import os import openai import gradio as gr from langchain.chains import ConversationalRetrievalChain from langchain.text_splitter import CharacterTextSplitter from langchain_community.document_loaders import PyMuPDFLoader, PyPDFLoader from langchain.vectorstores import Chroma from langchain_community.embeddings import OpenAIEmbeddings from langchain_community.chat_models import ChatOpenAI import shutil # 用於文件複製 # 獲取 OpenAI API 密鑰(初始不使用固定密鑰) api_key_env = os.getenv("OPENAI_API_KEY") if api_key_env: openai.api_key = api_key_env else: print("未設置固定的 OpenAI API 密鑰。將使用使用者提供的密鑰。") # 確保向量資料庫目錄存在且有寫入權限 VECTORDB_DIR = os.path.abspath("./data") os.makedirs(VECTORDB_DIR, exist_ok=True) os.chmod(VECTORDB_DIR, 0o755) # 定義載入和處理 PDF 文件的函數 def load_and_process_documents(file_paths, loader_type='PyMuPDFLoader', api_key=None): if not api_key: raise ValueError("未提供 OpenAI API 密鑰。") documents = [] for file_path in file_paths: if not os.path.exists(file_path): continue try: if loader_type == 'PyMuPDFLoader': loader = PyMuPDFLoader(file_path) elif loader_type == 'PyPDFLoader': loader = PyPDFLoader(file_path) else: continue loaded_docs = loader.load() if loaded_docs: documents.extend(loaded_docs) except Exception as e: continue if not documents: raise ValueError("沒有找到任何 PDF 文件或 PDF 文件無法載入。") # 分割長文本 text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=50) documents = text_splitter.split_documents(documents) if not documents: raise ValueError("分割後的文檔列表為空。請檢查 PDF 文件內容。") # 初始化向量資料庫 try: embeddings = OpenAIEmbeddings(openai_api_key=api_key) # 使用使用者的 API 密鑰 except Exception as e: raise ValueError(f"初始化 OpenAIEmbeddings 時出現錯誤: {e}") try: vectordb = Chroma.from_documents( documents, embedding=embeddings, persist_directory=VECTORDB_DIR ) except Exception as e: raise ValueError(f"初始化 Chroma 向量資料庫時出現錯誤: {e}") return vectordb # 定義聊天處理函數 def handle_query(user_message, chat_history, vectordb, api_key): try: if not user_message: return chat_history # 添加角色指令前綴 preface = """ 指令: 以繁體中文回答問題,200字以內。你是一位勞動法專家,針對員工權益與合同條款等法律問題進行回應。 非相關問題,請回應:「目前僅支援勞動法相關問題。」。 """ query = f"{preface} 查詢內容:{user_message}" # 初始化 ConversationalRetrievalChain,並傳遞 openai_api_key pdf_qa = ConversationalRetrievalChain.from_llm( ChatOpenAI(temperature=0.7, model="gpt-4", openai_api_key=api_key), retriever=vectordb.as_retriever(search_kwargs={'k': 6}), return_source_documents=True ) # 呼叫模型並處理查詢 result = pdf_qa.invoke({"question": query, "chat_history": chat_history}) if "answer" in result: chat_history = chat_history + [(user_message, result["answer"])] else: chat_history = chat_history + [(user_message, "抱歉,未能獲得有效回應。")] return chat_history except Exception as e: return chat_history + [("系統", f"出現錯誤: {str(e)}")] # 定義保存 API 密鑰的函數 def save_api_key(api_key, state): if not api_key.startswith("sk-"): return "請輸入有效的 OpenAI API 密鑰。", state state['api_key'] = api_key return "API 密鑰已成功保存。您現在可以上傳 PDF 文件並開始提問。", state # 定義 Gradio 的處理函數 def process_files(files, state): if files: try: api_key = state.get('api_key', None) if not api_key: return "請先輸入並保存您的 OpenAI API 密鑰。", state saved_file_paths = [] for idx, file_data in enumerate(files): filename = f"uploaded_{idx}.pdf" save_path = os.path.join(VECTORDB_DIR, filename) with open(save_path, "wb") as f: f.write(file_data) saved_file_paths.append(save_path) vectordb = load_and_process_documents(saved_file_paths, loader_type='PyMuPDFLoader', api_key=api_key) state['vectordb'] = vectordb return "PDF 文件已成功上傳並處理。您現在可以開始提問。", state except Exception as e: return f"處理文件時出現錯誤: {e}", state else: return "請上傳至少一個 PDF 文件。", state def chat_interface(user_message, chat_history, state): vectordb = state.get('vectordb', None) api_key = state.get('api_key', None) if not vectordb: return chat_history, state, "請先上傳 PDF 文件以進行處理。" if not api_key: return chat_history, state, "請先輸入並保存您的 OpenAI API 密鑰。" updated_history = handle_query(user_message, chat_history, vectordb, api_key) return updated_history, state, "" # 設計 Gradio 介面 with gr.Blocks(css="body { background-color: #EBD6D6; }") as demo: gr.Markdown("<h1 style='text-align: center;'>勞動法智能諮詢系統</h1>") state = gr.State({"vectordb": None, "api_key": None}) # API 密鑰輸入框 api_key_input = gr.Textbox( label="輸入您的 OpenAI API 密鑰", placeholder="sk-...", type="password", interactive=True ) save_api_key_btn = gr.Button("保存 API 密鑰") api_key_status = gr.Textbox(label="狀態", interactive=False) # 上傳 PDF 文件 gr.Markdown("<span style='font-size: 1.5em; font-weight: bold;'>請上傳勞動法相關文檔,讓我協助解決您的職場問題!🤖</span>") upload = gr.File( file_count="multiple", file_types=[".pdf"], label="上傳勞動法 PDF 文件", interactive=True, type="binary" ) upload_btn = gr.Button("上傳並處理") upload_status = gr.Textbox(label="上傳狀態", interactive=False) # 智能諮詢 gr.Markdown("### 勞動法小幫手") chatbot = gr.Chatbot() txt = gr.Textbox(show_label=False, placeholder="請輸入您的法律問題...") submit_btn = gr.Button("提問") # 綁定事件 save_api_key_btn.click( save_api_key, inputs=[api_key_input, state], outputs=[api_key_status, state] ) upload_btn.click( process_files, inputs=[upload, state], outputs=[upload_status, state] ) submit_btn.click( chat_interface, inputs=[txt, chatbot, state], outputs=[chatbot, state, txt] ) txt.submit( chat_interface, inputs=[txt, chatbot, state], outputs=[chatbot, state, txt] ) # 啟動 Gradio 應用 demo.launch()