Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from taming.modules.diffusionmodules.model import Encoder, Decoder | |
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer | |
class VQModel(nn.Module): | |
def __init__(self, | |
ddconfig, | |
lossconfig, | |
n_embed, | |
embed_dim, | |
ckpt_path=None, | |
ignore_keys=[], | |
image_key="image", | |
colorize_nlabels=None, | |
monitor=None, | |
remap=None, | |
sane_index_shape=False, # tell vector quantizer to return indices as bhw | |
): | |
super().__init__() | |
self.n_embed = n_embed | |
self.embed_dim = embed_dim | |
self.image_key = image_key | |
self.encoder = Encoder(**ddconfig) | |
self.decoder = Decoder(**ddconfig) | |
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25, | |
remap=remap, sane_index_shape=sane_index_shape) | |
if ckpt_path is not None: | |
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) | |
self.image_key = image_key | |
if colorize_nlabels is not None: | |
assert type(colorize_nlabels) == int | |
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) | |
if monitor is not None: | |
self.monitor = monitor | |
self.eval() | |
self.requires_grad_(False) | |
def init_from_ckpt(self, path, ignore_keys=list()): | |
sd = torch.load(path, map_location="cpu") | |
if "state_dict" in sd.keys(): | |
sd = sd["state_dict"] | |
keys = list(sd.keys()) | |
for k in keys: | |
for ik in ignore_keys: | |
if k.startswith(ik): | |
print("Deleting key {} from state_dict.".format(k)) | |
del sd[k] | |
print("Strict load") | |
self.load_state_dict(sd, strict=True) | |
print(f"Restored from {path}") | |
def encode(self, x): | |
h = self.encoder(x) | |
quant, emb_loss, info = self.quantize(h) | |
return quant, emb_loss, info | |
def decode(self, quant): | |
dec = self.decoder(quant) | |
return dec | |
def decode_code(self, code_b): | |
quant_b = self.quantize.get_codebook_entry(code_b, [*code_b.shape, self.embed_dim]) | |
dec = self.decode(quant_b) | |
return dec | |
def forward(self, input): | |
quant, diff, info = self.encode(input) | |
return quant, diff, info | |
def get_input(self, batch, k): | |
x = batch[k] | |
if len(x.shape) == 3: | |
x = x[..., None] | |
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format) | |
return x.float() | |
def get_last_layer(self): | |
return self.decoder.conv_out.weight | |
def log_images(self, batch, **kwargs): | |
log = dict() | |
x = self.get_input(batch, self.image_key) | |
x = x.to(self.device) | |
xrec, _ = self(x) | |
if x.shape[1] > 3: | |
# colorize with random projection | |
assert xrec.shape[1] > 3 | |
x = self.to_rgb(x) | |
xrec = self.to_rgb(xrec) | |
log["inputs"] = x | |
log["reconstructions"] = xrec | |
return log | |
def to_rgb(self, x): | |
assert self.image_key == "segmentation" | |
if not hasattr(self, "colorize"): | |
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) | |
x = F.conv2d(x, weight=self.colorize) | |
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1. | |
return x | |
def get_model(config_file='vq-f16-jax.yaml'): | |
from omegaconf import OmegaConf | |
config = OmegaConf.load(f'configs/vae_configs/{config_file}').model | |
return VQModel(ddconfig=config.params.ddconfig, | |
lossconfig=config.params.lossconfig, | |
n_embed=config.params.n_embed, | |
embed_dim=config.params.embed_dim, | |
ckpt_path='assets/vqgan_jax_strongaug.ckpt') | |