Spaces:
Sleeping
Sleeping
File size: 11,103 Bytes
28c6826 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import torch
import torch.nn as nn
import math
from loguru import logger
import timm
from timm.models.layers import trunc_normal_
from timm.models.vision_transformer import PatchEmbed, Mlp
assert timm.__version__ == "0.3.2" # version check
import einops
import torch.utils.checkpoint
import torch.nn.functional as F
try:
import xformers
import xformers.ops
XFORMERS_IS_AVAILBLE = True
print("xformers available, will use xformers attention")
except:
XFORMERS_IS_AVAILBLE = False
print("xformers not available, will use pytorch attention instead")
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, vocab_size, hidden_size, max_position_embeddings, dropout=0.1):
super().__init__()
self.word_embeddings = nn.Embedding(vocab_size, hidden_size)
self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(hidden_size, eps=1e-6)
self.dropout = nn.Dropout(dropout)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(max_position_embeddings).expand((1, -1)))
torch.nn.init.normal_(self.word_embeddings.weight, std=.02)
torch.nn.init.normal_(self.position_embeddings.weight, std=.02)
def forward(
self, input_ids
):
input_shape = input_ids.size()
seq_length = input_shape[1]
position_ids = self.position_ids[:, :seq_length]
inputs_embeds = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
embeddings = inputs_embeds + position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class MlmLayer(nn.Module):
def __init__(self, feat_emb_dim, word_emb_dim, vocab_size):
super().__init__()
self.fc = nn.Linear(feat_emb_dim, word_emb_dim)
self.gelu = nn.GELU()
self.ln = nn.LayerNorm(word_emb_dim)
self.bias = nn.Parameter(torch.zeros(1, 1, vocab_size))
def forward(self, x, word_embeddings):
mlm_hidden = self.fc(x)
mlm_hidden = self.gelu(mlm_hidden)
mlm_hidden = self.ln(mlm_hidden)
word_embeddings = word_embeddings.transpose(0, 1)
logits = torch.matmul(mlm_hidden, word_embeddings)
logits = logits + self.bias
return logits
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
if XFORMERS_IS_AVAILBLE:
qkv = self.qkv(x)
qkv = einops.rearrange(qkv, 'B L (K H D) -> K B L H D', K=3, H=self.num_heads)
q, k, v = qkv[0], qkv[1], qkv[2] # B L H D
x = xformers.ops.memory_efficient_attention(q, k, v)
x = einops.rearrange(x, 'B L H D -> B L (H D)', H=self.num_heads)
else:
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Adapter(nn.Module):
def __init__(self, d_emb:int, d_prj:int,n_layer: int, is_shared: bool):
super().__init__()
self.D = d_emb
self.H = d_prj
self.L = n_layer
self.is_shared = is_shared
if self.is_shared:
self.DD = nn.Embedding(self.L,self.H)
self.DU = nn.Embedding(self.L,self.D)
self.WD = nn.Embedding(1,self.D*self.H)
self.WU = nn.Embedding(1,self.H*self.D)
else:
self.WD = nn.Embedding(self.L,self.D*self.H)
self.WU = nn.Embedding(self.L,self.H*self.D)
self.activate = nn.GELU()
self._init_weights()
def _init_weights(self):
for p in self.WU.parameters():
p.detach().zero_()
nn.init.trunc_normal_(self.WD.weight,mean=0,std=0.02)
if self.is_shared:
nn.init.trunc_normal_(self.DD.weight,mean=0,std=0.02)
for p in self.DU.parameters():
p.detach().zero_()
def forward(self, emb, layer):
idx = torch.arange(self.L).to(emb.device)
layer = torch.tensor(layer).to(emb.device)
if self.is_shared:
idx0 = torch.zeros_like(idx).to(emb.device)
dd = self.DD(idx).reshape(self.L, 1,self.H)
du = self.DU(idx).reshape(self.L, 1,self.D)
wd = self.WD(idx0).reshape(self.L, self.D,self.H) + dd
wu = self.WU(idx0).reshape(self.L, self.H,self.D) + du
else:
wd = self.WD(idx).reshape(self.L, self.D,self.H)
wu = self.WU(idx).reshape(self.L, self.H,self.D)
prj = torch.einsum('...d,dh->...h',emb,wd[layer])
prj = self.activate(prj)
prj = torch.einsum('...h,hd->...d',prj,wu[layer])
return emb + prj
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None,
act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip=False, use_checkpoint=False):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale)
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer)
self.skip_linear = nn.Linear(2 * dim, dim) if skip else None
self.use_checkpoint = use_checkpoint
def forward(self, x, skip=None, adapter=None, layer=None):
if self.use_checkpoint:
return torch.utils.checkpoint.checkpoint(self._forward, x, skip, adapter, layer)
else:
return self._forward(x, skip, adapter, layer)
def _forward(self, x, skip=None,adapter=None, layer=None):
if self.skip_linear is not None:
x = self.skip_linear(torch.cat([x, skip], dim=-1))
attn = self.attn(self.norm1(x))
if adapter is not None:
attn = adapter(attn, layer)
x = x + attn
x = x + self.mlp(self.norm2(x))
return x
class UViT(nn.Module):
def __init__(self, img_size=16, in_chans=8, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.,
qkv_bias=False, qk_scale=None, norm_layer=nn.LayerNorm, use_checkpoint=False,
clip_dim=768, num_clip_token=77, skip=True, codebook_size=1024,d_prj=4,is_shared=True):
super().__init__()
logger.debug(f'codebook size in nnet: {codebook_size}')
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.in_chans = in_chans
self.skip = skip
self.codebook_size = codebook_size
vocab_size = codebook_size + 1
self.time_embed = None
self.extras = num_clip_token
self.num_vis_tokens = int((img_size) ** 2)
self.token_emb = BertEmbeddings(vocab_size=vocab_size,
hidden_size=embed_dim,
max_position_embeddings=self.num_vis_tokens,
dropout=0.1)
print(f'num vis tokens: {self.num_vis_tokens}')
self.context_embed = nn.Linear(clip_dim, embed_dim)
self.in_blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
norm_layer=norm_layer, use_checkpoint=use_checkpoint)
for _ in range(depth // 2)])
self.mid_block = Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
norm_layer=norm_layer, use_checkpoint=use_checkpoint)
self.out_blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
norm_layer=norm_layer, skip=skip, use_checkpoint=use_checkpoint)
for _ in range(depth // 2)])
self.norm = norm_layer(embed_dim)
self.mlm_layer = MlmLayer(feat_emb_dim=embed_dim, word_emb_dim=embed_dim, vocab_size=vocab_size)
self.adapter = Adapter(d_emb=embed_dim, d_prj=d_prj, n_layer=depth, is_shared=is_shared)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore # type: ignore
def no_weight_decay(self):
return {'pos_embed'}
def forward(self, masked_ids, context,use_adapter=False):
assert len(masked_ids.shape) == 2
x = self.token_emb(masked_ids)
context_token = self.context_embed(context.type_as(x))
x = torch.cat((context_token, x), dim=1)
layer=0
if self.skip:
skips = []
for blk in self.in_blocks:
# 将adapter放在attention之后
x = blk(x,adapter=self.adapter if use_adapter else None,layer=layer)
if self.skip:
skips.append(x)# type: ignore
layer+=1
x = self.mid_block(x)
for blk in self.out_blocks:
if self.skip:
x = blk(x, skips.pop(),adapter = self.adapter if use_adapter else None,layer=layer)# type: ignore
else:
x = blk(x,adapter = self.adapter if use_adapter else None,layer=layer)
x = self.norm(x)
word_embeddings = self.token_emb.word_embeddings.weight.data.detach()
x = self.mlm_layer(x, word_embeddings)
x = x[:, self.extras:, :self.codebook_size]
return x
|