Spaces:
Sleeping
Sleeping
Update clip
Browse files
app.py
CHANGED
@@ -15,33 +15,6 @@ from libs.muse import MUSE
|
|
15 |
import utils
|
16 |
import numpy as np
|
17 |
from PIL import Image
|
18 |
-
print("cuda available:",torch.cuda.is_available())
|
19 |
-
print("cuda device count:",torch.cuda.device_count())
|
20 |
-
print("cuda device name:",torch.cuda.get_device_name(0))
|
21 |
-
# print(os.system("nvidia-smi"))
|
22 |
-
print(os.system("nvcc --version"))
|
23 |
-
|
24 |
-
empty_context = np.load("assets/contexts/empty_context.npy")
|
25 |
-
|
26 |
-
print("downloading cc3m-285000.ckpt")
|
27 |
-
os.makedirs("assets/ckpts/cc3m-285000.ckpt",exist_ok=True)
|
28 |
-
|
29 |
-
wget.download("https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/lr_scheduler.pth","assets/ckpts/cc3m-285000.ckpt/lr_scheduler.pth")
|
30 |
-
wget.download("https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/optimizer.pth","assets/ckpts/cc3m-285000.ckpt/optimizer.pth")
|
31 |
-
wget.download("https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/nnet.pth","assets/ckpts/cc3m-285000.ckpt/nnet.pth")
|
32 |
-
wget.download("https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/nnet_ema.pth","assets/ckpts/cc3m-285000.ckpt/nnet_ema.pth")
|
33 |
-
wget.download("https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/step.pth","assets/ckpts/cc3m-285000.ckpt/step.pth")
|
34 |
-
wget.download("https://huggingface.co/zideliu/vqgan/resolve/main/vqgan_jax_strongaug.ckpt","assets/vqgan_jax_strongaug.ckpt")
|
35 |
-
os.system("ls assets/ckpts/cc3m-285000.ckpt")
|
36 |
-
def set_seed(seed: int):
|
37 |
-
random.seed(seed)
|
38 |
-
np.random.seed(seed)
|
39 |
-
torch.manual_seed(seed)
|
40 |
-
torch.cuda.manual_seed_all(seed)
|
41 |
-
|
42 |
-
def d(**kwargs):
|
43 |
-
"""Helper of creating a config dict."""
|
44 |
-
return ml_collections.ConfigDict(initial_dictionary=kwargs)
|
45 |
|
46 |
def get_config():
|
47 |
config = ml_collections.ConfigDict()
|
@@ -98,6 +71,50 @@ def get_config():
|
|
98 |
)
|
99 |
return config
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
def cfg_nnet(x, context, scale=None,lambdaA=None,lambdaB=None):
|
102 |
_cond = nnet_ema(x, context=context)
|
103 |
_cond_w_adapter = nnet_ema(x,context=context,use_adapter=True)
|
@@ -113,14 +130,7 @@ def unprocess(x):
|
|
113 |
x.clamp_(0., 1.)
|
114 |
return x
|
115 |
|
116 |
-
|
117 |
-
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
118 |
-
print(device)
|
119 |
-
# Load open_clip and vq model
|
120 |
-
prompt_model,_,_ = open_clip.create_model_and_transforms('ViT-bigG-14', 'laion2b_s39b_b160k',device='cuda')
|
121 |
-
prompt_model = prompt_model.to(device)
|
122 |
-
prompt_model.eval()
|
123 |
-
tokenizer = open_clip.get_tokenizer('ViT-bigG-14')
|
124 |
|
125 |
vq_model = taming.models.vqgan.get_model('vq-f16-jax.yaml')
|
126 |
vq_model.eval()
|
|
|
15 |
import utils
|
16 |
import numpy as np
|
17 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def get_config():
|
20 |
config = ml_collections.ConfigDict()
|
|
|
71 |
)
|
72 |
return config
|
73 |
|
74 |
+
print("cuda available:",torch.cuda.is_available())
|
75 |
+
print("cuda device count:",torch.cuda.device_count())
|
76 |
+
print("cuda device name:",torch.cuda.get_device_name(0))
|
77 |
+
# print(os.system("nvidia-smi"))
|
78 |
+
print(os.system("nvcc --version"))
|
79 |
+
|
80 |
+
empty_context = np.load("assets/contexts/empty_context.npy")
|
81 |
+
|
82 |
+
config = get_config()
|
83 |
+
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
84 |
+
print(device)
|
85 |
+
# Load open_clip and vq model
|
86 |
+
print("GPU memory:",torch.cuda.memory_allocated(0)/1024/1024/1024,"GB")
|
87 |
+
prompt_model,_,_ = open_clip.create_model_and_transforms('ViT-bigG-14', 'laion2b_s39b_b160k',device=device)
|
88 |
+
print("GPU memory:",torch.cuda.memory_allocated(0)/1024/1024/1024,"GB")
|
89 |
+
|
90 |
+
prompt_model = prompt_model.to(device)
|
91 |
+
prompt_model.eval()
|
92 |
+
tokenizer = open_clip.get_tokenizer('ViT-bigG-14')
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
print("downloading cc3m-285000.ckpt")
|
98 |
+
os.makedirs("assets/ckpts/cc3m-285000.ckpt",exist_ok=True)
|
99 |
+
|
100 |
+
wget.download("https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/lr_scheduler.pth","assets/ckpts/cc3m-285000.ckpt/lr_scheduler.pth")
|
101 |
+
wget.download("https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/optimizer.pth","assets/ckpts/cc3m-285000.ckpt/optimizer.pth")
|
102 |
+
wget.download("https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/nnet.pth","assets/ckpts/cc3m-285000.ckpt/nnet.pth")
|
103 |
+
wget.download("https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/nnet_ema.pth","assets/ckpts/cc3m-285000.ckpt/nnet_ema.pth")
|
104 |
+
wget.download("https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/step.pth","assets/ckpts/cc3m-285000.ckpt/step.pth")
|
105 |
+
wget.download("https://huggingface.co/zideliu/vqgan/resolve/main/vqgan_jax_strongaug.ckpt","assets/vqgan_jax_strongaug.ckpt")
|
106 |
+
os.system("ls assets/ckpts/cc3m-285000.ckpt")
|
107 |
+
def set_seed(seed: int):
|
108 |
+
random.seed(seed)
|
109 |
+
np.random.seed(seed)
|
110 |
+
torch.manual_seed(seed)
|
111 |
+
torch.cuda.manual_seed_all(seed)
|
112 |
+
|
113 |
+
def d(**kwargs):
|
114 |
+
"""Helper of creating a config dict."""
|
115 |
+
return ml_collections.ConfigDict(initial_dictionary=kwargs)
|
116 |
+
|
117 |
+
|
118 |
def cfg_nnet(x, context, scale=None,lambdaA=None,lambdaB=None):
|
119 |
_cond = nnet_ema(x, context=context)
|
120 |
_cond_w_adapter = nnet_ema(x,context=context,use_adapter=True)
|
|
|
130 |
x.clamp_(0., 1.)
|
131 |
return x
|
132 |
|
133 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
vq_model = taming.models.vqgan.get_model('vq-f16-jax.yaml')
|
136 |
vq_model.eval()
|