import os import gradio as gr import open_clip import torch import taming.models.vqgan import ml_collections import einops import random import pathlib import subprocess import shlex import wget # Model from libs.muse import MUSE import utils import numpy as np from PIL import Image print("cuda available:",torch.cuda.is_available()) print("cuda device count:",torch.cuda.device_count()) print("cuda device name:",torch.cuda.get_device_name(0)) print(os.system("nvidia-smi")) print(os.system("nvcc --version")) empty_context = np.load("assets/contexts/empty_context.npy") print("downloading cc3m-285000.ckpt") os.makedirs("assets/ckpts/cc3m-285000.ckpt",exist_ok=True) os.system("ls") wget.download("https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/lr_scheduler.pth","assets/ckpts/cc3m-285000.ckpt/lr_scheduler.pth") wget.download("https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/optimizer.pth","assets/ckpts/cc3m-285000.ckpt/optimizer.pth") wget.download("https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/nnet.pth","assets/ckpts/cc3m-285000.ckpt/nnet.pth") wget.download("https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/nnet_ema.pth","assets/ckpts/cc3m-285000.ckpt/nnet_ema.pth") wget.download("https://huggingface.co/nzl-thu/MUSE/resolve/main/assets/ckpts/cc3m-285000.ckpt/step.pth","assets/ckpts/cc3m-285000.ckpt/step.pth") wget.download("https://huggingface.co/zideliu/vqgan/resolve/main/vqgan_jax_strongaug.ckpt","assets/vqgan_jax_strongaug.ckpt") def set_seed(seed: int): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) def d(**kwargs): """Helper of creating a config dict.""" return ml_collections.ConfigDict(initial_dictionary=kwargs) def get_config(): config = ml_collections.ConfigDict() config.seed = 1234 config.z_shape = (8, 16, 16) config.autoencoder = d( config_file='vq-f16-jax.yaml', ) config.resume_root="assets/ckpts/cc3m-285000.ckpt" config.adapter_path=None config.optimizer = d( name='adamw', lr=0.0002, weight_decay=0.03, betas=(0.99, 0.99), ) config.lr_scheduler = d( name='customized', warmup_steps=5000 ) config.nnet = d( name='uvit_t2i_vq', img_size=16, codebook_size=1024, in_chans=4, embed_dim=1152, depth=28, num_heads=16, mlp_ratio=4, qkv_bias=False, clip_dim=1280, num_clip_token=77, use_checkpoint=True, skip=True, d_prj=32, is_shared=False ) config.muse = d( ignore_ind=-1, smoothing=0.1, gen_temp=4.5 ) config.sample = d( sample_steps=36, n_samples=50, mini_batch_size=8, cfg=True, linear_inc_scale=True, scale=10., path='', lambdaA=2.0, # Stage I: 2.0; Stage II: TODO lambdaB=5.0, # Stage I: 5.0; Stage II: TODO ) return config def cfg_nnet(x, context, scale=None,lambdaA=None,lambdaB=None): _cond = nnet_ema(x, context=context) _cond_w_adapter = nnet_ema(x,context=context,use_adapter=True) _empty_context = torch.tensor(empty_context, device=device) _empty_context = einops.repeat(_empty_context, 'L D -> B L D', B=x.size(0)) _uncond = nnet_ema(x, context=_empty_context) res = _cond + scale * (_cond - _uncond) if lambdaA is not None: res = _cond_w_adapter + lambdaA*(_cond_w_adapter - _cond) + lambdaB*(_cond - _uncond) return res def unprocess(x): x.clamp_(0., 1.) return x config = get_config() device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # Load open_clip and vq model prompt_model,_,_ = open_clip.create_model_and_transforms('ViT-bigG-14', 'laion2b_s39b_b160k') prompt_model = prompt_model.to(device) prompt_model.eval() tokenizer = open_clip.get_tokenizer('ViT-bigG-14') vq_model = taming.models.vqgan.get_model('vq-f16-jax.yaml') vq_model.eval() vq_model.requires_grad_(False) vq_model.to(device) ## config muse = MUSE(codebook_size=vq_model.n_embed, device=device, **config.muse) train_state = utils.initialize_train_state(config, device) train_state.resume(ckpt_root=config.resume_root) nnet_ema = train_state.nnet_ema nnet_ema.eval() nnet_ema.requires_grad_(False) nnet_ema.to(device) style_ref = { "None":None, "0102":"style_adapter/0102.pth", "0103":"style_adapter/0103.pth", "0106":"style_adapter/0106.pth", "0108":"style_adapter/0108.pth", "0301":"style_adapter/0301.pth", "0305":"style_adapter/0305.pth", } style_postfix ={ "None":"", "0102":" in watercolor painting style", "0103":" in watercolor painting style", "0106":" in line drawing style", "0108":" in oil painting style", "0301":" in 3d rendering style", "0305":" in kid crayon drawing style", } def decode(_batch): return vq_model.decode_code(_batch) def process(prompt,num_samples,lambdaA,lambdaB,style,seed,sample_steps,image=None): config.sample.lambdaA = lambdaA config.sample.lambdaB = lambdaB config.sample.sample_steps = sample_steps print(style) adapter_path = style_ref[style] adapter_postfix = style_postfix[style] print(f"load adapter path: {adapter_path}") if adapter_path is not None: nnet_ema.adapter.load_state_dict(torch.load(adapter_path)) else: config.sample.lambdaA=None config.sample.lambdaB=None print("load adapter Done!") # Encode prompt prompt = prompt+adapter_postfix text_tokens = tokenizer(prompt).to(device) text_embedding = prompt_model.encode_text(text_tokens) text_embedding = text_embedding.repeat(num_samples, 1, 1) # B 77 1280 print(text_embedding.shape) print(f"lambdaA: {lambdaA}, lambdaB: {lambdaB}, sample_steps: {sample_steps}") if seed==-1: seed = random.randint(0,65535) config.seed = seed print(f"seed: {seed}") set_seed(config.seed) res = muse.generate(config,num_samples,cfg_nnet,decode,is_eval=True,context=text_embedding) print(res.shape) res = (res*255+0.5).clamp_(0,255).permute(0,2,3,1).to('cpu',torch.uint8).numpy() im = [res[i] for i in range(num_samples)] return im block = gr.Blocks() with block: with gr.Row(): gr.Markdown("## StyleDrop based on Muse (Inference Only) ") with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt") run_button = gr.Button(label="Run") num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=1234) style = gr.Radio(choices=["0102","0103","0106","0108","0305","None"],type="value",value="None",label="Style") with gr.Accordion("Advanced options",open=False): lambdaA = gr.Slider(label="lambdaA", minimum=0.0, maximum=5.0, value=2.0, step=0.01) lambdaB = gr.Slider(label="lambdaB", minimum=0.0, maximum=10.0, value=5.0, step=0.01) sample_steps = gr.Slider(label="Sample steps", minimum=1, maximum=50, value=36, step=1) image=gr.Image(value=None) with gr.Column(): result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(columns=2, height='auto') with gr.Row(): examples = [ [ "A banana on the table", 1,2.0,5.0,"0103",1234,36, "data/image_01_03.jpg", ], [ "A cow", 1,2.0,5.0,"0102",1234,36, "data/image_01_02.jpg", ], [ "A portrait of tabby cat", 1,2.0,5.0,"0106",1234,36, "data/image_01_06.jpg", ], [ "A church in the field", 1,2.0,5.0,"0108",1234,36, "data/image_01_08.jpg", ], [ "A Christmas tree", 1,2.0,5.0,"0305",1234,36, "data/image_03_05.jpg", ] ] gr.Examples(examples=examples, fn=process, inputs=[ prompt, num_samples,lambdaA,lambdaB,style,seed,sample_steps,image, ], outputs=result_gallery, cache_examples=os.getenv('SYSTEM') == 'spaces' ) ips = [prompt,num_samples,lambdaA,lambdaB,style,seed,sample_steps,image] run_button.click( fn=process, inputs=ips, outputs=[result_gallery] ) block.queue().launch(share=False)