Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,66 @@
|
|
1 |
# app.py
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import requests
|
4 |
import gradio as gr
|
5 |
-
import torch
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
11 |
|
12 |
# Groq API configuration
|
13 |
GROQ_API_KEY = "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"
|
14 |
GROQ_API_URL = "https://api.groq.com/v1/completions"
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# Function to query Groq API
|
17 |
def query_groq(prompt):
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# Function to generate smart contract code
|
30 |
def generate_smart_contract(language, requirements):
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
43 |
|
44 |
# Custom CSS for a 3D CGI Figma-like feel
|
45 |
custom_css = """
|
|
|
1 |
# app.py
|
|
|
2 |
import requests
|
3 |
import gradio as gr
|
|
|
4 |
|
5 |
+
# Hugging Face Inference API configuration
|
6 |
+
HF_API_KEY = "your_huggingface_api_key" # Replace with your Hugging Face API key
|
7 |
+
HF_API_URL = f"https://api-inference.huggingface.co/models/codeparrot/codeparrot-small"
|
|
|
8 |
|
9 |
# Groq API configuration
|
10 |
GROQ_API_KEY = "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"
|
11 |
GROQ_API_URL = "https://api.groq.com/v1/completions"
|
12 |
|
13 |
+
# Function to query Hugging Face Inference API
|
14 |
+
def query_huggingface(prompt):
|
15 |
+
try:
|
16 |
+
headers = {
|
17 |
+
"Authorization": f"Bearer {HF_API_KEY}",
|
18 |
+
"Content-Type": "application/json"
|
19 |
+
}
|
20 |
+
data = {
|
21 |
+
"inputs": prompt,
|
22 |
+
"parameters": {
|
23 |
+
"max_length": 150 # Limit the length of the generated text
|
24 |
+
}
|
25 |
+
}
|
26 |
+
response = requests.post(HF_API_URL, headers=headers, json=data, timeout=30) # Add timeout
|
27 |
+
response.raise_for_status() # Raise an error for bad responses (4xx, 5xx)
|
28 |
+
return response.json()[0]["generated_text"]
|
29 |
+
except Exception as e:
|
30 |
+
return f"Error querying Hugging Face API: {str(e)}"
|
31 |
+
|
32 |
# Function to query Groq API
|
33 |
def query_groq(prompt):
|
34 |
+
try:
|
35 |
+
headers = {
|
36 |
+
"Authorization": f"Bearer {GROQ_API_KEY}",
|
37 |
+
"Content-Type": "application/json"
|
38 |
+
}
|
39 |
+
data = {
|
40 |
+
"prompt": prompt,
|
41 |
+
"max_tokens": 150
|
42 |
+
}
|
43 |
+
response = requests.post(GROQ_API_URL, headers=headers, json=data, timeout=10) # Add timeout
|
44 |
+
response.raise_for_status() # Raise an error for bad responses (4xx, 5xx)
|
45 |
+
return response.json()["choices"][0]["text"]
|
46 |
+
except Exception as e:
|
47 |
+
return f"Error querying Groq API: {str(e)}"
|
48 |
|
49 |
# Function to generate smart contract code
|
50 |
def generate_smart_contract(language, requirements):
|
51 |
+
try:
|
52 |
+
# Create a prompt for the model
|
53 |
+
prompt = f"Generate a {language} smart contract with the following requirements: {requirements}"
|
54 |
+
|
55 |
+
# Use Hugging Face Inference API to generate code
|
56 |
+
generated_code = query_huggingface(prompt)
|
57 |
+
|
58 |
+
# Enhance the code using Groq API
|
59 |
+
enhanced_code = query_groq(generated_code)
|
60 |
+
|
61 |
+
return enhanced_code
|
62 |
+
except Exception as e:
|
63 |
+
return f"Error generating smart contract: {str(e)}"
|
64 |
|
65 |
# Custom CSS for a 3D CGI Figma-like feel
|
66 |
custom_css = """
|