Spaces:
Sleeping
Sleeping
""" Step Scheduler | |
Basic step LR schedule with warmup, noise. | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
import math | |
import torch | |
from .scheduler import Scheduler | |
class StepLRScheduler(Scheduler): | |
""" | |
""" | |
def __init__(self, | |
optimizer: torch.optim.Optimizer, | |
decay_t: float, | |
decay_rate: float = 1., | |
warmup_t=0, | |
warmup_lr_init=0, | |
t_in_epochs=True, | |
noise_range_t=None, | |
noise_pct=0.67, | |
noise_std=1.0, | |
noise_seed=42, | |
initialize=True, | |
) -> None: | |
super().__init__( | |
optimizer, param_group_field="lr", | |
noise_range_t=noise_range_t, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed, | |
initialize=initialize) | |
self.decay_t = decay_t | |
self.decay_rate = decay_rate | |
self.warmup_t = warmup_t | |
self.warmup_lr_init = warmup_lr_init | |
self.t_in_epochs = t_in_epochs | |
if self.warmup_t: | |
self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values] | |
super().update_groups(self.warmup_lr_init) | |
else: | |
self.warmup_steps = [1 for _ in self.base_values] | |
def _get_lr(self, t): | |
if t < self.warmup_t: | |
lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] | |
else: | |
lrs = [v * (self.decay_rate ** (t // self.decay_t)) for v in self.base_values] | |
return lrs | |
def get_epoch_values(self, epoch: int): | |
if self.t_in_epochs: | |
return self._get_lr(epoch) | |
else: | |
return None | |
def get_update_values(self, num_updates: int): | |
if not self.t_in_epochs: | |
return self._get_lr(num_updates) | |
else: | |
return None | |