
|
483 |
+
1,1,Mr. Dickinson H Bishop,male,25,1,0,91.0792
|
484 |
+
0,3,Miss. Jeannie Lefebre,female,8,3,1,25.4667
|
485 |
+
1,1,Mrs. Frederick Maxfield (Jane Anne Forby) Hoyt,female,35,1,0,90
|
486 |
+
0,1,Mr. Edward Austin Kent,male,58,0,0,29.7
|
487 |
+
0,3,Mr. Francis William Somerton,male,30,0,0,8.05
|
488 |
+
1,3,Master. Eden Leslie Coutts,male,9,1,1,15.9
|
489 |
+
0,3,Mr. Konrad Mathias Reiersen Hagland,male,19,1,0,19.9667
|
490 |
+
0,3,Mr. Einar Windelov,male,21,0,0,7.25
|
491 |
+
0,1,Mr. Harry Markland Molson,male,55,0,0,30.5
|
492 |
+
0,1,Mr. Ramon Artagaveytia,male,71,0,0,49.5042
|
493 |
+
0,3,Mr. Edward Roland Stanley,male,21,0,0,8.05
|
494 |
+
0,3,Mr. Gerious Yousseff,male,26,0,0,14.4583
|
495 |
+
1,1,Miss. Elizabeth Mussey Eustis,female,54,1,0,78.2667
|
496 |
+
0,3,Mr. Frederick William Shellard,male,55,0,0,15.1
|
497 |
+
0,1,Mrs. Hudson J C (Bessie Waldo Daniels) Allison,female,25,1,2,151.55
|
498 |
+
0,3,Mr. Olof Svensson,male,24,0,0,7.7958
|
499 |
+
0,3,Mr. Petar Calic,male,17,0,0,8.6625
|
500 |
+
0,3,Miss. Mary Canavan,female,21,0,0,7.75
|
501 |
+
0,3,Miss. Bridget Mary O'Sullivan,female,21,0,0,7.6292
|
502 |
+
0,3,Miss. Kristina Sofia Laitinen,female,37,0,0,9.5875
|
503 |
+
1,1,Miss. Roberta Maioni,female,16,0,0,86.5
|
504 |
+
0,1,Mr. Victor de Satode Penasco y Castellana,male,18,1,0,108.9
|
505 |
+
1,2,Mrs. Frederick Charles (Jane Richards) Quick,female,33,0,2,26
|
506 |
+
1,1,Mr. George Bradley,male,37,0,0,26.55
|
507 |
+
0,3,Mr. Henry Margido Olsen,male,28,0,0,22.525
|
508 |
+
1,3,Mr. Fang Lang,male,26,0,0,56.4958
|
509 |
+
1,3,Mr. Eugene Patrick Daly,male,29,0,0,7.75
|
510 |
+
0,3,Mr. James Webber,male,66,0,0,8.05
|
511 |
+
1,1,Mr. James Robert McGough,male,36,0,0,26.2875
|
512 |
+
1,1,Mrs. Martin (Elizabeth L. Barrett) Rothschild,female,54,1,0,59.4
|
513 |
+
0,3,Mr. Satio Coleff,male,24,0,0,7.4958
|
514 |
+
0,1,Mr. William Anderson Walker,male,47,0,0,34.0208
|
515 |
+
1,2,Mrs. (Amelia Milley) Lemore,female,34,0,0,10.5
|
516 |
+
0,3,Mr. Patrick Ryan,male,30,0,0,24.15
|
517 |
+
1,2,Mrs. William A (Florence Agnes Hughes) Angle,female,36,1,0,26
|
518 |
+
0,3,Mr. Stefo Pavlovic,male,32,0,0,7.8958
|
519 |
+
1,1,Miss. Anne Perreault,female,30,0,0,93.5
|
520 |
+
0,3,Mr. Janko Vovk,male,22,0,0,7.8958
|
521 |
+
0,3,Mr. Sarkis Lahoud,male,35,0,0,7.225
|
522 |
+
1,1,Mrs. Louis Albert (Ida Sophia Fischer) Hippach,female,44,0,1,57.9792
|
523 |
+
0,3,Mr. Fared Kassem,male,18,0,0,7.2292
|
524 |
+
0,3,Mr. James Farrell,male,40.5,0,0,7.75
|
525 |
+
1,2,Miss. Lucy Ridsdale,female,50,0,0,10.5
|
526 |
+
0,1,Mr. John Farthing,male,49,0,0,221.7792
|
527 |
+
0,3,Mr. Johan Werner Salonen,male,39,0,0,7.925
|
528 |
+
0,2,Mr. Richard George Hocking,male,23,2,1,11.5
|
529 |
+
1,2,Miss. Phyllis May Quick,female,2,1,1,26
|
530 |
+
0,3,Mr. Nakli Toufik,male,17,0,0,7.2292
|
531 |
+
0,3,Mr. Joseph Jr Elias,male,17,1,1,7.2292
|
532 |
+
1,3,Mrs. Catherine (Catherine Rizk) Peter,female,24,0,2,22.3583
|
533 |
+
0,3,Miss. Marija Cacic,female,30,0,0,8.6625
|
534 |
+
1,2,Miss. Eva Miriam Hart,female,7,0,2,26.25
|
535 |
+
0,1,Major. Archibald Willingham Butt,male,45,0,0,26.55
|
536 |
+
1,1,Miss. Bertha LeRoy,female,30,0,0,106.425
|
537 |
+
0,3,Mr. Samuel Beard Risien,male,69,0,0,14.5
|
538 |
+
1,1,Miss. Hedwig Margaritha Frolicher,female,22,0,2,49.5
|
539 |
+
1,1,Miss. Harriet R Crosby,female,36,0,2,71
|
540 |
+
0,3,Miss. Ingeborg Constanzia Andersson,female,9,4,2,31.275
|
541 |
+
0,3,Miss. Sigrid Elisabeth Andersson,female,11,4,2,31.275
|
542 |
+
1,2,Mr. Edward Beane,male,32,1,0,26
|
543 |
+
0,1,Mr. Walter Donald Douglas,male,50,1,0,106.425
|
544 |
+
0,1,Mr. Arthur Ernest Nicholson,male,64,0,0,26
|
545 |
+
1,2,Mrs. Edward (Ethel Clarke) Beane,female,19,1,0,26
|
546 |
+
1,2,Mr. Julian Padro y Manent,male,27,0,0,13.8625
|
547 |
+
0,3,Mr. Frank John Goldsmith,male,33,1,1,20.525
|
548 |
+
1,2,Master. John Morgan Jr Davies,male,8,1,1,36.75
|
549 |
+
1,1,Mr. John Borland Jr Thayer,male,17,0,2,110.8833
|
550 |
+
0,2,Mr. Percival James R Sharp,male,27,0,0,26
|
551 |
+
0,3,Mr. Timothy O'Brien,male,21,0,0,7.8292
|
552 |
+
1,3,Mr. Fahim Leeni,male,22,0,0,7.225
|
553 |
+
1,3,Miss. Velin Ohman,female,22,0,0,7.775
|
554 |
+
0,1,Mr. George Wright,male,62,0,0,26.55
|
555 |
+
1,1,Lady. (Lucille Christiana Sutherland)Duff Gordon,female,48,1,0,39.6
|
556 |
+
0,1,Mr. Victor Robbins,male,45,0,0,227.525
|
557 |
+
1,1,Mrs. Emil (Tillie Mandelbaum) Taussig,female,39,1,1,79.65
|
558 |
+
1,3,Mrs. Guillaume Joseph (Emma) de Messemaeker,female,36,1,0,17.4
|
559 |
+
0,3,Mr. Thomas Rowan Morrow,male,30,0,0,7.75
|
560 |
+
0,3,Mr. Husein Sivic,male,40,0,0,7.8958
|
561 |
+
0,2,Mr. Robert Douglas Norman,male,28,0,0,13.5
|
562 |
+
0,3,Mr. John Simmons,male,40,0,0,8.05
|
563 |
+
0,3,Miss. (Marion Ogden) Meanwell,female,62,0,0,8.05
|
564 |
+
0,3,Mr. Alfred J Davies,male,24,2,0,24.15
|
565 |
+
0,3,Mr. Ilia Stoytcheff,male,19,0,0,7.8958
|
566 |
+
0,3,Mrs. Nils (Alma Cornelia Berglund) Palsson,female,29,0,4,21.075
|
567 |
+
0,3,Mr. Tannous Doharr,male,28,0,0,7.2292
|
568 |
+
1,3,Mr. Carl Jonsson,male,32,0,0,7.8542
|
569 |
+
1,2,Mr. George Harris,male,62,0,0,10.5
|
570 |
+
1,1,Mrs. Edward Dale (Charlotte Lamson) Appleton,female,53,2,0,51.4792
|
571 |
+
1,1,Mr. John Irwin Flynn,male,36,0,0,26.3875
|
572 |
+
1,3,Miss. Mary Kelly,female,22,0,0,7.75
|
573 |
+
0,3,Mr. Alfred George John Rush,male,16,0,0,8.05
|
574 |
+
0,3,Mr. George Patchett,male,19,0,0,14.5
|
575 |
+
1,2,Miss. Ethel Garside,female,34,0,0,13
|
576 |
+
1,1,Mrs. William Baird (Alice Munger) Silvey,female,39,1,0,55.9
|
577 |
+
0,3,Mrs. Joseph (Maria Elias) Caram,female,18,1,0,14.4583
|
578 |
+
1,3,Mr. Eiriik Jussila,male,32,0,0,7.925
|
579 |
+
1,2,Miss. Julie Rachel Christy,female,25,1,1,30
|
580 |
+
1,1,Mrs. John Borland (Marian Longstreth Morris) Thayer,female,39,1,1,110.8833
|
581 |
+
0,2,Mr. William James Downton,male,54,0,0,26
|
582 |
+
0,1,Mr. John Hugo Ross,male,36,0,0,40.125
|
583 |
+
0,3,Mr. Uscher Paulner,male,16,0,0,8.7125
|
584 |
+
1,1,Miss. Ruth Taussig,female,18,0,2,79.65
|
585 |
+
0,2,Mr. John Denzil Jarvis,male,47,0,0,15
|
586 |
+
1,1,Mr. Maxmillian Frolicher-Stehli,male,60,1,1,79.2
|
587 |
+
0,3,Mr. Eliezer Gilinski,male,22,0,0,8.05
|
588 |
+
0,3,Mr. Joseph Murdlin,male,22,0,0,8.05
|
589 |
+
0,3,Mr. Matti Rintamaki,male,35,0,0,7.125
|
590 |
+
1,1,Mrs. Walter Bertram (Martha Eustis) Stephenson,female,52,1,0,78.2667
|
591 |
+
0,3,Mr. William James Elsbury,male,47,0,0,7.25
|
592 |
+
0,3,Miss. Mary Bourke,female,40,0,2,7.75
|
593 |
+
0,2,Mr. John Henry Chapman,male,37,1,0,26
|
594 |
+
0,3,Mr. Jean Baptiste Van Impe,male,36,1,1,24.15
|
595 |
+
1,2,Miss. Jessie Wills Leitch,female,31,0,0,33
|
596 |
+
0,3,Mr. Alfred Johnson,male,49,0,0,0
|
597 |
+
0,3,Mr. Hanna Boulos,male,18,0,0,7.225
|
598 |
+
1,1,Sir. Cosmo Edmund Duff Gordon,male,49,1,0,56.9292
|
599 |
+
1,2,Mrs. Sidney Samuel (Amy Frances Christy) Jacobsohn,female,24,2,1,27
|
600 |
+
0,3,Mr. Petco Slabenoff,male,42,0,0,7.8958
|
601 |
+
0,1,Mr. Charles H Harrington,male,37,0,0,42.4
|
602 |
+
0,3,Mr. Ernst William Torber,male,44,0,0,8.05
|
603 |
+
1,1,Mr. Harry Homer,male,35,0,0,26.55
|
604 |
+
0,3,Mr. Edvard Bengtsson Lindell,male,36,1,0,15.55
|
605 |
+
0,3,Mr. Milan Karaic,male,30,0,0,7.8958
|
606 |
+
1,1,Mr. Robert Williams Daniel,male,27,0,0,30.5
|
607 |
+
1,2,Mrs. Joseph (Juliette Marie Louise Lafargue) Laroche,female,22,1,2,41.5792
|
608 |
+
1,1,Miss. Elizabeth W Shutes,female,40,0,0,153.4625
|
609 |
+
0,3,Mrs. Anders Johan (Alfrida Konstantia Brogren) Andersson,female,39,1,5,31.275
|
610 |
+
0,3,Mr. Jose Neto Jardin,male,21,0,0,7.05
|
611 |
+
1,3,Miss. Margaret Jane Murphy,female,18,1,0,15.5
|
612 |
+
0,3,Mr. John Horgan,male,22,0,0,7.75
|
613 |
+
0,3,Mr. William Alfred Brocklebank,male,35,0,0,8.05
|
614 |
+
1,2,Miss. Alice Herman,female,24,1,2,65
|
615 |
+
0,3,Mr. Ernst Gilbert Danbom,male,34,1,1,14.4
|
616 |
+
0,3,Mrs. William Arthur (Cordelia K Stanlick) Lobb,female,26,1,0,16.1
|
617 |
+
1,2,Miss. Marion Louise Becker,female,4,2,1,39
|
618 |
+
0,2,Mr. Lawrence Gavey,male,26,0,0,10.5
|
619 |
+
0,3,Mr. Antoni Yasbeck,male,27,1,0,14.4542
|
620 |
+
1,1,Mr. Edwin Nelson Jr Kimball,male,42,1,0,52.5542
|
621 |
+
1,3,Mr. Sahid Nakid,male,20,1,1,15.7417
|
622 |
+
0,3,Mr. Henry Damsgaard Hansen,male,21,0,0,7.8542
|
623 |
+
0,3,Mr. David John Bowen,male,21,0,0,16.1
|
624 |
+
0,1,Mr. Frederick Sutton,male,61,0,0,32.3208
|
625 |
+
0,2,Rev. Charles Leonard Kirkland,male,57,0,0,12.35
|
626 |
+
1,1,Miss. Gretchen Fiske Longley,female,21,0,0,77.9583
|
627 |
+
0,3,Mr. Guentcho Bostandyeff,male,26,0,0,7.8958
|
628 |
+
0,3,Mr. Patrick D O'Connell,male,18,0,0,7.7333
|
629 |
+
1,1,Mr. Algernon Henry Wilson Barkworth,male,80,0,0,30
|
630 |
+
0,3,Mr. Johan Svensson Lundahl,male,51,0,0,7.0542
|
631 |
+
1,1,Dr. Max Stahelin-Maeglin,male,32,0,0,30.5
|
632 |
+
0,1,Mr. William Henry Marsh Parr,male,30,0,0,0
|
633 |
+
0,3,Miss. Mabel Skoog,female,9,3,2,27.9
|
634 |
+
1,2,Miss. Mary Davis,female,28,0,0,13
|
635 |
+
0,3,Mr. Antti Gustaf Leinonen,male,32,0,0,7.925
|
636 |
+
0,2,Mr. Harvey Collyer,male,31,1,1,26.25
|
637 |
+
0,3,Mrs. Juha (Maria Emilia Ojala) Panula,female,41,0,5,39.6875
|
638 |
+
0,3,Mr. Percival Thorneycroft,male,37,1,0,16.1
|
639 |
+
0,3,Mr. Hans Peder Jensen,male,20,0,0,7.8542
|
640 |
+
1,1,Mlle. Emma Sagesser,female,24,0,0,69.3
|
641 |
+
0,3,Miss. Margit Elizabeth Skoog,female,2,3,2,27.9
|
642 |
+
1,3,Mr. Choong Foo,male,32,0,0,56.4958
|
643 |
+
1,3,Miss. Eugenie Baclini,female,0.75,2,1,19.2583
|
644 |
+
1,1,Mr. Henry Sleeper Harper,male,48,1,0,76.7292
|
645 |
+
0,3,Mr. Liudevit Cor,male,19,0,0,7.8958
|
646 |
+
1,1,Col. Oberst Alfons Simonius-Blumer,male,56,0,0,35.5
|
647 |
+
0,3,Mr. Edward Willey,male,21,0,0,7.55
|
648 |
+
1,3,Miss. Amy Zillah Elsie Stanley,female,23,0,0,7.55
|
649 |
+
0,3,Mr. Mito Mitkoff,male,23,0,0,7.8958
|
650 |
+
1,2,Miss. Elsie Doling,female,18,0,1,23
|
651 |
+
0,3,Mr. Johannes Halvorsen Kalvik,male,21,0,0,8.4333
|
652 |
+
1,3,Miss. Hanora O'Leary,female,16,0,0,7.8292
|
653 |
+
0,3,Miss. Hanora Hegarty,female,18,0,0,6.75
|
654 |
+
0,2,Mr. Leonard Mark Hickman,male,24,2,0,73.5
|
655 |
+
0,3,Mr. Alexander Radeff,male,27,0,0,7.8958
|
656 |
+
0,3,Mrs. John (Catherine) Bourke,female,32,1,1,15.5
|
657 |
+
0,2,Mr. George Floyd Eitemiller,male,23,0,0,13
|
658 |
+
0,1,Mr. Arthur Webster Newell,male,58,0,2,113.275
|
659 |
+
1,1,Dr. Henry William Frauenthal,male,50,2,0,133.65
|
660 |
+
0,3,Mr. Mohamed Badt,male,40,0,0,7.225
|
661 |
+
0,1,Mr. Edward Pomeroy Colley,male,47,0,0,25.5875
|
662 |
+
0,3,Mr. Peju Coleff,male,36,0,0,7.4958
|
663 |
+
1,3,Mr. Eino William Lindqvist,male,20,1,0,7.925
|
664 |
+
0,2,Mr. Lewis Hickman,male,32,2,0,73.5
|
665 |
+
0,2,Mr. Reginald Fenton Butler,male,25,0,0,13
|
666 |
+
0,3,Mr. Knud Paust Rommetvedt,male,49,0,0,7.775
|
667 |
+
0,3,Mr. Jacob Cook,male,43,0,0,8.05
|
668 |
+
1,1,Mrs. Elmer Zebley (Juliet Cummins Wright) Taylor,female,48,1,0,52
|
669 |
+
1,2,Mrs. Thomas William Solomon (Elizabeth Catherine Ford) Brown,female,40,1,1,39
|
670 |
+
0,1,Mr. Thornton Davidson,male,31,1,0,52
|
671 |
+
0,2,Mr. Henry Michael Mitchell,male,70,0,0,10.5
|
672 |
+
1,2,Mr. Charles Wilhelms,male,31,0,0,13
|
673 |
+
0,2,Mr. Ennis Hastings Watson,male,19,0,0,0
|
674 |
+
0,3,Mr. Gustaf Hjalmar Edvardsson,male,18,0,0,7.775
|
675 |
+
0,3,Mr. Frederick Charles Sawyer,male,24.5,0,0,8.05
|
676 |
+
1,3,Miss. Anna Sofia Turja,female,18,0,0,9.8417
|
677 |
+
0,3,Mrs. Frederick (Augusta Tyler) Goodwin,female,43,1,6,46.9
|
678 |
+
1,1,Mr. Thomas Drake Martinez Cardeza,male,36,0,1,512.3292
|
679 |
+
0,3,Miss. Katie Peters,female,28,0,0,8.1375
|
680 |
+
1,1,Mr. Hammad Hassab,male,27,0,0,76.7292
|
681 |
+
0,3,Mr. Thor Anderson Olsvigen,male,20,0,0,9.225
|
682 |
+
0,3,Mr. Charles Edward Goodwin,male,14,5,2,46.9
|
683 |
+
0,2,Mr. Thomas William Solomon Brown,male,60,1,1,39
|
684 |
+
0,2,Mr. Joseph Philippe Lemercier Laroche,male,25,1,2,41.5792
|
685 |
+
0,3,Mr. Jaako Arnold Panula,male,14,4,1,39.6875
|
686 |
+
0,3,Mr. Branko Dakic,male,19,0,0,10.1708
|
687 |
+
0,3,Mr. Eberhard Thelander Fischer,male,18,0,0,7.7958
|
688 |
+
1,1,Miss. Georgette Alexandra Madill,female,15,0,1,211.3375
|
689 |
+
1,1,Mr. Albert Adrian Dick,male,31,1,0,57
|
690 |
+
1,3,Miss. Manca Karun,female,4,0,1,13.4167
|
691 |
+
1,3,Mr. Ali Lam,male,37,0,0,56.4958
|
692 |
+
0,3,Mr. Khalil Saad,male,25,0,0,7.225
|
693 |
+
0,1,Col. John Weir,male,60,0,0,26.55
|
694 |
+
0,2,Mr. Charles Henry Chapman,male,52,0,0,13.5
|
695 |
+
0,3,Mr. James Kelly,male,44,0,0,8.05
|
696 |
+
1,3,Miss. Katherine Mullens,female,19,0,0,7.7333
|
697 |
+
0,1,Mr. John Borland Thayer,male,49,1,1,110.8833
|
698 |
+
0,3,Mr. Adolf Mathias Nicolai Olsen Humblen,male,42,0,0,7.65
|
699 |
+
1,1,Mrs. John Jacob (Madeleine Talmadge Force) Astor,female,18,1,0,227.525
|
700 |
+
1,1,Mr. Spencer Victor Silverthorne,male,35,0,0,26.2875
|
701 |
+
0,3,Miss. Saiide Barbara,female,18,0,1,14.4542
|
702 |
+
0,3,Mr. Martin Gallagher,male,25,0,0,7.7417
|
703 |
+
0,3,Mr. Henrik Juul Hansen,male,26,1,0,7.8542
|
704 |
+
0,2,Mr. Henry Samuel Morley,male,39,0,0,26
|
705 |
+
1,2,Mrs. Florence Kelly,female,45,0,0,13.5
|
706 |
+
1,1,Mr. Edward Pennington Calderhead,male,42,0,0,26.2875
|
707 |
+
1,1,Miss. Alice Cleaver,female,22,0,0,151.55
|
708 |
+
1,3,Master. Halim Gonios Moubarek,male,4,1,1,15.2458
|
709 |
+
1,1,Mlle. Berthe Antonine Mayne,female,24,0,0,49.5042
|
710 |
+
0,1,Mr. Herman Klaber,male,41,0,0,26.55
|
711 |
+
1,1,Mr. Elmer Zebley Taylor,male,48,1,0,52
|
712 |
+
0,3,Mr. August Viktor Larsson,male,29,0,0,9.4833
|
713 |
+
0,2,Mr. Samuel Greenberg,male,52,0,0,13
|
714 |
+
0,3,Mr. Peter Andreas Lauritz Andersen Soholt,male,19,0,0,7.65
|
715 |
+
1,1,Miss. Caroline Louise Endres,female,38,0,0,227.525
|
716 |
+
1,2,Miss. Edwina Celia Troutt,female,27,0,0,10.5
|
717 |
+
0,3,Mr. Malkolm Joackim Johnson,male,33,0,0,7.775
|
718 |
+
1,2,Miss. Annie Jessie Harper,female,6,0,1,33
|
719 |
+
0,3,Mr. Svend Lauritz Jensen,male,17,1,0,7.0542
|
720 |
+
0,2,Mr. William Henry Gillespie,male,34,0,0,13
|
721 |
+
0,2,Mr. Henry Price Hodges,male,50,0,0,13
|
722 |
+
1,1,Mr. Norman Campbell Chambers,male,27,1,0,53.1
|
723 |
+
0,3,Mr. Luka Oreskovic,male,20,0,0,8.6625
|
724 |
+
1,2,Mrs. Peter Henry (Lillian Jefferys) Renouf,female,30,3,0,21
|
725 |
+
1,3,Miss. Margareth Mannion,female,28,0,0,7.7375
|
726 |
+
0,2,Mr. Kurt Arnold Gottfrid Bryhl,male,25,1,0,26
|
727 |
+
0,3,Miss. Pieta Sofia Ilmakangas,female,25,1,0,7.925
|
728 |
+
1,1,Miss. Elisabeth Walton Allen,female,29,0,0,211.3375
|
729 |
+
0,3,Mr. Houssein G N Hassan,male,11,0,0,18.7875
|
730 |
+
0,2,Mr. Robert J Knight,male,41,0,0,0
|
731 |
+
0,2,Mr. William John Berriman,male,23,0,0,13
|
732 |
+
0,2,Mr. Moses Aaron Troupiansky,male,23,0,0,13
|
733 |
+
0,3,Mr. Leslie Williams,male,28.5,0,0,16.1
|
734 |
+
0,3,Mrs. Edward (Margaret Ann Watson) Ford,female,48,1,3,34.375
|
735 |
+
1,1,Mr. Gustave J Lesurer,male,35,0,0,512.3292
|
736 |
+
0,3,Mr. Kanio Ivanoff,male,20,0,0,7.8958
|
737 |
+
0,3,Mr. Minko Nankoff,male,32,0,0,7.8958
|
738 |
+
1,1,Mr. Walter James Hawksford,male,45,0,0,30
|
739 |
+
0,1,Mr. Tyrell William Cavendish,male,36,1,0,78.85
|
740 |
+
1,1,Miss. Susan Parker Ryerson,female,21,2,2,262.375
|
741 |
+
0,3,Mr. Neal McNamee,male,24,1,0,16.1
|
742 |
+
1,3,Mr. Juho Stranden,male,31,0,0,7.925
|
743 |
+
0,1,Capt. Edward Gifford Crosby,male,70,1,1,71
|
744 |
+
0,3,Mr. Rossmore Edward Abbott,male,16,1,1,20.25
|
745 |
+
1,2,Miss. Anna Sinkkonen,female,30,0,0,13
|
746 |
+
0,1,Mr. Daniel Warner Marvin,male,19,1,0,53.1
|
747 |
+
0,3,Mr. Michael Connaghton,male,31,0,0,7.75
|
748 |
+
1,2,Miss. Joan Wells,female,4,1,1,23
|
749 |
+
1,3,Master. Meier Moor,male,6,0,1,12.475
|
750 |
+
0,3,Mr. Johannes Joseph Vande Velde,male,33,0,0,9.5
|
751 |
+
0,3,Mr. Lalio Jonkoff,male,23,0,0,7.8958
|
752 |
+
1,2,Mrs. Samuel (Jane Laver) Herman,female,48,1,2,65
|
753 |
+
1,2,Master. Viljo Hamalainen,male,0.67,1,1,14.5
|
754 |
+
0,3,Mr. August Sigfrid Carlsson,male,28,0,0,7.7958
|
755 |
+
0,2,Mr. Percy Andrew Bailey,male,18,0,0,11.5
|
756 |
+
0,3,Mr. Thomas Leonard Theobald,male,34,0,0,8.05
|
757 |
+
1,1,the Countess. of (Lucy Noel Martha Dyer-Edwards) Rothes,female,33,0,0,86.5
|
758 |
+
0,3,Mr. John Garfirth,male,23,0,0,14.5
|
759 |
+
0,3,Mr. Iisakki Antino Aijo Nirva,male,41,0,0,7.125
|
760 |
+
1,3,Mr. Hanna Assi Barah,male,20,0,0,7.2292
|
761 |
+
1,1,Mrs. William Ernest (Lucile Polk) Carter,female,36,1,2,120
|
762 |
+
0,3,Mr. Hans Linus Eklund,male,16,0,0,7.775
|
763 |
+
1,1,Mrs. John C (Anna Andrews) Hogeboom,female,51,1,0,77.9583
|
764 |
+
0,1,Dr. Arthur Jackson Brewe,male,46,0,0,39.6
|
765 |
+
0,3,Miss. Mary Mangan,female,30.5,0,0,7.75
|
766 |
+
0,3,Mr. Daniel J Moran,male,28,1,0,24.15
|
767 |
+
0,3,Mr. Daniel Danielsen Gronnestad,male,32,0,0,8.3625
|
768 |
+
0,3,Mr. Rene Aime Lievens,male,24,0,0,9.5
|
769 |
+
0,3,Mr. Niels Peder Jensen,male,48,0,0,7.8542
|
770 |
+
0,2,Mrs. (Mary) Mack,female,57,0,0,10.5
|
771 |
+
0,3,Mr. Dibo Elias,male,29,0,0,7.225
|
772 |
+
1,2,Mrs. Elizabeth (Eliza Needs) Hocking,female,54,1,3,23
|
773 |
+
0,3,Mr. Pehr Fabian Oliver Malkolm Myhrman,male,18,0,0,7.75
|
774 |
+
0,3,Mr. Roger Tobin,male,20,0,0,7.75
|
775 |
+
1,3,Miss. Virginia Ethel Emanuel,female,5,0,0,12.475
|
776 |
+
0,3,Mr. Thomas J Kilgannon,male,22,0,0,7.7375
|
777 |
+
1,1,Mrs. Edward Scott (Elisabeth Walton McMillan) Robert,female,43,0,1,211.3375
|
778 |
+
1,3,Miss. Banoura Ayoub,female,13,0,0,7.2292
|
779 |
+
1,1,Mrs. Albert Adrian (Vera Gillespie) Dick,female,17,1,0,57
|
780 |
+
0,1,Mr. Milton Clyde Long,male,29,0,0,30
|
781 |
+
0,3,Mr. Andrew G Johnston,male,35,1,2,23.45
|
782 |
+
0,3,Mr. William Ali,male,25,0,0,7.05
|
783 |
+
0,3,Mr. Abraham (David Lishin) Harmer,male,25,0,0,7.25
|
784 |
+
1,3,Miss. Anna Sofia Sjoblom,female,18,0,0,7.4958
|
785 |
+
0,3,Master. George Hugh Rice,male,8,4,1,29.125
|
786 |
+
1,3,Master. Bertram Vere Dean,male,1,1,2,20.575
|
787 |
+
0,1,Mr. Benjamin Guggenheim,male,46,0,0,79.2
|
788 |
+
0,3,Mr. Andrew Keane,male,20,0,0,7.75
|
789 |
+
0,2,Mr. Alfred Gaskell,male,16,0,0,26
|
790 |
+
0,3,Miss. Stella Anna Sage,female,21,8,2,69.55
|
791 |
+
0,1,Mr. William Fisher Hoyt,male,43,0,0,30.6958
|
792 |
+
0,3,Mr. Ristiu Dantcheff,male,25,0,0,7.8958
|
793 |
+
0,2,Mr. Richard Otter,male,39,0,0,13
|
794 |
+
1,1,Dr. Alice (Farnham) Leader,female,49,0,0,25.9292
|
795 |
+
1,3,Mrs. Mara Osman,female,31,0,0,8.6833
|
796 |
+
0,3,Mr. Yousseff Ibrahim Shawah,male,30,0,0,7.2292
|
797 |
+
0,3,Mrs. Jean Baptiste (Rosalie Paula Govaert) Van Impe,female,30,1,1,24.15
|
798 |
+
0,2,Mr. Martin Ponesell,male,34,0,0,13
|
799 |
+
1,2,Mrs. Harvey (Charlotte Annie Tate) Collyer,female,31,1,1,26.25
|
800 |
+
1,1,Master. William Thornton II Carter,male,11,1,2,120
|
801 |
+
1,3,Master. Assad Alexander Thomas,male,0.42,0,1,8.5167
|
802 |
+
1,3,Mr. Oskar Arvid Hedman,male,27,0,0,6.975
|
803 |
+
0,3,Mr. Karl Johan Johansson,male,31,0,0,7.775
|
804 |
+
0,1,Mr. Thomas Jr Andrews,male,39,0,0,0
|
805 |
+
0,3,Miss. Ellen Natalia Pettersson,female,18,0,0,7.775
|
806 |
+
0,2,Mr. August Meyer,male,39,0,0,13
|
807 |
+
1,1,Mrs. Norman Campbell (Bertha Griggs) Chambers,female,33,1,0,53.1
|
808 |
+
0,3,Mr. William Alexander,male,26,0,0,7.8875
|
809 |
+
0,3,Mr. James Lester,male,39,0,0,24.15
|
810 |
+
0,2,Mr. Richard James Slemen,male,35,0,0,10.5
|
811 |
+
0,3,Miss. Ebba Iris Alfrida Andersson,female,6,4,2,31.275
|
812 |
+
0,3,Mr. Ernest Portage Tomlin,male,30.5,0,0,8.05
|
813 |
+
0,1,Mr. Richard Fry,male,39,0,0,0
|
814 |
+
0,3,Miss. Wendla Maria Heininen,female,23,0,0,7.925
|
815 |
+
0,2,Mr. Albert Mallet,male,31,1,1,37.0042
|
816 |
+
0,3,Mr. John Fredrik Alexander Holm,male,43,0,0,6.45
|
817 |
+
0,3,Master. Karl Thorsten Skoog,male,10,3,2,27.9
|
818 |
+
1,1,Mrs. Charles Melville (Clara Jennings Gregg) Hays,female,52,1,1,93.5
|
819 |
+
1,3,Mr. Nikola Lulic,male,27,0,0,8.6625
|
820 |
+
0,1,Jonkheer. John George Reuchlin,male,38,0,0,0
|
821 |
+
1,3,Mrs. (Beila) Moor,female,27,0,1,12.475
|
822 |
+
0,3,Master. Urho Abraham Panula,male,2,4,1,39.6875
|
823 |
+
0,3,Mr. John Flynn,male,36,0,0,6.95
|
824 |
+
0,3,Mr. Len Lam,male,23,0,0,56.4958
|
825 |
+
1,2,Master. Andre Mallet,male,1,0,2,37.0042
|
826 |
+
1,3,Mr. Thomas Joseph McCormack,male,19,0,0,7.75
|
827 |
+
1,1,Mrs. George Nelson (Martha Evelyn) Stone,female,62,0,0,80
|
828 |
+
1,3,Mrs. Antoni (Selini Alexander) Yasbeck,female,15,1,0,14.4542
|
829 |
+
1,2,Master. George Sibley Richards,male,0.83,1,1,18.75
|
830 |
+
0,3,Mr. Amin Saad,male,30,0,0,7.2292
|
831 |
+
0,3,Mr. Albert Augustsson,male,23,0,0,7.8542
|
832 |
+
0,3,Mr. Owen George Allum,male,18,0,0,8.3
|
833 |
+
1,1,Miss. Sara Rebecca Compton,female,39,1,1,83.1583
|
834 |
+
0,3,Mr. Jakob Pasic,male,21,0,0,8.6625
|
835 |
+
0,3,Mr. Maurice Sirota,male,20,0,0,8.05
|
836 |
+
1,3,Mr. Chang Chip,male,32,0,0,56.4958
|
837 |
+
1,1,Mr. Pierre Marechal,male,29,0,0,29.7
|
838 |
+
0,3,Mr. Ilmari Rudolf Alhomaki,male,20,0,0,7.925
|
839 |
+
0,2,Mr. Thomas Charles Mudd,male,16,0,0,10.5
|
840 |
+
1,1,Miss. Augusta Serepeca,female,30,0,0,31
|
841 |
+
0,3,Mr. Peter L Lemberopolous,male,34.5,0,0,6.4375
|
842 |
+
0,3,Mr. Jeso Culumovic,male,17,0,0,8.6625
|
843 |
+
0,3,Mr. Anthony Abbing,male,42,0,0,7.55
|
844 |
+
0,3,Mr. Douglas Bullen Sage,male,18,8,2,69.55
|
845 |
+
0,3,Mr. Marin Markoff,male,35,0,0,7.8958
|
846 |
+
0,2,Rev. John Harper,male,28,0,1,33
|
847 |
+
1,1,Mrs. Samuel L (Edwiga Grabowska) Goldenberg,female,40,1,0,89.1042
|
848 |
+
0,3,Master. Sigvard Harald Elias Andersson,male,4,4,2,31.275
|
849 |
+
0,3,Mr. Johan Svensson,male,74,0,0,7.775
|
850 |
+
0,3,Miss. Nourelain Boulos,female,9,1,1,15.2458
|
851 |
+
1,1,Miss. Mary Conover Lines,female,16,0,1,39.4
|
852 |
+
0,2,Mrs. Ernest Courtenay (Lilian Hughes) Carter,female,44,1,0,26
|
853 |
+
1,3,Mrs. Sam (Leah Rosen) Aks,female,18,0,1,9.35
|
854 |
+
1,1,Mrs. George Dennick (Mary Hitchcock) Wick,female,45,1,1,164.8667
|
855 |
+
1,1,Mr. Peter Denis Daly,male,51,0,0,26.55
|
856 |
+
1,3,Mrs. Solomon (Latifa Qurban) Baclini,female,24,0,3,19.2583
|
857 |
+
0,3,Mr. Raihed Razi,male,30,0,0,7.2292
|
858 |
+
0,3,Mr. Claus Peter Hansen,male,41,2,0,14.1083
|
859 |
+
0,2,Mr. Frederick Edward Giles,male,21,1,0,11.5
|
860 |
+
1,1,Mrs. Frederick Joel (Margaret Welles Barron) Swift,female,48,0,0,25.9292
|
861 |
+
0,3,Miss. Dorothy Edith Sage,female,14,8,2,69.55
|
862 |
+
0,2,Mr. John William Gill,male,24,0,0,13
|
863 |
+
1,2,Mrs. (Karolina) Bystrom,female,42,0,0,13
|
864 |
+
1,2,Miss. Asuncion Duran y More,female,27,1,0,13.8583
|
865 |
+
0,1,Mr. Washington Augustus II Roebling,male,31,0,0,50.4958
|
866 |
+
0,3,Mr. Philemon van Melkebeke,male,23,0,0,9.5
|
867 |
+
1,3,Master. Harold Theodor Johnson,male,4,1,1,11.1333
|
868 |
+
0,3,Mr. Cerin Balkic,male,26,0,0,7.8958
|
869 |
+
1,1,Mrs. Richard Leonard (Sallie Monypeny) Beckwith,female,47,1,1,52.5542
|
870 |
+
0,1,Mr. Frans Olof Carlsson,male,33,0,0,5
|
871 |
+
0,3,Mr. Victor Vander Cruyssen,male,47,0,0,9
|
872 |
+
1,2,Mrs. Samuel (Hannah Wizosky) Abelson,female,28,1,0,24
|
873 |
+
1,3,Miss. Adele Kiamie Najib,female,15,0,0,7.225
|
874 |
+
0,3,Mr. Alfred Ossian Gustafsson,male,20,0,0,9.8458
|
875 |
+
0,3,Mr. Nedelio Petroff,male,19,0,0,7.8958
|
876 |
+
0,3,Mr. Kristo Laleff,male,23,0,0,7.8958
|
877 |
+
1,1,Mrs. Thomas Jr (Lily Alexenia Wilson) Potter,female,56,0,1,83.1583
|
878 |
+
1,2,Mrs. William (Imanita Parrish Hall) Shelley,female,25,0,1,26
|
879 |
+
0,3,Mr. Johann Markun,male,33,0,0,7.8958
|
880 |
+
0,3,Miss. Gerda Ulrika Dahlberg,female,22,0,0,10.5167
|
881 |
+
0,2,Mr. Frederick James Banfield,male,28,0,0,10.5
|
882 |
+
0,3,Mr. Henry Jr Sutehall,male,25,0,0,7.05
|
883 |
+
0,3,Mrs. William (Margaret Norton) Rice,female,39,0,5,29.125
|
884 |
+
0,2,Rev. Juozas Montvila,male,27,0,0,13
|
885 |
+
1,1,Miss. Margaret Edith Graham,female,19,0,0,30
|
886 |
+
0,3,Miss. Catherine Helen Johnston,female,7,1,2,23.45
|
887 |
+
1,1,Mr. Karl Howell Behr,male,26,0,0,30
|
888 |
+
0,3,Mr. Patrick Dooley,male,32,0,0,7.75
|
src/evaluation/results_codellama_prompt3.xlsx
ADDED
Binary file (18.3 kB). View file
|
|
src/evaluation/results_deepseek_prompt1.xlsx
ADDED
Binary file (20.4 kB). View file
|
|
src/evaluation/results_deepseek_prompt2.xlsx
ADDED
Binary file (17.1 kB). View file
|
|
src/evaluation/results_deepseek_prompt3.xlsx
ADDED
Binary file (16.7 kB). View file
|
|
src/evaluation/results_mistral_prompt1.xlsx
ADDED
Binary file (16.1 kB). View file
|
|
src/evaluation/results_mistral_prompt3.xlsx
ADDED
Binary file (18.7 kB). View file
|
|
src/model.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
import torch
|
5 |
+
|
6 |
+
load_dotenv()
|
7 |
+
|
8 |
+
|
9 |
+
model = {
|
10 |
+
"tokenizer": AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-7b-instruct-v1.5"),
|
11 |
+
"model": AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-7b-instruct-v1.5")
|
12 |
+
}
|
13 |
+
|
14 |
+
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
|
17 |
+
|
18 |
+
def generate_response(prompt):
|
19 |
+
try:
|
20 |
+
coder_model_prompt = [
|
21 |
+
{"role": "user", "content": prompt}
|
22 |
+
]
|
23 |
+
encodeds = model["tokenizer"].apply_chat_template(coder_model_prompt, return_tensors="pt")
|
24 |
+
|
25 |
+
model_inputs = encodeds.to(device)
|
26 |
+
model['model'].to(device)
|
27 |
+
|
28 |
+
generated_ids = model['model'].generate(model_inputs, max_new_tokens=500, do_sample=False,temperature=0.1,repetition_penalty=1)
|
29 |
+
decoded = model["tokenizer"].batch_decode(generated_ids)
|
30 |
+
return decoded[0].split('[/INST]')[-1].split('</s>')[0]
|
31 |
+
except Exception as e:
|
32 |
+
raise Exception("Error generating: ",e) from e
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
|
src/model_server.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from flask import Flask, request, jsonify
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
import torch
|
6 |
+
load_dotenv()
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
app = Flask(__name__)
|
11 |
+
|
12 |
+
|
13 |
+
model = {
|
14 |
+
"tokenizer": AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-7b-instruct-v1.5"),
|
15 |
+
"model": AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-7b-instruct-v1.5")
|
16 |
+
}
|
17 |
+
|
18 |
+
|
19 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
def generate_response(prompt):
|
25 |
+
try:
|
26 |
+
coder_model_prompt = [
|
27 |
+
{"role": "user", "content": prompt}
|
28 |
+
]
|
29 |
+
encodeds = model["tokenizer"].apply_chat_template(coder_model_prompt, return_tensors="pt")
|
30 |
+
|
31 |
+
model_inputs = encodeds.to(device)
|
32 |
+
model['model'].to(device)
|
33 |
+
|
34 |
+
generated_ids = model['model'].generate(model_inputs, max_new_tokens=500, do_sample=False,temperature=0.1,repetition_penalty=1)
|
35 |
+
decoded = model["tokenizer"].batch_decode(generated_ids)
|
36 |
+
return decoded[0].split('[/INST]')[-1].split('</s>')[0]
|
37 |
+
except Exception as e:
|
38 |
+
raise Exception("Error generating: ",e) from e
|
39 |
+
|
40 |
+
|
41 |
+
@app.route('/generate', methods=['POST'])
|
42 |
+
def handle_request():
|
43 |
+
try:
|
44 |
+
data = request.json # Get JSON data from request
|
45 |
+
prompt = data.get('prompt')
|
46 |
+
if not prompt:
|
47 |
+
return jsonify({'error': 'No prompt provided'}), 400
|
48 |
+
response = generate_response(prompt)
|
49 |
+
return jsonify({'response': response})
|
50 |
+
except Exception as e:
|
51 |
+
raise Exception("Error generating: ",e) from e
|
52 |
+
|
53 |
+
|
54 |
+
# Run the app
|
55 |
+
if __name__ == '__main__':
|
56 |
+
app.run(debug=False, port=5000)
|
57 |
+
|
58 |
+
|
59 |
+
|
src/notebook.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/prompt_templates.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
prompt_template_textual = """df is a dataframe that {description}. df has these columns: {columns}. Write a python code block that answers this question: {question}. Just write code and print results, no explanation should be given.
|
2 |
+
"""
|
3 |
+
|
4 |
+
# prompt_template_visual = """df is a dataframe that {description}. df has these columns: {columns}. Write a python code block that answers this question: {question}. Just plot and save the results, no explanation should be given.
|
5 |
+
# """
|
6 |
+
|
7 |
+
prompt_template_visual = """df is a dataframe about {description} df has these columns: {columns}. In short, Write python code block that answers this question: {question}. Save the plot. Your response should include only a python code block.
|
8 |
+
"""
|
9 |
+
|
10 |
+
description_template = """This is an example row of a given dataset titled {filename}.\n {example_row}. Complete this sentence with a maximum of 50 words: df is a dataframe about"""
|
11 |
+
|
12 |
+
suggestion_template = """This is an example row of a given dataset titled {filename}.\n {example_row}. Write 5 simple printing/visualizing questions about the dataset so I can solve it using code."""
|
13 |
+
|
14 |
+
libraries = """
|
15 |
+
import pandas as pd
|
16 |
+
import matplotlib.pyplot as plt
|
17 |
+
import seaborn as sns
|
18 |
+
import numpy as np
|
19 |
+
import seaborn as sns
|
20 |
+
from scipy import stats
|
21 |
+
"""
|
survived_age_correlation.png
ADDED