bhaskartripathi commited on
Commit
f3746a4
·
1 Parent(s): 2277826

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -218,7 +218,7 @@ def generate_answer_text_davinci_003(question,openAI_key):
218
  # pre-defined questions
219
  questions = [
220
  "What did the study investigate?",
221
- "Can you provide a summary of this document?",
222
  "what are the methodologies used in this study?",
223
  "what are the data intervals used in this study? Give me the start dates and end dates?",
224
  "what are the main limitations of this study?",
@@ -236,7 +236,7 @@ recommender = SemanticSearch()
236
  title = 'PDF GPT Turbo'
237
  description = """ PDF GPT Turbo allows you to chat with your PDF file using Universal Sentence Encoder and Open AI. It gives hallucination free response than other tools as the embeddings are better than OpenAI. The returned response can even cite the page number in square brackets([]) where the information is located, adding credibility to the responses and helping to locate pertinent information quickly."""
238
 
239
- with gr.Blocks(css="""#chatbot { font-size: 14px; min-height: 600; }""") as demo:
240
 
241
  gr.Markdown(f'<center><h1>{title}</h1></center>')
242
  gr.Markdown(description)
@@ -270,7 +270,7 @@ with gr.Blocks(css="""#chatbot { font-size: 14px; min-height: 600; }""") as demo
270
 
271
  with gr.Group():
272
  #chatbot = gr.Chatbot(placeholder="Chat History", label="Chat History", lines=20, elem_id="chatbot")
273
- chatbot = gr.Chatbot(placeholder="Chat History", label="Chat History", lines=25, elem_id="chatbot")
274
 
275
  # Bind the click event of the button to the question_answer function
276
  btn.click(
 
218
  # pre-defined questions
219
  questions = [
220
  "What did the study investigate?",
221
+ "Can you provide a summary of this paper?",
222
  "what are the methodologies used in this study?",
223
  "what are the data intervals used in this study? Give me the start dates and end dates?",
224
  "what are the main limitations of this study?",
 
236
  title = 'PDF GPT Turbo'
237
  description = """ PDF GPT Turbo allows you to chat with your PDF file using Universal Sentence Encoder and Open AI. It gives hallucination free response than other tools as the embeddings are better than OpenAI. The returned response can even cite the page number in square brackets([]) where the information is located, adding credibility to the responses and helping to locate pertinent information quickly."""
238
 
239
+ with gr.Blocks(css="""#chatbot { font-size: 14px; min-height: 800; }""") as demo:
240
 
241
  gr.Markdown(f'<center><h1>{title}</h1></center>')
242
  gr.Markdown(description)
 
270
 
271
  with gr.Group():
272
  #chatbot = gr.Chatbot(placeholder="Chat History", label="Chat History", lines=20, elem_id="chatbot")
273
+ chatbot = gr.Chatbot(placeholder="Chat History", label="Chat History", lines=35, elem_id="chatbot")
274
 
275
  # Bind the click event of the button to the question_answer function
276
  btn.click(