Update app.py
Browse files
app.py
CHANGED
@@ -33,6 +33,13 @@
|
|
33 |
# --------------------------------------------------------
|
34 |
# gradio demo executable
|
35 |
# --------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
import os
|
37 |
import torch
|
38 |
import tempfile
|
@@ -46,17 +53,24 @@ from mast3r.utils.misc import hash_md5
|
|
46 |
import matplotlib.pyplot as pl
|
47 |
pl.ion()
|
48 |
|
49 |
-
torch.backends.cuda.matmul.allow_tf32 = True # for
|
|
|
|
|
|
|
|
|
50 |
|
51 |
if __name__ == '__main__':
|
52 |
parser = get_args_parser()
|
53 |
args = parser.parse_args()
|
54 |
|
55 |
-
#
|
|
|
|
|
|
|
|
|
|
|
56 |
if args.weights is None:
|
57 |
-
|
58 |
-
args.model_name = 'MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric' # Default model_name
|
59 |
-
args.weights = "naver/" + args.model_name # Construct default weights path
|
60 |
|
61 |
if args.server_name is not None:
|
62 |
server_name = args.server_name
|
@@ -66,12 +80,14 @@ if __name__ == '__main__':
|
|
66 |
# Use the provided or default weights_path
|
67 |
weights_path = args.weights
|
68 |
|
|
|
69 |
model = AsymmetricMASt3R.from_pretrained(weights_path).to(args.device)
|
70 |
chkpt_tag = hash_md5(weights_path)
|
71 |
|
72 |
def get_context(tmp_dir):
|
73 |
return tempfile.TemporaryDirectory(suffix='_mast3r_gradio_demo') if tmp_dir is None \
|
74 |
else nullcontext(tmp_dir)
|
|
|
75 |
with get_context(args.tmp_dir) as tmpdirname:
|
76 |
cache_path = os.path.join(tmpdirname, chkpt_tag)
|
77 |
os.makedirs(cache_path, exist_ok=True)
|
|
|
33 |
# --------------------------------------------------------
|
34 |
# gradio demo executable
|
35 |
# --------------------------------------------------------
|
36 |
+
#!/usr/bin/env python3
|
37 |
+
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
|
38 |
+
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
|
39 |
+
#
|
40 |
+
# --------------------------------------------------------
|
41 |
+
# gradio demo executable
|
42 |
+
# --------------------------------------------------------
|
43 |
import os
|
44 |
import torch
|
45 |
import tempfile
|
|
|
53 |
import matplotlib.pyplot as pl
|
54 |
pl.ion()
|
55 |
|
56 |
+
torch.backends.cuda.matmul.allow_tf32 = True # for GPU >= Ampere and PyTorch >= 1.12
|
57 |
+
|
58 |
+
def get_default_weights_path(model_name):
|
59 |
+
# Construct default weights path based on model_name
|
60 |
+
return f"naver/{model_name}"
|
61 |
|
62 |
if __name__ == '__main__':
|
63 |
parser = get_args_parser()
|
64 |
args = parser.parse_args()
|
65 |
|
66 |
+
# Ensure at least one of weights or model_name is provided
|
67 |
+
if args.weights is None and args.model_name is None:
|
68 |
+
# Provide a default model_name if both weights and model_name are not provided
|
69 |
+
args.model_name = 'MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric'
|
70 |
+
|
71 |
+
# If weights are not provided but model_name is, construct weights_path
|
72 |
if args.weights is None:
|
73 |
+
args.weights = get_default_weights_path(args.model_name)
|
|
|
|
|
74 |
|
75 |
if args.server_name is not None:
|
76 |
server_name = args.server_name
|
|
|
80 |
# Use the provided or default weights_path
|
81 |
weights_path = args.weights
|
82 |
|
83 |
+
# Load the model with the weights_path
|
84 |
model = AsymmetricMASt3R.from_pretrained(weights_path).to(args.device)
|
85 |
chkpt_tag = hash_md5(weights_path)
|
86 |
|
87 |
def get_context(tmp_dir):
|
88 |
return tempfile.TemporaryDirectory(suffix='_mast3r_gradio_demo') if tmp_dir is None \
|
89 |
else nullcontext(tmp_dir)
|
90 |
+
|
91 |
with get_context(args.tmp_dir) as tmpdirname:
|
92 |
cache_path = os.path.join(tmpdirname, chkpt_tag)
|
93 |
os.makedirs(cache_path, exist_ok=True)
|